AN EXTENSION THAT NOWHERE HAS
THE FRECHET PROPERTY

V. Kannan

In this note, we describe for every T,-space an extension that does not have
the Fréchet property anywhere; as a by-product, we obtain an answer to a question
posed by A. V. Arhangel’skii and S. P. Franklin [2, p. 319].

The main corollary (Corollary 2.8) of this note was announced in a slightly
weaker form in [10], and it was proved in an entirely different way in [11].

In the construction of progressively more pathological topologies, countable
spaces satisfying the first axiom of countability at no point have been considered by
J. Novak [14], M. Bebutoff and V. Schneider [3], and R. Engelking [6, pp. 108-109],
among others. In [2], A.V. Arhangel’skil and S. P. Franklin construct a countable,
homogeneous, sequential Hausdorff space S, that is not first-countable. We de-
scribe here a method of embedding a prescribed space in a nowhere-first-countable
space, and we use it to answer a problem posed in [2] concerning such spaces.

The construction described in this paper is also useful in other directions;

several applications of the construction to homogeneous extensions can be seen in
[12].

1. CONSTRUCTION AND PROPERTIES OF X*

Let X be a nondiscrete T;-space, let xg be a nonisolated point of X, and let
X* denote the set of all finite sequences of elements in X \ {XO}. (The null se-
quence with no term is also considered as a finite sequence.) Clearly, X and X*
have the same cardinality.

To define a topology on X*, we first note that each element t of X* gives rise
to a function f;: X — X* in the following natural way.

Let t =(x;, x,, -, x,). Then

(xy, X2, **, Xp, X)  if X # Xq,
ft(X) =
(x1, X2, ', Xp) if x=xg.

Thus we have a family of X*-valued functions on the space X, namely {ft‘ t e X*}
We give to X* the strongest (largest, finest) topology in which all these functions

are continuous. In this topology, a set U C X* is open if and only if ft‘l(U) is open
in X for each t in X*. (Some topologists call this the initial topology given by the

family {f.} of functions. According to [4, p. 595], X* is inductively generated by
the family {f:}.)

PROPOSITION 1.1. X* isa quotient of a sum of copies of X. (Later, we shall
prove that X is also a quotient of X*.)
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Proof. For each t in X* let X; be a homeomorphic copy of X, and let
hy: X — X be a fixed homeomorphism. Let Etex* X be the disjoint topological

sum of all these copies of X. Let ¢: Etex* X, — X* be defined by ¢ | Xi=1f;0h,.
Then it is easily seen that ¢ is a quotient map onto X*.

The following proposition gives a method of directly describing the topology of
X*,

PROPOSITION 1.2. A set U C X* is open if and only if for each
(x1 y Koy oo, xn) € U there exist an open neighbouvhood V of x, and an open
neighbourhood W of xo in X such that

(i) (xy, X3, ***, Xp_1, V) € U for every vin V,
(i1) (x, X3, ***, Xy_15 Xp, W) € U for every w in W\ {xq}.
(When n = 0, condition (i) is omitted.)

Proof. Let U C X* be open, and let t = (x}, X2, ***, Xp) belong to U. Since
f;: X — X* is continuous, f; (U) is open in X. Let W = f;1(U). Now f(xo) =t € U.
Therefore xg € W. Thus W is an open neighbourhood of xg such that f(W) € U and
therefore (ii) is satisfied. If n > 1 (that is, if t is not the null sequence), consider
s =(xy, X2, **+, Xn_1). Since fg: X — X* is continuous, £51(U)\ {x¢} =V is open
in X. Now fq(x,) =t € U, sothat x, € V. Thus V is an open neighbourhood of x,
such that £,(V) € U, and (i) is satisfied.

Conversely, let U C X* be as stated in the proposition. We show that then, for
each t in X* ft‘l(U) is a neighbourhood of each of its points. Let

t=(x,, x5, -+, x). Let x ¢ f-(U) and x # xg. Then (x;, X3, -, X5, X) € U.
Therefore, by our assumption, there exists an open neighbourhood V of x in X
such that (x;, xp, -+, X, V) € U for every v in V. This implies that £(V) C U, so

that V C £1(U). Thus £{1(U) is a neighbourhood of x # xq. Now let xq € £71(U).

