THE EVALUATION MAP AND HOMOLOGY

Daniel H. Gottlieb

1. INTRODUCTION

There has been no serious study of the effects of the evaluation $\omega\colon X^X\to X$ on homotopy and homology groups. Perhaps this is due to the difficulty in calculating the homotopy and homology groups of X^X . However, ω and the generalized evaluation map $\widehat{\omega}\colon X^X\times X\to X$ are "universal" for many problems. Thus each action of a group on X must factor through $\widehat{\omega}$. Also, each boundary map in the homotopy exact sequence of a fibration must factor through ω_* [2]. Moreover, ω plays an important role in the study of evaluation maps of mapping spaces other than X^X . The generalized Whitehead product for suspensions is closely related to ω_* on homotopy groups [4].

Because of the various roles played by ω , information about ω will be valuable in the study of topology. This is especially true in cases where ω_* is trivial on some homotopy groups, for in these cases we can conclude that the transgression homomorphism in the homotopy exact sequence of a fibration is trivial. We shall show that the homology homomorphism ω_* is trivial for spaces whose homology groups satisfy a certain simple criterion.

In Section 2, we establish our notation and record some facts about the evaluation map. In Section 3, we study the effects of ω_* on the homology groups of X with Z_p or rational coefficients. Our main results tell us that $H_*(X; Z_p)$ is a nontrivial tensor product of two modules when $\omega_*(\lambda) \neq 0$, where λ denotes a primitive element in $H_*(X^X; Z_p)$, or when $\omega_*(\lambda)$ satisfies a certain condition. For many spaces, we can thus show that ω_* is zero in low dimensions.

Finally, in Section 4, we show that for suspensions ω_* is almost always zero. We use the generalized evaluation map $\hat{\omega} \colon X^X \times X \to X$ to study ω_* . We find that $\hat{\omega}_*$ for X is closely related to $\hat{\omega}_*$ for ΣX , even though ω_* for ΣX is almost always zero.

2. PRELIMINARIES

We shall let L(X, Y; k) denote the space of maps homotopic to $k: X \to Y$ and furnished with the compact-open topology. We also denote $L(X, X; 1_X)$ by X^X .

Definition. The generalized evaluation map $\hat{\omega}$ is the map $\hat{\omega} \colon X^X \times X \to X$ given by $\hat{\omega}(f, x) = f(x)$. Let x_0 be a base point of X. Then the evaluation map $\omega \colon X^X \to X$ is defined by $\omega(f) = f(x_0)$. The composition map $\mu \colon X^X \times X^X \to X^X$ is given by $\mu(f, g) = f \circ g$.

Now ω is always continuous, and $\hat{\omega}$ and μ are continuous if X is locally compact. However, both $\hat{\omega}$ and μ carry singular simplices to singular simplices, and

Received April 22, 1971.

The preparation of this paper was supported in part by the National Science Foundation, under Grant GP-9638.

Michigan Math. J. 19 (1972).

therefore both induce homomorphisms on homology groups (see [1, p. 274] for results that can be used to prove this).

The composition map μ makes X^X into an H-space. Let G be a ring with a unit. If x and y are in $H_*(X^X;G)$, we let xy denote $\mu_*(x\bigotimes y)$. The multiplication is associative (since composition is associative), but not necessarily commutative. With the diagonal map $\Delta\colon X^X\to X^X\times X^X$ inducing a co-algebra structure on $H_*(X^X;F)$, where F is a field, the group $H_*(X^X;F)$ becomes a Hopf algebra.

For $\lambda \in H_*(X^X; G)$ and $x \in H_*(X; G)$, we shall denote $\hat{\omega}_*(\lambda \bigotimes x)$ by $\lambda \cdot x$. Thus $H_*(X; G)$ is a left $H_*(X^X; G)$ -module. The commutative diagram

$$\begin{array}{ccc} X^{X} \times X^{X} & \xrightarrow{\mu} & X^{X} \\ & \downarrow 1 \times \omega & \downarrow \omega \\ & X^{X} \times X & \xrightarrow{\hat{\omega}} & X \end{array}$$

gives us the equality $\alpha \cdot \omega_*(\beta) = \omega_*(\alpha\beta)$, where α and β are in $H_*(X^X; G)$. Thus $\omega_*: H_*(X^X; G) \to H_*(X; G)$ is an $H_*(X^X; G)$ -module homomorphism. Finally, since $\omega = \hat{\omega} \mid (X^X \times x_0)$, we see that $\lambda \cdot 1 = \hat{\omega}_*(\lambda \bigotimes 1) = \omega_*(\lambda)$.

