EXTREMAL PROBLEMS IN ARBITRARY DOMAINS
T. W. Gamelin

1. INTRODUCTION

Let U be a domain in the extended complex plane C*, and let H®(U) be the uni-
form algebra of bounded analytic functions on U. Let L, Ly, ---, L_ be linear
functionals on H*(U), and let by, ***, b, be complex numbers. We are interested
in the following “Pick-Nevanlinna” extremal problem:

To maximize %L(f), among all functions f € H*(U) that satisfy the
(*)
conditions |f[ <1 and L;j(f) =b; (1 <j < m).

1.1 THEOREM. Suppose L, Ly, -, Ly, are continuous with respect to the
norm | - ||k of uniform convergence on X, for some compact subset K of U that
does not separate 9U. Suppose also that L is not a lineay combination of
Ly, -, Ly, , and that theve exists at least one competing function for (*). Then
there exists a unique extvemal function G for (*). The extremal function G has
modulus 1 on the Shilov boundary of H*(U), and it can be extended analytically
across each free analytic boundary avc of U.

There is an extensive literature on extremal problems for analytic functions, in
the case where U is bounded by analytic curves. For early references, see Z.
Nehari’s expository article [10]. The paper of A. J. Macintyre and W. W. Rogosinski
[9] has a good introduction and bibliography, covering the case in which U is the unit
disc, while the paper of H. L. Royden [11] deals with finite bordered Riemann sur-
faces. Arbitrary domains have been treated by S. Ya. Havinson [7] and S. D. Fisher
[2], [3], and in spirit our work is based on that of Fisher.

The existence assertion of Theorem 1.1 follows immediately from the compact-
ness of the family of competing functions. The uniqueness of the extremal function
can be proved most easily by the technique of Fisher [2]. That the Ahlfors functions
of arbitrary domains have the properties in Theorem 1.1 has already been estab-
lished by Fisher [2], [3]. Our contribution is to extend these results to a more gen-
eral class of extremal problems. The extension is not trivial, though, and the main
point of the proof is the use of the separation theorem in Section 5 to reduce the
problem (*) to a more tractable problem.

That the extremal function G has modulus 1 on the Shilov boundary can be con-
verted into information concerning the cluster behavior of G. As a simple conse-
quence of work in [5] and [6], we shall obtain the following corollary, which improves
upon the corresponding results in [2] and [7].

1.2 COROLLARY. If w is an essential boundary point of U, then the cluster set
of the extremal function G at w either coincides with the closed unit disc, or else it
lies on the unit civcle.
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2. THE MAXIMAL-IDEAL SPACE OF H*(U)

To avoid trivialities, we shall henceforth assume that H*(U) contains noncon-
stant functions. The maximal-ideal space of H®(U) will be denoted by .« (U), and
the Shilov boundary of H(U) by S.

There is a natural projection Z of .#(U) onto U (see [5] for more details). If

¢ € 4(U), then Z(¢) can be characterized as the unique point w € C* such that
¢(f) = f(w) for all f € H7(U) that are analytic at w. For w € U, the subset

Z1({w}) of .«(U) is called the fiber over w, and we denote it by .. If w € U,
then ./, consists of only one point, namely the homomorphism that evaluates func-
tions in H*(U) at w. Moreover, Z maps Z-!(U) homeomorphically onto U. We
shall always regard U as an open subset of .#(U), by identifying Z-!(U) with U via
Z. Then Z can be regarded as an extension of the coordinate function from U fo
A (U). In fact, if U is bounded in C, then Z is the Gelfand transform of the coordi-
nate function z.

The Gelfand extension of f ¢ H®(U) to .#(U) will also be denoted by £, and we
shall consider H™(U) as a uniform algebra on .#(U). Rational functions of Z can
also be extended to .#(U), in the obvious way. The H “(U)-convex hull of a subset E
of -#(U) will be denoted by E.