Then t € U, and therefore, by our assumption, there exists an open neighbourhood W
of xp in X such that f(W) C U. Therefore ft"l(U) is a neighbourhood of xg. Thus
f:1(U) is open in X for each t € X* and this proves that U is open in X*,

Next we describe the topology of X* in a nicer way, using the notion of weak
topology of [5].

PROPOSITION 1.3. The topology of X* is the weak topology deteymined by the
family {£(X)| t € X*} of subsets of X. In other words, U C X* is open if and only
if U NE(X) is open in £{X) for each t in X*.

Proof. Let U C X* be such that U N £(X) is open in fi(X) for each t in X*.
Then, for every t in X*, the set f{l(U) = ft-l(U N ft(X)) is open in X, since
fi X — £(X) is continuous. Therefore U is open in X*.

Note. F C X™* is closed if and only if F N f(X) is closed in f{X) for each t
in X*

PROPOSITION 1.4. X is homeomorphic to a closed subspace of X*.

Pyoof. In fact, we show that each f; is a homeomorphism of X onto a closed
subspace of X*. Let t € X*. First we show that the set f(F) is closed in X* for

each closed F C X. Now, whatever s € X* may be, the set £;1(f,(F)) is either
empty, or a singleton, or F. Therefore, f;1({(F)) is closed in X, for each s in X*
This implies that f(F) is closed in X*. In particular, the range of f, is closed in
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X* and fi: X — £fi(X) is a closed map. We already know that it is continuous. By
virtue of its definition, it is one-to-one. Thus f; is a homeomorphism of X onto a
closed subspace of X*.

PROPOSITION 1.5. X is a quotient of X*.

Proof. Consider the function p: X* — X that maps each nonnull sequence onto
its first term and maps the null sequence onto xy. First we prove that p is con-
tinuous. Let U C X be open, and let t € p~}(U). If t is the null sequence, then U
is a neighbourhood of xq and (u) € p-1(U) for each u € U. Hence (ii) of Proposition
1.2 is satisfied in this case. If t is a nonnull sequence, then its first term belongs
to U. We see that the neighbourhood X of x; and the neighbourhood V of the last
term of t satisfy the criterion of Proposition 1.2, where V = X\ {xg} or
V=U\ {xo} according as t has more than one term or not. Therefore, by Propo-
sition 1.2, p~1(U) is open. Thus p is continuous. Clearly, it is surjective. To
show that p is a quotient map, let U be a subset of X such that p-1(U) is open.

Then U = f;1(p-1(U) N £,(X)), where o denotes the null sequence. Since f, isa

homeomorphism from X into X* (by virtue of Proposition 1.4), it follows that U is
open in X. Thus p: X* — X is a quotient map.

PROPOSITION 1.6. X* is a T -space.

Pyoof. In the proof of Proposition 1.1, X* is exhibited as a quotient of a Ty~
space under a finite-to-one mapping. Therefore, X* isa T, -space.

Definition 1.7. Let X be a topological space, and let x € X. Then X is said to
satisfy the Fréchet axiom at x if, whenever x belongs to the closure of a subset A
of X, there exists a sequence in A that converges to x. The space X is called a
Fréchet space if it satisfies the Fréchet axiom at each of its points.

Note. Let X be a topological space, and let x € X. Let there exist a countable
neighbourhood base at x in X. Then X satisfies the Fréchet axiom at x. In partic-
ular, if X is first-countable, then X is a Fréchet-space.

PROPOSITION 1.8. There is no point of X* where the Fréchet axiom is
satisfied.

Proof. We want to show that, for every t in X*, there exists a subset S; of X*
such that

(1) t is in the closure of S; and
(2) no sequence from S; converges to t.

Let t= (Xl’ Xp, **, x,). We let S; be the set of all sequences having exactly n + 2
terms, of the form (YI’ Y2, Yn~!-2); where y; = x; for 1 S1_<_Il and

Yn+ls ¥n+2 € X \ {XO

Now we prove (1). If U is an open set containing t, then, by virtue of Proposi-
tion 1.2, there exists a neighbourhood W of xy such that (x, x5, ***, x,, W) € U
for every w in W \ {XO}. Since xg is not an isolated point of X, there exists a w,
in W such that w; # x5. Now (Xl: Xo, "7ty X, Wl) € U. Repeating the argument
with this element, we find that there exists an element w, # x¢ in X such that
(x1, X2, ***, Xp, W] , W) € U. Thus U N S; is not empty. Thus t belongs to the
closure of S;.