If $\lambda \in H_n(X^X; G)$, we can regard λ as a homomorphism

$$\lambda: H_i(X; G) \to H_{i+n}(X; G)$$

given by $x \to \lambda \cdot x$.

3. THE EVALUATION MAP AND HOMOLOGY

In this section, we study the effect of an element $\lambda \in H_*(X^X; Z_p)$ on the homology $H_*(X; Z_p)$. First we introduce certain concepts and subspaces useful for our investigation. Next, we show that if λ is primitive and $\omega_*(\lambda) \neq 0$, then $H_*(X; Z_p)$ splits as a nontrivial tensor product of Z_p -modules (Theorem 1). Then we weaken the hypothesis on λ and show that we still get $H_*(X; Z_p)$ as a nontrivial tensor product of Z_p -modules (Theorem 2), although the splitting is not as nice as in Theorem 1. Then we briefly consider cohomology and prove that if the Euler-Poincaré number is not zero, then the lowest dimension for a nontrivial ω_* must be even (Theorem 3).

Let p represent either a prime number or ∞ . We restrict ourselves to Z_p coefficients; by Z_∞ we denote rational coefficients.

Let us consider a fixed $\lambda \in H_n(X^X; Z_p)$. Suppose $x \in H_i(X; Z_p)$. We say that x has depth d if there exists an element $y \in H_{i-dn}(X; Z_p)$ such that $\lambda^d \cdot y = x$ and $\lambda^{d+1} \cdot z \neq x$ for every $z \in H_*(X; Z_p)$.

Now we shall define a collection of vector spaces $\{A_q^d\}$ with the properties

- (a) $A_q^d \subseteq H_q(X; Z_p)$,
- (b) every element of A_q^d has depth d,
- (c) $H_q(X; Z_p) \cong A_q^q \oplus A_q^{q-1} \oplus \cdots \oplus A_q^0$,
- (d) $\lambda(A_q^d) \supseteq A_{q+n}^{d+1}$, where $\lambda(A_q^d)$ denotes the image of A_q^d under λ .

First we set $A_0^0 = H_0(X; Z_p)$. Now suppose we have defined A_q^d . Let K be the subspace of A_q^d such that every $x \in K$ is mapped by λ onto an element $\lambda \cdot x$ of depth greater than d+1. Then $A_q^d = K \oplus Q$, where Q is a subspace complementing K. We define $A_{q+n}^{d+1} = \lambda(Q)$, and we define A_{q+n}^0 by setting it equal to some subspace Q of $H_{q+n}(X; Z_p)$ such that

$$H_{q+n}(X;\; Z_p)\;\cong\; \lambda(H_q(X;\; Z_p)) \bigoplus Q\;.$$

We can easily verify that conditions (a), (b), (c), (d) are satisfied.

Now let N be a positive integer. Define a subspace M_N of $H_*(X; Z_p)$ by letting M_N be the direct sum of all the A_q^d with $d=0, N, 2N, \cdots$. Let $[\lambda]$ be the subspace of $H_*(X^X; Z_p)$ generated by 1, λ , λ^2 , \cdots , and let $[\lambda]_N$ be the subspace of $[\lambda]$ generated by 1, λ , \cdots , λ^{N-1} . Define a homomorphism ψ : $[\lambda]_N \bigotimes M_N \to H_*(X; Z_p)$ by setting $\psi(\lambda^i \bigotimes x) = \lambda^i \cdot x$; that is, let ψ be the restriction of ω_* to $[\lambda]_N \bigotimes M_N$.

LEMMA. The homomorphism ψ is surjective.