2.1 LEMMA. Let E be a closed subset of .#(U), and let zy € U, zy # ©. Then
zo ¢ E if and only if 1/(Z - zg) can be approximated uniformly on E by functions in

H*(U).

Proof. If zg ¢ B, then there is a sequence {f,} in H “(U) such that f,(zg) =
while f, — 0 un1form1y on E. Clearly, (1 - {)/(Z - zy) € H°(U), and

(1- £ )/(Z - 2g) = 1/(Z - 2()

uniformly on E. Conversely, suppose f, — 1/(Z - zy) uniformly on E. Choose

h € H®(U) so that h(zy) = 0 while h' (zO) # 0. Then h[f, - 1/(Z - zy)] € H?(U) con-
verges uniformly to zero on E, while it assumes the value -h'(zg) at zy. There-
fore zy ¢ K.

It follows from Lemma 2.1 that U\ E is relatively closed in U \ E. Since E is
also relatively closed in U \ E, we obtain the following corollary.

2.2 COROLLARY. Let E be a closed subset of ///(U) and let V be a compo-
nent of U\ E. Then either V C E or V is disjoint from E.

2.3 LEMMA. Letl K be a compact subset of U, and let E be a closed subset of
A((U) such that Z(E) C oU. If V is a component of U\ K such that VC KUE,
then ED S n z-1(av).

Proof. First we remark that all except finitely many components V,, **+, Vi of
U \ K are relatively compact in U. The sets 0V; N U form a partition of aU into
disjoint open-closed subsets, which are separated by K.

Suppose that E does not contain S N 7-1(3V). Then there is a point p€ S\ E
such that Z(p) € 9V. Since Z(S) C 29U, the component V must coincide with one of
the components Vj, and Z(p) is at a positive distance from U \ V. Therefore we
can find an open neighborhood N of p in .#(U) such that N is disjoint from E U K,
and such that Z(N) N U ¢ V. By the minimality property of the Shilov boundary, we
can find f € H(U) such that [|f| = 1, while |f| < 1/2 off N. In particular,
|f| <1/2 on U\ V, so that |f(z0)[ > 1/2 for some point z, € V. Since lf] < 1/2
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on E UK, we see that z;, d m, and V is not a subset of E UK. This proves the
lemma.

The converse of the preceding lemma is also true, but we have no need for it.

If E is a closed subset of .#(U) such that E D U, then each { in H®(U) satis-
fies the condition [|f||g = [|f]|, so that E is a boundary for H*(U), and E D S. Com-
bining this observation with Corollary 2.2, we obtain the following key theorem,
which has been discovered independently by C. Stanton.

2.4 THEOREM. If v is a complex representing measure on Z-1(3U) for a
point zy € U, then the closed support of v includes S.

Proof. If E is the closed support of v, then zg € E. By Corollary 2.2, E oU.
Consequently, E D S.

2.5 COROLLARY. If f € H®(U) vanishes on a nonempty, relatively open subset
of S, then £ = 0.

Proof. Suppose f € H®(U) is not identically zero. Choose zy € U so that
f(zg) # 0, and let p be a representing measure on S for z,. Then fdu/f(zy) isa
complex representing measure for zy. By Theorem 2.4, the closed support of fdu
is S, so that f cannot vanish on an open subset of S.

3. A SPECIAL CASE

Let A be a linear functional on H®(U). In this section and the next, we shall
consider the following extremal problem, which is formally simpler than (*).

(*%) To maximize % A(f), among all f € H*®(U) with ||f” <1.

In this case, competing functions always exist. If A is continuous with respect to
the norm || - ||k, for some compact subset K of U, then there is an extremal func-
tion for (**). The following is the main result of this section.

3.1 THEOREM. Suppose that A + 0, and that A is continuous with respect to
the norm || - ||x , for some compact subset X of U. Then theve exisls a component
V of U\ K such that S N Z2-YaV) is not empty (so that V extends to 3U), and such
that each extremal function G for (**) has modulus 1 on SN Z-1(3U).