Now we prove (2). Let {t;, ty, **-, t.., *=-} be a sequence in S;. For
r=1,2 -, let t. denote the (n + 1)st term of t. (where n is the number of terms
in t). We consider the sequence {t' , t"z, } of elements in X. Two cases are
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possible: (i) The sequence contains a constant sequence as a subsequence, or (ii) no
constant sequence is a subsequence. We treat the two cases separately.
Case (i). Let {t;~1 = t'r2 = e = t;.m = ...} be a constant subsequence of the se-

quence {t,}, consider the subsequence {trl , tr2 ;o b, .--} of the sequence

{tr} in S;, and let A be this subsequence considered as a subset of X*. Then
clearly A is contained in f(X), where s = (x|, x,, ***, X, t;.l). Since £ (X) isa

closed set (see the proof of Proposition 1.4), it follows that t is not in the closure of
A. This implies that the sequence {t.} does not converge to t.

Case (ii). Let the sequence {t.} possess no constant subsequence. Then it
possesses a subsequence with dlstmct terms. That is, the sequence {t } in S;
possesses a subsequence the (n + 1)st terms of whose terms are mutually distinct.
Now, if A is such a subsequence considered as a subset of X* then A meets each
f (X) in at most one point, and consequently A is closed (by virtue of the note at the
end of Proposition 1.3). This in turn implies that the sequence {t,} cannot con-
verge to t.

Thus no sequence in S; can converge to t. This proves Proposition 1.8.
COROLLARY 1.9. X* is nowhere first-countable.

PROPOSITION 1.10. X* is a Hausdovff space if and only if X is a Hausdovff
Space.

Proof. Let X be a Hausdorff space, and let (xl, Xy, ', X ) and
(y1, y2, -, ¥o) be two distinct points of X*. We assume without loss of generality
that n > m.

Case 1. Let x; =y; for 1 <i < m (in this case, we say that the second point
extends the first point). Consider the set f,(X), where t = (x;, %, ***, X,,,). This
subspace of X* is a Hausdorff space, since it is homeomorphic to X, by Proposition
1.4. Hence the points (x), x5, -+, X;py) and (y1, ¥2, ***, Ym+1) can be separated by
disjoint open sets, say U and V, in f(X). Let W = U U £..(X), where
t'=(xy, X5, ***, Xn-1)- Welet W =T if t is the null sequence. Let V* be the set
of all elements of X* that extend some element of V. The set (W \ {t, t'})* is de-
fined similarly. Now we can prove, by using Proposition 1.2, that V* and
W\ {t, t'})*U {t} are disjoint open sets in X* separating the two given points.
(If t is the null sequence, we replace W \ {t, t'} by W({t}).)

Case 2. Let there exist an integer k < m such that x; # yr. Let us assume
that k is the smallest such integer. Let U and V be disjoint open neighbourhoods
of x; and yi in X. Let U; be the subset of X* consisting of the sequences of
length at least m with kth terms in U. Defining V) analogously, we see that (by
Proposition 1.2) U; and V,; are disjoint open sets in X* separating the two given
points.

Thus we have proved that if X is a Hausdorff space then so is X*. The con-
verse follows trivially from Proposition 1.4.

PROPOSITION 1.11. X* is connected if-and only if X is connected.

Proof. Let X be connected, and let t = (x;, x5, -+, xm) be any element of X*.
Consider the finite sequence

£, 1, (%), 1,0, =, £, (%)
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of subsets of X* where t; = (x|, x,, ***, x;) for 1 <i < m, and where o denotes
the null sequence. This sequence has the following properties:

(i) the null sequence o is an element of f,(x),
(if) t e £, (X),
m
(iii) no two successive sets are disjoint,
(iv) each set is connected (being a continuous image of X).

This shows that t belongs to the connected component of the null sequence. Since
this is true for each t in X*, we see that X* is connected.

Conversely, if X* is connected, it follows from Proposition 1.5 that X is con-
nected.

PROPOSITION 1.12. X* is sequential if and only if X is sequential.

Proof. The family of all sequential spaces is closed under the formation of
sums, quotients, and closed subspaces (see [7]). Hence Proposition 1.12 follows
from Propositions 1.1 and 1.4.