Proof. Let $x \in H_q(X; Z_p)$. Then x has a unique decomposition as a sum of elements $x = x_0 + x_1 + \dots + x_d$, where $x_i \in A_q^i$ for each i. Each x_i has the form $\lambda^r \cdot y_i$, where $0 \le r < N$ and $r \equiv i \pmod{N}$, and where y_i is some element in M_N . Thus $x_i = \psi(\lambda^r \bigotimes y_i)$, and therefore x must be in the image of ψ .

Let T be the map that interchanges the two factors of a product space; that is, define T: $A \times B \to B \times A$ by T(a, b) = (b, a). Then T induces T_* on homology groups, and

$$T_{\downarrow}(\alpha \bigotimes x) = (-1)^{\dim \alpha \cdot \dim x} x \bigotimes \alpha$$
.

We have the commutative diagram

(1)
$$(X^{X} \times X^{X}) \times (X \times X)$$

$$\downarrow 1 \times T \times 1$$

$$\downarrow \hat{\omega} \qquad \qquad \downarrow \hat{\omega} \times \hat{\omega}$$

$$\times \xrightarrow{\Delta} X \times X \xrightarrow{\Delta} X \times X ,$$

where Δ stands for the diagonal map.

Now suppose that

$$\Delta_*(x) = \sum (x_i \otimes x_i')$$
 and $\Delta_*(\lambda) = \sum (\lambda_i \otimes \lambda_i')$,

where $x \in H_q(X; Z_p)$ and $\lambda \in H_n(X^X; Z_p)$. Then we see from the diagram (1) and the property of T that

(2)
$$\Delta_*(\lambda \cdot \mathbf{x}) = \sum_{i,j} [((-1)^{b_j c_i} \lambda_i \cdot \mathbf{x}_j) \bigotimes (\lambda_i' \cdot \mathbf{x}_j')],$$

where $b_j = dim \; x_j$ and $c_i = dim \; \lambda_i^{'}$.

Replacing X with X^X and $\hat{\omega}$ with μ , we have a similar diagram to the one above, and it gives us the well-known properties of Hopf algebras.

Now let us assume that λ is primitive, in other words, that

$$\Delta_{*}(\lambda) = (\lambda \bigotimes 1) + (1 \bigotimes \lambda).$$

If in addition λ has even dimension n, then

(3)
$$\Delta_*(\lambda^{N}) = \sum_{i=0}^{N} \left[\binom{N}{i} \lambda^i \bigotimes \lambda^{N-i} \right],$$

where $\binom{N}{i}$ is a binomial coefficient. On the other hand, if n is odd, then

$$\Delta_*(\lambda^2) = (\lambda^2 \bigotimes 1) + (1 \bigotimes \lambda^2).$$

Note that λ^2 has even dimension and is primitive, so that the previous formulas are relevant.

We shall let R stand for the smallest positive integer such that $\lambda^R=0$. When such a number R exists, it must equal p^k for some k in case λ has even dimension, and it must equal $2p^k$ in case λ has odd dimension. Now let K stand for the smallest positive integer such that $\omega_*(\lambda^K)=0$. Note that, since $\Delta_*\omega_*=(\omega_*\otimes\omega_*)\Delta_*$, we have the equation

$$\Delta_{*}(\lambda^{N} \cdot 1) = \sum_{i=0}^{N} \left[\binom{N}{i} (\lambda^{i} \cdot 1) \otimes (\lambda^{N-i} \cdot 1) \right]$$

for each N, if λ has even dimension, and the equation

$$\Delta_{\star}(\lambda^2 \cdot 1) = (\lambda^2 \cdot 1 \bigotimes 1) + (1 \bigotimes \lambda^2 \cdot 1)$$

if λ is odd-dimensional. Then, just as before, $K=p^k$ or $K=2p^k$ for some k, depending on whether λ is even- or odd-dimensional.