Proof. Evidently, A(G) is the norm of A on H*(U):

AG) = sup{|A@)]: £ ¢ H®(UV), ||f]| <1}.

Let 7 be a measure on S such that A(f) = Sfdn for all f € H*(U), and ”17 || = A(G).

Then n has minimal norm, among the measures on S representing A.

Let E be the closed support of 7. Since A(G) = SGdn = |n]l and |G| <1, we

see that [G| =1 on E. Since A # 0, there exists at least one component V of
U \ K such that n has some mass on Z-1(3V). The theorem will be proved once we
show that E € SN Z-1(aV). For this, we argue by contradiction.

Suppose that E’gge\s not contain S N Z”I(BV). By Corollary 2.2 and Lemma 2.3,

V is disjoint from K U E. Using Lemma 2.1 and Runge’s theorem, we see that if g
is any function analytic on a neighborhood of U \ V, then the composition goZ can
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be approximated uniformly on K U E by functions in H*(U). In particular, there is
a sequence {f,} in H®(U) such that f, — 1 uniformly on E n Z-1(aV), while

£, — 0 uniformly on K and on E \ Z-1(3V). [We use the topological fact that V
separates 9U N 9V from K and from (9U) \ aV.] Let p be any measure on K that
represents A. Then 5 - p L H*(U), so that also f,, [ - p] L H°(U). Passing to the
limit, we find that the restriction ng of 7 to Z-1(aV) is orthogonal to H*(U). Con-
sequently, n - 1o is also a measure on S that represents A. Since

In-moll =lInll - lmoll <lnl,

we have a contradiction to the minimality of the norm of 7, and the theorem is
established.

3.2 COROLLARY. The extremal function G in Theovem 3.1 is unique.

Proof, Let Gg be another extremal function. Then convex combinations of G
and Go are extremal, and therefore they are unimodular on S N 7-1(aV). This can
occur only if G=Gg on SN Z-1(aVv). Now SN Z-1(aV) is a nonempty, open-closed
subset of S on which G - Gy vanishes. By Corollary 2.5, G- Gg = 0, and G = Gg .

If K does not separate 9U, then G has modulus 1 on all of S. If however K
separates 9U, then we can say nothing about G elsewhere on S, as the following
example shows.

Let U be the annulus {r < |z| <1}, and let G be a function in H*(U) such
that |G| < 1, and such that G can be extended analytically across the unit circle
{lz] =1} and has modulus 1 on the circle. Then there is an extremal problem of
type (**) for which the hypotheses of Theorem 3.1 are satisfied and for which G is
the extremal function. Indeed, the functional

_ i f(z) o
AD) = 5 S|z|=l ~Goyds (e B(U)

satisfies the condition "A” =1 = A(G). By deforming the contour of integration to a
slightly smaller circle, we see that A is continuous with respect to the norm || - || K>
for some compact K C U.

4. ANALYTICITY ACROSS BOUNDARY ARCS

An arc T is a free boundary arvc for U if some neighborhood of one side of T
is disjoint from U, while some neighborhood of the other side of I'" is contained
in U.

4.1 THEOREM. Let A satisfy the conditions in Theorem 3.1, and letV be the
component of U\ K produced in Theorvem 3.1. If T is a free boundary avc for U

that is contained in oV, then the extrvemal function G for (**) extends continuously
to T and has modulus 1 there.

Proof., By shrinking I" and applying a conformal map, we may assume that U
is a bounded subset of the upper half-plane H,, that I" is the open interval (-1, 1),
and that U includes the upper half of the open unit disc.

Having noted this simplification, we make a detour to prove some preliminary
lemmas. Recall that the Cauchy transform of a compactly supported measure v on
C is the locally integrable function o defined by
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~0n _ (Cdv(z)
v(g) = z-C "

(For the basic properties of Cauchy transforms, see [4].) The following lemma is a
version of Bishop’s splitting lemma (see [1, p. 40]). We denote by A(z,; r) the
closed disc with center z; and radius r.