Remark 1.13. From Propositions 1.1 and 1.5 it follows that if P is a topologi-
cal property invariant under sums and quotients, then X has P if and only if X*
has P. Such properties are sometimes referred to as coreflexive properties. The
following are examples of such properties: local connectedness, local path connect-
edness, m-sequentialness, a-sequentialness, being a k-space, a c-space, a Py-
space, or a chain-net space (see [13] for the definitions).

PROPOSITION 1.14. X* is zero-dimensional if and only if X is zevo-
dimensional. (Here dimension is understood to mean the “small inductive” dimen-
sion of Menger and Urysohn.)

Proof. Let X be zero-dimensional, let t € X* and let U be an open neighbour-
hood of t in X*. First suppose the length m of t is at least 1, and put
t'=(t;, *-, t;y-1). By Proposition 1.2 (i), there exists a neighbourhood V of t,, in
X such that (t;, -+, t,,_1, v) € U for all v in V. There is an open-closed neigh-
bourhood Vg of t,, in X such that Vo C V. Write Fg = £:(Vy); then F is an open-
closed neighbourhood of t relative to f.(X), contained in U. For each x in U,
since f, is a homeomorphism, there is an open-closed neighbourhood F(x) of x

relative to £ (X), contained in U N {(X). Define F| = Uxe Fo F(x). Then UD F).
When the set F,, C U has been defined, define F, ., = Uxan F(x). This defines

F, recursively; put F = Un o F,. Then t € F C U, and it remains to be shown

that F is open-closed in X*. By Pr6p051t10n 1.3 and the remark following it, it suf-
fices to show that, for each p in X* FNf p(X) is open-closed relative to f (X)
Now an easy induction over n shows that each point of ¥, \ F,, has length exactly
m +n + 1. Using this fact, we can easily verify that

F(p) ifpeF,
mep(x)= Fo if p=t',
D otherwise.

Thus the result follows in this case.
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If m =0, so that t is the null sequence o, we choose as before for each x in U
an open-closed neighbourhood F(x) of x relative to £ (x) contained in U, and define

(> e}
F,o=Ft, F.,= U re, F=U F,.
x€F, n=1

Again, t ¢ F C U, and F is open-closed; for it is easy to verify that for each p in
x*,
) unless pe F,
FN fp(X) =
F(p) if peF.

In carrying out this verification, we use the fact that each element of F; \ {t} has
length 1 and each element of F,,; \ F, has length n + 1.

Thus we have shown that if X is zero-dimensional, then so is X*. The con-
verse follows from Proposition 1.4.

Remark 1.15. Similar arguments show that several other nice properties are
also preserved in the passage from X to X*. For example, if P is any one of the
following properties, then X* has P if and only if X has P: regularity, normality,
path-connectedness, total disconnectedness. Thus we have shown that each non-
discrete T;-space can be embedded as a closed subspace of a nowhere-Fréchet
space, with preservation of many of the standard topological properties.

2. ANSWER TO A QUESTION OF ARHANGEL’SKII AND FRANKLIN

The extension studied in the previous section can be applied to several prob-
lems concerning homogeneous spaces. Of these, one application can be described
now, since it involves no new notions. We show in this section that for a special
class of spaces X the extension X* is always homogeneous, and then we use the
properties of this class to give the promised solution to a problem of [2]. We start
with two short lemmas. Throughout this section, X is a T,-space with a unique
accumulation point, which we take to be x; . It follows immediately that X is a
Hausdorff space, and in fact, that it is zero-dimensional (hence regular).

Notation 2.1. Let t = (x;, x,, ***, x,,) € X*. Then U, denotes the set of all
elements of X* that extend t; that is,

U, = {71, ¥2, =" Yo € X m>n; y; = x; if 1<i<n}.

Also, let V, = U, \ {t}.
LEMMA 2.2. Fov each t in X* the set U is both open and closed in X*.

Proof. Let t' be a point of X*. Then it is easily seen that

(ii) £,,(X) N U, is a singleton (which is isolated in f,.(X)), if t € £,.(X) \ {t'};
and

(iii) ft,(X) is disjoint from U,, otherwise.
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Thus f..(X) N U, is either the whole of f.,(X), or it is empty, or it consists of a
single isolated point; in any case, it is both open and closed in f,(X). This is true
for each t' in X*. Therefore we deduce from Proposition 1.3 and the note below it
that U, is both open and closed in X*,

LEMMA 2.3. (i) For each t in X*, theve is a homeomorphism h, from X*
onto Uy that takes the null sequence to t.