THEOREM 1. Let $\lambda \in H_n(X^X; Z_p)$ be primitive, and let p be a prime number or ∞ . Then

$$H_*(X; Z_p) \cong \omega_*[\lambda] \bigotimes M_K \quad as Z_p\text{-}modules.$$

Proof. Let K be the smallest integer such that $\omega_*(\lambda^K) = \lambda^K \cdot 1 = 0$. Then $\omega_*[\lambda]$ is clearly isomorphic to $[\lambda]_K$. In view of the Lemma, we need only show that ψ is one-to-one, in other words, that if $x \in M_K$, then $\lambda^{K-1} \cdot x = 0$ only when x = 0. We divide the proof into three cases: first, n is even or p = 2; second, both n and p are odd; and finally, $p = \infty$.

Let $\Delta_*(x) = \sum (x_i \otimes x_i')$. Then, in the first case, it follows from equations (2) and (3) that

$$\Delta_*(\lambda^{N} \cdot x) = \sum_{i,j} \left[\binom{N}{i} (\lambda^{i} \cdot x_j) \bigotimes (\lambda^{N-i} \cdot x_j') \right].$$

Now $K = p^k$ for some k, and x has depth equal to a multiple of p^k , say mp^k . Thus $x = \lambda^{mK} \cdot y$ for some $y \in H_*(X; \mathbf{Z}_p)$. Now assume that $0 = \lambda^{K-1} \cdot x = \lambda^{(m+1)K-1} \cdot y$. Then

(4)
$$\sum_{i,j} \left[\left(\begin{array}{c} mK + K - 1 \\ i \end{array} \right) (\lambda^{i} \cdot y_{j}) \bigotimes (\lambda^{mK + K - 1 - i} \cdot y_{j}') \right] = 0.$$

Now

$$\left(\begin{array}{c} mK + K - 1 \\ K - 1 \end{array} \right) = \left(\begin{array}{c} mp^k + p^k - 1 \\ p^{k'} - 1 \end{array} \right) \not\equiv 0 \pmod{p}$$

(see [7, p. 5]). Also, $\lambda^{K-1} \cdot 1 \neq 0$. Thus the term

$$\binom{mK+K-1}{K-1}(\lambda^{K-1}\cdot 1) \otimes (\lambda^{mK}\cdot y)$$

is not zero, and it appears in equation (4). It must be cancelled by a linear combination of terms of the form $(\lambda^{K-1-j}\cdot z)\bigotimes(\lambda^{mK+j}\cdot z'),$ where j is a positive integer and z and z' are elements of $H_*(X;\,Z_p).$ Thus $\lambda^{mK}\cdot y$ must be a linear combination of terms of the form $\lambda^{mK+j}\cdot z'$. Thus, for some u in $H_*(X;\,Z_p),$ we have the relation $x=\lambda^{mK}\cdot y=\lambda^{mK+1}\cdot u.$ Hence x has depth greater than mK, and this contradicts our assumption.

Now assume that n and p are odd. Then

$$\Delta_*(\lambda^{2N+1}) \; = \; \sum_{\mathbf{i}} \; \binom{N}{\mathbf{i}} \left[(\lambda^{2\mathbf{i}+1} \bigotimes \lambda^{2N-2\mathbf{i}}) + (\lambda^{2\mathbf{i}} \bigotimes \lambda^{2N-2\mathbf{i}+1}) \right].$$

As before, we assume that $\lambda^{K-1} \cdot x = 0$, where $x \in M_K$. Then x has depth mK, and there exists a y such that $x = \lambda^{mK} \cdot y$. Now we apply Δ_* to both sides of the equation $0 = \lambda^{mK+K-1} \cdot y$. In the expansion of the right-hand side, we have the term

$$\binom{(m+1)K/2-1}{\frac{K}{2}-1}(\lambda^{K-1}\cdot 1)\bigotimes (\lambda^{mK}\cdot y).$$

Recall that in this case $K=2p^k$ for some k. Thus the binomial coefficient is nonzero in Z_p , and also $\lambda^{K-1} \cdot 1 \neq 0$, so that the term above is not zero. Therefore, as in the other case, the term must cancel against a linear combination of terms of the form $\lambda^{K-1-j} \cdot z \bigotimes \lambda^{mK+j} \cdot z'$ with j>0. Hence x must have depth greater than mK; this again contradicts our hypothesis and establishes the theorem for finite values of p.