4.2 LEMMA. Let v be a compactly supported measuve on C, and fix z, € C.
Suppose ry > 0 is such that the function

r%jj]ﬂﬂ&@
Alzq;r)
is differentiable at vy . Then theve exists a measure |1 on Mzg; rg) such that

UV on the intevior of Alzg; 1),

=%
1]

0 elsewhere .
In particular, p coincides with v on the intevior of A(zg ; rg).
Proof. Let g  be a smooth function, supported on A(zo ;rgt+ 1/n), such that
0
g, =1 on A(zg; rg) and 1 gn| < 2/n. Define

. 28 .
Hn = 8nV - _aE—VdXdy;

SR

then (i, =g, V. The differentiability condition shows that {u,} is a bounded se-
quence of measures. If y is any weak-star adherent point of the sequence {un},
then p has the desired properties.

We shall use Lemma 4.2 to establish the following standard proposition about
the jump discontinuities of Cauchy integrals. While we are assuming that I" is the
interval (-1, 1) on the real axis, the proof applies to much more general curves.

4.3 LEMMA. Let v be a compaclly supported measurve on C such that the in-
terval T is a velatively open subset of the closed support of v. Suppose V vanishes
on a neighborhood of the side of T in the lower half-plane H_. Then VU is locally of
class H! along the side of T in H,. Moreover, if g denotes the nontangential
boundary values of Vv on T from H,, then 2nidv = gdx on T.

Proof. Since the result is local, we need only consider a fixed point zg € T.
Choose ry > 0 as in Lemma 4.2. Let W be the open disc {Iz - zol < ro}. We can
assume that rg is chosen so small that ¥ =0 on W N H_, and so that the only mass
of v on W lieson I'. By Lemma 4.2, there is a measure . on W such that £ =0
off W, while 1 = ¥ on W. In particular, . coincides with v on W. Now [ vanishes
a.e. (dxdy) on H_, so that 1 has no mass on H_, and u is supported by the bound-
ary of the semidisc W, =W N H;. By the version of the F. and M. Riesz theorem
for W, [the description of the measures orthogonal to A(W,)], there exists an ana-
Iytic function g on W, of class H! , such that u is the boundary value measure of
the analytic differential g(z)dz/27i. Evidently, i =g on W, . Since u = v and
L =7 on W, the lemma is proved.
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The other main ingredient for the proof of Theorem 4.1 is the description of
the piece of the Shilov boundary of H*(U) lying over I'. Our results run parallel to
the description of the Shilov boundary of the algebra H*(A) given in Chapter 10 of
[8]. We sketch the necessary facts.

Each function in H®(U) has nontangential boundary values a.e. (dx) on I, and
these determine a function in L*(T, dx). The functions in L™(I", dx) can in turn be
regarded as continuous functions on the maximal-ideal space Z of L™(T, dx). Now
H*(U) separates the points of %, so that © can be regarded as a subset of .#(U).
We are interested only in the piece 2y of Z lying over I

o = 2Nz YD) .
As in the case of the unit disc, we have the relation
Zy = 8nz HT).

The canonical lift of the measure dx to Zg will be denoted by dX. We shall use the
following lemma, which is related to the abstract F. and M. Riesz theorem for
H™(U).

4.4 LEMMA. Let E be a compact subset of Zq such that dX(E) =0. Then
theve is a sequence {f,} in H*(U) such that ]I f.l| <1, £, = 1 pointwise on U, and
f, — 0 uniformly on E.

Proof. In fact, we can produce the required functions f,, so that they belong to
H*(H,). The standard construction runs as follows. Choose u, € L®(-cw, ) so that

u, <0, u, =0 outside T, S u,dx — 0, and u, — -« uniformly on E. Extend u,

harmonically to H, via the Poisson integral formula, and let *un be the harmonic
conjugate of u,. Then the functions f, = exp(u, +1i *u,) have the required proper-
ties.