(ii) For each nonnull t € X*, there is a homeomorphism g, from X*\ U, onto
X* that takes the null sequence to itself.

Proof. Let t=(x,, x,, =+, X).
(i) Consider the map hy: X* — U defined by

ht(Yly Yo, =, yn) = (Xl’ Xo, "y Xpny Y15 Y2, °77 ym).

Clearly, h; is a bijection. Observe that h, takes the null sequence to the element t.
The openness of h; and h,c‘l can be proved by using Proposition 1.2.

(ii) Let t be nonnull. Then its last term X, is an isolated point in X. We first
note that there exists a homeomorphism p: X \ {x,} — X. (For if the complement
in X of every neighbourhood of x, is finite, then an arbitrary bijection of X\ {x,}
onto X, keeping xq fixed, will automatically be homeomorphism; if some neighbour-
hood W of xp has infinite complement, take p to be the identity map on W \ {xn}
combined with an arbitrary bijection of X\ (W U {x,}) onto (X\ W)U {x_ }.)

To define g;, note first that U, C Vi, and that X* \ U, is the union of the dis-
joint sets X*\ Vi and Vi \ Uy, Now (a) if y =(y;, ***, ¥m) € V¢ \ Ui, note that
m >n and y, # X, ; thus we can define

gt(y) = (yl; s ¥Yn-1> p(yn); Yn+ls °°%» Ym)'

And (b) if y € X*\ V;1, define g(y) =y. Thus (a) gives a bijection of Vi \ U, onto

Vi, and (b) gives a bijection of X*\ V;: onto X* \ V,:. Therefore g; is a bijection
of X*\ U onto X*. Also, the null sequence is a fixed point of g . The openness of
g and g can be proved by means of Proposition 1.2 and the fact that x; is the only
accumulation point of X.

THEOREM 2.4. Let X be a Hausdorff space with a unique accumulation point.
Then X* is homogeneous.

Proof. Let t and t' be any two elements of X¥*,

Case (i). Let neither t nor t' be null. Let the maps h¢, hr, gy be the home-
omorphisms of Lemma 2.3. Define a map g, ,, from X* onto X* by

8¢, | Uy = hpohgt, gi ¢ | (X*\ Uy = gl © g .

Then g; ;+ maps Ui homeomorphically onto U;r, and it maps X*\ U; homeomor-
phically onto X*\ U;:. By Lemma 2.2, it is a homeomorphism of X* onto itself.
Also, by its definition, it takes t to t'.

Case (ii). Let t =0 # t'. Using Lemma 2.3, define
hyr o gy on X*\ U,

Sttt ~ 1 1
g © h{. on U, .
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Then g + is a homeomorphism of X* onto X* that takes t to t' and t' to t.

Case (iii). Let t # o =t'. Then, as in case (ii), we get a map g,. , that takes t
to t' and t' to t. ’

Thus, in all cases, there is 2 homeomorphism of X* that takes t to t'. Thus
X* is homogeneous.

The following theorem asserts that the extension X* almost determines the
space X.

THEOREM 2.5. Let X and Y be two Hausdorff spaces, each having a unique
accumulation point. Furthev, let Y be a Fréchet space. If Y is a subspace of X¥,
then Y is homeomorphic to the disjoint sum of a discrete space and a closed sub-
space of X. .

Proof. Let t be the unique accumulation point of Y. As in the proof of Propo-
sition 1.8, we can show that no sequence in Ui \ f{(X) converges to t. Also, by
Lemma 2.2, U, is an open neighbourhood of t. This implies that no sequence in
X*\ f(X) converges to t. Consequently, the set Y \ fy(X) is closed in Y, since Y
is a Fréchet space. But we have already noted that f,(X) is closed in X*, so that
Y \ £(X) is open in Y. Thus Y \ f(X) is both open and closed in Y, and therefore
Y is the disjoint sum of Y \ fi(X) and Y N f¢(X). Since t is the unique accumulation
point of Y, it follows that Y \ fi(X) is discrete. Also, Y N f¢(X) is homeomorphic
to a closed subspace of X, since f(X) is homeomorphic to X and since every sub-
space of X containing the unique accumulation point is closed. This proves the
theorem.

COROLLARY 2.6. Under the hypotheses of Theovem 2.5, if X is locally com-
pact, so is Y; if X is first-countable, so is Y.