If $p=\infty$, we have rational coefficients, in which case $K=\infty$ and M_∞ consists of elements of depth zero. Applying the previous methods, we easily see that $\lambda x=0$ implies x has depth greater than zero.

Remark. Compare this theorem with results of J. Milnor and J. C. Moore [5, Theorem 4.4]. Their hypothesis requires ω_* to be injective, and their conclusions concern tensor products of $H_*(X^X; Z_D)$ -modules.

We may apply Theorem 1 in the following situation. Let α be in $\pi_i(X^X; 1_X)$; then $h_p(\alpha)$ in $H_i(X^X; Z_p)$ is primitive. Here we denote by h_p the composition

$$\pi_{i}(B) \xrightarrow{h} H_{i}(B; Z) \longrightarrow H_{i}(B; Z_{p}).$$

We define $G_i(X)$ to be the image of the homomorphism ω_* : $\pi_i(X^X) \to \pi_i(X)$.

COROLLARY 1. Suppose $x \in G_i(X)$ and $h_p(x) \neq 0$. Then $H_*(X; Z_p) \cong A \bigotimes B$, where A has one generator in dimensions 0, i, 2i, ..., (p-1)i if i is even, and one generator in dimensions 0 and i if i is odd.

This corollary is a restatement of Theorems 4-1 and 4-4 of [3].

Suppose that in Theorem 1 we relax the condition that $\lambda \in H_*(X^X; Z_p)$ is primitive. We shall say that $x \in H_*(X; Z_p)$ is decomposable if x is the sum of terms of the form $\alpha \cdot y$, where $y \in H_i(X; Z_p)$ and $\alpha \in H_j(X^X; Z_p)$, and where α and y have positive dimension. That is, if \widetilde{A} is the subring of $H_*(X^X; Z_p)$ consisting of all elements of dimension greater than zero, and if \widetilde{B} is the subring of all elements of higher dimension in $H_*(X; Z_p)$, then the decomposable elements are $\widehat{\omega}_*(\widetilde{A} \otimes \widetilde{B})$. An indecomposable element is one that is not decomposable.

THEOREM 2. Suppose that λ is an element of $H_n(X^X;\,Z_p)$ and that $\omega_*(\lambda)$ is indecomposable and not zero. Then

$$H_*(X; Z_p) \cong [\lambda]_p \bigotimes M_p \text{ as } Z_p\text{-modules if } n \text{ is even,}$$

and

$$H_*(X; Z_p) \cong [\lambda]_2 \otimes M_2$$
 as Z_p -modules if n is odd.

Proof. First let n be even. Let $x \in M_p$. We must show that $\lambda^{p-1} \cdot x \neq 0$ if $x \in M_p$ and $x \neq 0$. We proceed as in the proof of Theorem 1.

To choose a basis for $H_*(X; Z_p)$, we begin by choosing a basis for the decomposable elements; then we add $\omega_*(\lambda)$, and then we fill out the basis with indecomposable elements. Let y_1, \dots, y_i, \dots be the basis so chosen.

We claim that if $\lambda \cdot x = 0$, then x has depth $d \equiv -1 \pmod{p}$. To see this, suppose $x = \lambda^d y$. Then $0 = \lambda \cdot x = \lambda^{d+1} \cdot y$. Thus $\Delta_*(\lambda^{d+1} \cdot y) = 0$. Since

$$\Delta_*(y) = (y \bigotimes 1) + (1 \bigotimes y) + \sum_i (y_i \bigotimes y_i')$$

and

$$\Delta_{*}(\lambda) = (\lambda \otimes 1) + (1 \otimes \lambda) + \sum_{j} (\lambda_{j} \otimes \lambda'_{j}),$$