Now we continue with the proof of Theorem 4.1, using the notation from the
proof of Theorem 3.1. In particular, n is the norm-preserving extension of A to
C(S), and u is a measure on K that represents A. Let E be a compact subset of
2. such that dX(E) = 0, let f,, be the functions from Lemma 4.4, and let F be a
weak-star adherent point of the sequence {f,} in L*(|n| + |un|). Then |F| <1,
F=1a.e.(du), and F=0 on E. Since n - p L H®(U), we see that

f.n - p) L H2(U),

so that F(n - u) = Fp - u is orthogonal to H”(U). Consequently Fn also repre-
sents A on H®(U). Since 7 has minimal norm, |F| =1 a.e. (dn). Hence

ln | (E) = 0. It follows that the restriction of  to Z( is absolutely continuous with
respect to dX, and we can write dn =gy dX on Zg.

Now let v = Z *17 - 1 be the projection of 17 - 4 onto U. Since 7 - & L H®(U),
we see that

dv(z) _ (Cdlg - p) _ =
e A T AR

In particular, »=0in H_. By Lemma 4.3, the function g = 27i0 is analytic and
locally of class H! in a neighborhood of the topside of T', and in terms of the bound-
ary value function of g, we have the relation dv = gdx on I'. By the choice of V in
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the proof of Theorem 3.1, the closed support of 3 includes S N 7-1(oV) D Zg, SO
that g does not vanish identically on T

Now the extremal function G satisfies the condition Gn > 0, so that Ggy > 0
a.e. (dX). Since GgpdX is the canonical lift of Ggdx on I', we deduce that Gg > 0
a.e. (dx) on I'. The remainder of the argument is classical (see [12, p. 11], for in-
stance). The Schwarz reflection principle shows that h = Gg extends analytically
across I'. The function defined to be h(z)G(z) beneath I' is then seen to extend g
analytically across I, because |G| =1 a.e. on I'. From this we conclude easily
that G itself extends analytically across I.

5. REDUCTION OF (*) TO (**)

The following theorem, combined with Theorems 4.1 and 3.1, serves to complete
the proof of Theorem 1.1.

5.1 THEOREM. Suppose L, Ly, -+, L., are linear functions on H*(U) that ave
continuous with vespect to the norm | - |lx for some compact subset K of U, and
suppose that L does not depend linearly on Ly, -+, L. Then theve exists a non-
zero lineay combination A of L, Ly, -+, Ly, such that each extvemal function for

(*) is also an extremal function for (**).

Proof. Let G be an extremal function for (*). Let Q be the set of h ¢ H®(U)
such that L; (h) = by (1 <j < m) while % L(h) > % L(G). Since L is independent of
Ly, -, Lm, it is easy to see that each extremal function for (*) has unit norm.
Consequently, Q is disjoint from the open unit ball of H*(U). By the separation
theorem for convex sets, there is a nonzero continuous linear functional A on H®(U)
such that

a =sup{RAM: fe H(U), ||f] <1} < inf{9%A(h):he Q}.

Evidently, a = [A| > 0. Since G € Q, % A(G) >a. It follows that % A(G) =a = ||A],
so that G is an extremal function for the problem (**).

Now suppose g € H(U) satisfies the condition L; 5(g) =0 (1 <j < m), while
RNL(G) > 0. Then G+g € Q, so that RA(G +g) > a, and N A(g) > 0. It follows that
A(g) = 0 whenever L(g) =0 and L; jlg) =0 (1 <j<m). Consequently A is a linear

combination of L, Li;, ---, L. This completes the proof.

5.2 COROLLARY. Under the hypotheses of Theovem 5.1, the extremal function
Jor (*) is unique, whenever it exists.

6. THE FIBER ALGEBRAS

Recall that .#, = Z~1({w}) is the fiber of .#(U) over w. It was shown in [6]
that the restriction of H*(U) to .« is a closed subalgebra of C(.# ) whose maxi-
mal ideal space is .« ,. Here we wish to describe the Shilov boundary S of the
restriction algebra, and to prove Corollary 1.2.