COROLLARY 2.7. Let X be the one-point-compactification of a countably in-
finite discvete space. Let X, be the sequential fan defined in [8]. Let X5 be the
set of all vational numbeyrs with the topology in which zevo is the only nonisolated
point and its neighbourhoods ave the usual ones. Then the three spaces X* X% and

X% are mutually nonhomeomorphic.

Proof. We recall that we obtain the sequential fan X, from the sum of a count-
ably infinite number of copies of X; by identifying all nonisolated points to a single
point. X, is both a Hausdorff space and a Fréchet space. It has a unique accumula-
tion point, at which the first axiom of countability is not satisfied.

X1 and X3 are Hausdorff spaces with unique accumulation points satisfying the
first axiom of countability. The space X; is compact, but X, and X3 are not
locally compact.

Therefore, by Corollary 2.7, neither X, nor X3 is homeomorphic to a closed
subspace of X"l‘; further, X, is not homeomorphic to a closed subspace of X¥ or
X*

3 -

It follows from Proposition 1.4 that X%, X%, and X% are mutually nonhomeo-

morphic.

COROLLARY 2.8. There exist at least thvee mutually nonhomeomorphic,
countable, zevo-dimensional, homogeneous sequential Hausdorff spaces that ave not
Fréchet spaces.

Proof. This is easily proved by combining Corollary 2.7 with Propositions 1.10,
1.12, and 1.14 and Theorem 2.4.
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3. CONCLUDING REMARKS

Remark 3.1. The space S, constructed in [2] is a countable, zero-dimensional,
homogeneous sequential Hausdorff space that is not a Fréchet space. In [2], it was
asked whether there exist other countable homogeneous sequential Hausdorff spaces
that are not first-countable. Our Corollary 2.8 answers this question in the affirma-
tive. (The question can be answered more easily by means of connected spaces with
the stated properties; but it was presumably intended that the spaces be also zero-
dimensional; in a letter to the author, S. P. Franklin made it clear that he wanted a
zero-dimensional example.) One example is given in [8], but it is a Fréchet space.
Corollary 2.8 above gives examples of at least two spaces that share with S, all the
properties listed above but are not homeomorphic to S,,. Note that these spaces
also have sequential order w,.

Remark 3.2. The considerations in this paper arose from our desire to have a
satisfactory characterisation of S . One such characterisation is given in [12].

Remark 3.3. It can be shown that when X is a Hausdorff space with a unique
accumulation point, then X* satisfies unusually strong conditions of homogeneity.
(Every homeomorphism between two compact subspaces of X* can be extended to a
homeomorphism of X* onto itself.) The properties of X* can be used to prove the
abundance of distinct topological types of countable homogeneous subspaces of SN,
where BN denotes the Stone-Cech compactification of a countably infinite, discrete
space. For the proof, see [12].

Remark 3.4. It can be shown that in several special cases, X* can be viewed
as the smallest homogeneous extension of the space X. The precise statement of
this result requires categorical notions, and it can be seen in [12]. There are also
cases where X* is far from being homogeneous.

Remavk 3.5. By means of the theorems of this paper, it is easy to exhibit a
functor from the category of all Hausdorff spaces with unique accumulation points
into the category of all homogeneous Hausdorff spaces. Our results prove that this
functor behaves well with respect to several topological properties.

Remark 3.6. M. Shimrat [15] has described a method of embedding an arbitrary
space in a homogeneous space. In this paper, we have described another method of
embedding a Hausdorff space, with a unique accumulation point, in a homogeneous
space. When it applies, our approach has considerable advantages, as shown, for
instance, by Theorem 2.5 and Remarks 3.3 and 3.4; here is a further illustration. If
X is an extremally disconnected Hausdorff space with a unique accumulation point x
(that is, if the neighbourhoods of x form an ultrafilter) we can show (see [12]) that
X* is also extremally disconnected; this result is to be contrasted with the fact
(whose proof has not appeared in the literature) that the homogeneous extension de-
scribed in [15] is not extremally disconnected, except in trivial cases. However,
Shimrat’s method can be applied to arbitrary spaces, whereas the present method
applies only to very special ones. It is worth noting that homogeneous extremally
disconnected spaces have attracted the attention of several topologists (see [1], [9]
for example) and that our method yields a large collection of new examples of such
spaces.

The author thanks the referee for helpful suggestions and for correcting a mis-
take in the original proofs of Propositions 1.10 and 1.14.
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