we have the term $(d+1)(\lambda\cdot 1)\bigotimes(\lambda^d\cdot y)$ in the expansion of $\Delta_*(\lambda^{d+1}\cdot y)$. This term must cancel with a linear combination of terms of the form $y_i\bigotimes(\lambda^{d+1}\cdot y_i')$ and $(\lambda_j\cdot y_i)\bigotimes(\lambda_j'\cdot y_i')$. The expansions of the terms $\lambda_j\cdot y_i$ in terms of the basis y_1,\dots,y_i,\dots do not contain the basis element $\omega_*(\lambda)=\lambda\cdot 1$. Thus terms of the type $(\lambda_j\cdot y_i)\bigotimes(\lambda_j'\cdot y_i')$ do not cancel with $(d+1)(\omega_*(\lambda))\bigotimes(\lambda^d\cdot y)$. Thus only a linear combination of terms of type $y_i\bigotimes(\lambda^{d+1}\cdot y_i')$ cancels $\omega_*(\lambda)\bigotimes(\lambda^d\cdot y)$. Hence $\lambda^d\cdot y=x$ is equal to a linear combination of terms of the type $\lambda^{d+1}\cdot y_i'$. Thus $x=\lambda^{d+1}\cdot u$ for some u, and hence x has depth greater than d; this contradicts our assumption. Only when $d+1\equiv 0\pmod{p}$ do we escape a contradiction. Thus we have shown that $\lambda\cdot x=0$ only if $d\equiv -1\pmod{p}$.

If x has depth $d \not\equiv -1 \pmod p$, then $\lambda \cdot x$ has depth d+1. (For otherwise, $\lambda \cdot x = \lambda \cdot v$, where v has depth greater than d. Thus $x - v \neq 0$ and x - v has depth d. Now $\lambda \cdot (x - v) = \lambda \cdot x - \lambda \cdot v = 0$; by the preceding paragraph, this implies that $d \equiv -1 \pmod p$, and this is a contradiction.)

Now suppose $x \in M_p$. Then x has depth $d \equiv 0 \pmod p$, and hence $\lambda \cdot x$, which is not zero, has depth $d \equiv 1 \pmod p$. Therefore $\lambda^2 \cdot x$ has depth $d \equiv 2 \pmod p$ and is not zero, and this process continues until $\lambda^{p-1} \cdot x \neq 0$. Thus $\psi(\lambda^{p-1} \bigotimes x) \neq 0$; hence ψ is one-to-one, and hence, by the Lemma, ψ is an isomorphism. Thus, if n is even, the theorem is proved.

In the case n is odd, the proof runs similarly. First we show that the relation $\lambda \cdot x = 0$ implies $d \equiv 1 \pmod 2$. The remainder of the proof is identical with that above.

Let us consider the homomorphisms induced on cohomology by ω and $\hat{\omega}$. We shall assume that $H^*(X; Z_p)$ and $H^*(X^X; Z_p)$ are of finite type, in other words, that the i^{th} cohomology groups are finitely generated, for each i. This condition occurs frequently (for example, when $\pi_*(X)$ is of finite type and X is strongly simple, that is, n-simple for all n). We can use the Federer spectral sequence to show that $\pi_*(X^X)$ is of finite type; then Theorem 20 on page 510 of [6] tells us that the homology is of finite type.

Consider the homomorphism

$$\hat{\omega}^*: H^*(X; Z_p) \to H^*(X^X; Z_p) \bigotimes H^*(X; Z_p).$$

 $\text{If } x \in \text{H*}(\text{X; Z}_p), \text{ it is easily seen that } \hat{\omega}^*(\text{x}) = (1 \bigotimes \text{x}) + (\omega^*(\text{x}) \bigotimes 1) + \sum (\lambda_i \bigotimes \text{x}_i).$

Now recall that $\mu \colon X^X \times X^X \to X^X$ is the composition map. We see that $\hat{\omega} \circ (1 \times \omega) = \omega \circ \mu$. Thus we have the formula

$$\mu^*(\omega^*(x)) = (1 \bigotimes \omega^*(x)) + (\omega^*(x) \bigotimes 1) + \sum (\lambda_i \bigotimes \omega^*(x_i)).$$

We shall use the theorem of Milnor and Moore [5, Proposition 4.21] that tells us that a primitive decomposable element α in a connected Hopf algebra over Z_p with associative commutative multiplication has the form $\alpha = \beta^p$.