A pomt w € 98U is an essential boundary point for H(U) if there exists a func-
tion f € H®(U) that does not extend analytically across w. The essential boundary
points E for U form a closed subset of 9U. The functions in H*°(U) extend ana-
lytically to U \ E, so that H®(U) is isometrically isomorphic to H*(T \ E).
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If w ¢ U is not an essential boundary point, then ./« w consists only of the
evaluation homomorphism at w. On the other hand, if w is an essential boundary
point for U, then ./, is gigantic. In this case, Theorem 6.8 of [6] asserts that
each strong boundary point in S, is contained in S N .# . Since the strong boundary
points are dense in the Shilov boundary, we deduce that S, C S N .#, whenever w is
an essential boundary point. It turns out that equality holds here, but we shall not
use this.

An elementary theorem concerning Banach algebras asserts that the range of an
element on the Shilov boundary includes the topological boundary of its range on the
maximal-ideal space. In our context, this takes the form

af(.i ) c #(S,) (fe H(U), we U).

Now the cluster-value theorem of [5] asserts that f(.# ) coincides with the cluster
set Cl(f, w) of f at w. Our inclusion becomes

aC1l(f, w) C £(Sy,) (e H®(U), w e U).

The following theorem, which includes Corollary 1.2, is a simple consequence of
these inclusions.

6.1 THEOREM. If w is an essential boundary point of U, and if £ € H®(U) has
unit modulus on the Shilov boundary of H*(U), then either Cl(f, w) coincides with
the closed unit disc, or

lim |f(z)| = 1.
Z W
z€eU

Pyoof. In this case we have an inclusion 98 C1(f, w) C £(S N .« ), and the set on
the right is a subset of the unit circle.

7. YET ANOTHER EXTREMAL PROBLEM

We can apply our methods to certain extremal problems with an infinite number
of side conditions. We mention one example, which yields topological information on
4 (U). Let {z,}n-o be a sequence of distinct points in U. The extremal problem
is the following:

To maximize Rf(zgy), among all f € H”(U) satisfying the conditions
(*:¥%)

[£]l <1 and f(z)) =0 (i >1).

7.1 THEOREM. Suppose theve exists a nonconstant function g € H*(U) that
vanishes at each zZj . Then the extvemal problem (¥**) has a unique extvemal func-
tion G, and G has modulus 1 on the Shilov boundary of H*(U).

Proof. By dividing g by an appropriate power of Z - zgp, we can find a com-
peting function for (***) that does not vanish at z;. Hence each extremal function
G satisfies the condition G(zgy) # 0. Clearly, G(z() is the norm of the functional
“evaluation at z,” on the ideal J of functions in H*(U) that vanish on z;, 2, -

Hence there is a2 measure 7 on S such that ||n]| = G(z), while S fdn = f(zp) for
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all f € J. Since ||77 " = G(zo) = SGdn, we see that |G| =1 on the closed support

of 7. If h € H°(U), then hG € J, so that h(zy) G(zg) = S hGdn, and G1n/G(z) is a

complex representing measure for zy . By Theorem 2.4, the closed support of G7
includes S, so that G must have unit modulus on S. The proof of Corollary 3.2
shows that the extremal function is unique.

7.2 COROLLARY. If f is a function in H™(U) that is not identically zevo, then

the closure in 4/ (U) of the sequence of zeros of { on U does not meet the Shilov
boundary of H*(U).

8. REMARK ON RIEMANN SURFACES

Our results extend to any domain U on a compact Riemann surface, provided
there are nonconstant functions in H®(U). The results could be extended to more
general surfaces if the following old question has an affirmative answer: If U isa
Riemann surface such that H(U) separates the points of U, does the natural inclu-
sion U — .#(U) map U homeomorphically onto an open subset of ..#(U)?
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