THEOREM 3. Suppose $H_*(X; Z)$ is finitely generated and $H_*(X^X; Z)$ has finite type. Suppose $\chi(X) \neq 0$. Let n be the smallest positive dimension such that $\omega_* \colon H_n(X^X; Z_p) \to H_n(X; Z_p)$ is nontrivial. Then n is even.

Proof. Assume n is odd. Suppose $\lambda \in H_n(X^X; Z_p)$ and $\omega_*(\lambda) \neq 0$. Together with the hypothesis that $\chi(X) \neq 0$, Theorem 1 implies that λ is not primitive.

Let us consider ω^* in cohomology. For positive dimensions less than n, ω^* is trivial, by duality. For dimension n, there exists an $x \in H^n(X; Z_p)$ such that $\omega^*(x)$ is not zero and is decomposable. Now

$$\mu^*(\omega^*(\mathbf{x})) = (1 \bigotimes \omega^*(\mathbf{x})) + (\omega^*(\mathbf{x}) \bigotimes 1) + \sum (\lambda_i \bigotimes \omega^*(\mathbf{x}_i))$$
$$= (1 \bigotimes \omega^*(\mathbf{x})) + (\omega^*(\mathbf{x}) \bigotimes 1),$$

since $\omega^*(x_i) = 0$ by hypothesis. Thus $\omega^*(x)$ is primitive and decomposable, and hence $\omega^*(x) = \beta^p$, by the theorem of Milnor and Moore. Since n is odd, n/p must be odd and p must be odd. Thus β is an odd-dimensional cohomology class, so that

 $\beta^2 = 0$. Therefore $\beta^p = 0$, and this contradicts the fact that $\omega^*(x) = 0$. Thus n must be even.

4. THE EVALUATION MAP AND SUSPENSIONS

If X is in an H-group, then $X^X = X_0^X \times X$ (where X_0^X is the subspace of X^X that preserves base points), and the evaluation map is the projection onto X. Thus ω_* is surjective. On the opposite extreme we have the suspensions ΣX . Here, for the most part, ω_* is trivial. However, the homology homomorphism $\hat{\omega}_*$ for appropriate ΣX is closely related to the homology homomorphism $\hat{\omega}_*$ for appropriate X.

Let Σ : $\widetilde{H}_n(X; Z_p) \xrightarrow{\cong} \widetilde{H}_{n+1}(\Sigma X; Z_p)$ be the suspension isomorphism. Let CX be the cone over X, and let $C_+ X$ and $C_- X$ be the upper and lower hemispheres of ΣX . Then we have the diagram

$$\widetilde{H}_{n}(X) \xleftarrow{\cong} H_{n+1}(C_{+} X, X) \xrightarrow{\cong} H_{n+1}(\Sigma X, C_{-} X) \xleftarrow{\cong} H_{n+1}(\Sigma X, *),$$

where i and j are inclusions and ∂ is the boundary homomorphism. Now $\Sigma = j_{\star}^{-1} i_{\star} \partial^{-1}$.

We define S: $X^X \to \Sigma X^{\Sigma X}$ by letting S(f): $\Sigma X \to \Sigma X$ be the suspension of the map f: $X \to X$. Then we have a commutative diagram

$$\begin{array}{c} H_{*}(X^{X}) \bigotimes H_{*}(X) & \xrightarrow{\widehat{\omega}_{*}} & H_{*}(X) \\ & \uparrow 1 \bigotimes \partial & & \uparrow \partial \\ & H_{*}(X^{X}) \bigotimes H_{*}(C_{+}X, X) & \longrightarrow & H_{*}(CX, X) \\ & & \downarrow 1 \bigotimes i_{*} & & \downarrow i_{*} \\ & H_{*}(X^{X}) \bigotimes H_{*}(\Sigma X, C_{-}X) & \longrightarrow & H_{*}(\Sigma X, C_{-}X) \\ & & \uparrow 1 \bigotimes j_{*} & & \uparrow j_{*} \\ & H_{*}(X^{X}) \bigotimes H_{*}(\Sigma X, *) & \longrightarrow & H_{*}(\Sigma X, *) \end{array}$$

The horizontal homomorphisms are induced by the map $X^X \times \Sigma X \to \Sigma X$ given by $(f, x) \to Sf(x)$. Thus we have the commutative diagram

This proves the following theorem.

THEOREM 4. $S_*(\lambda) \cdot (\Sigma x) = \sum (\lambda \cdot x) \text{ for } x \in \widetilde{H}_*(X; Z_p).$

COROLLARY 2. The kernel of S_* is contained in the annihilator of $\widetilde{H}_*(X; Z_p)$.

The corollary follows from the fact that Σ is an isomorphism.

Although the homomorphism $\hat{\omega}_*$ on $\tilde{H}_*(X)$ is closely related to $\hat{\omega}_*$ on $\tilde{H}_*(\Sigma X)$, the next theorem shows that ω_* is almost always trivial.

THEOREM 5. If ω_* : $H_n(\Sigma X^{\Sigma X}; Z_p) \to H_n(\Sigma X; Z_p)$ is nontrivial, then ΣX is a rational homology n-sphere and a Z_p -homology n-sphere; and if p is odd, then n must be odd.

Proof. Let n be the smallest positive dimension such that there exists a $\lambda \in H_n(\Sigma X^{\Sigma X}; Z_p)$ satisfying the condition $\omega_*(\lambda) \neq 0$. Now suppose

$$\Delta_{\star}(\lambda) = (\lambda \bigotimes 1) + (1 \bigotimes \lambda) + \sum (\lambda_{i} \bigotimes \lambda_{i}').$$

By noting that $\Delta_*(x) = (1 \bigotimes x) + (x \bigotimes 1)$ for each $x \in \widetilde{H}_*(\Sigma X; Z_p)$, we obtain the equation

$$\begin{split} \Delta_{*}(\lambda \cdot \mathbf{x}) &= (\lambda \cdot \mathbf{x} \bigotimes \mathbf{1}) + (\mathbf{1} \bigotimes \lambda \cdot \mathbf{x}) + (\lambda \cdot \mathbf{1} \bigotimes \mathbf{x}) \pm (\mathbf{x} \bigotimes \lambda \cdot \mathbf{1}) \\ &+ \sum_{i} ((\lambda_{i} \cdot \mathbf{1} \bigotimes \lambda_{i}^{!} \cdot \mathbf{x}) + (\lambda_{i} \cdot \mathbf{x} \bigotimes \lambda_{i}^{!} \cdot \mathbf{1})) \,. \end{split}$$

But $\lambda_i \cdot 1 = \omega_*(\lambda_i) = 0$, since dim $\lambda_i < \dim \lambda$. Thus

$$\Delta_*(\lambda \cdot \mathbf{x}) = (\lambda \cdot \mathbf{x} \bigotimes 1) + (1 \bigotimes \lambda \cdot \mathbf{x}) + (\omega_*(\lambda) \bigotimes \mathbf{x}) \pm (\mathbf{x} \bigotimes \omega_*(\lambda)) \ .$$

Hence $\lambda \cdot x$ is not primitive or zero unless $(\omega_*(\lambda) \bigotimes x) \pm (x \bigotimes \omega_*(\lambda)) = 0$. This can only occur if $\omega_*(\lambda) = kx$ for some $k \in \mathbf{Z}_p$, where either p = 2, or n is odd (use Theorem 3). Thus ΣX is a homology \mathbf{Z}_p -sphere and hence must be a rational homology sphere.

In the case of homotopy groups, the homomorphism ω_* : $\pi_*(\Sigma X^{\Sigma X}) \to \pi_*(\Sigma X)$ is usually not trivial. It is related to the Hopf construction, and it is found in a long exact sequence where the following homomorphism is the generalized Whitehead product with $1_{\Sigma X}$. This is shown by George Lang in his thesis [4].

REFERENCES

- 1. J. Dugundji, Topology. Allyn and Bacon, Inc., Boston, Mass., 1966.
- 2. D. H. Gottlieb, On fibre spaces and the evaluation map. Ann. of Math. (2) 87 (1968), 42-55.
- 3. ——, Evaluation subgroups of homotopy groups. Amer. J. Math. 91 (1969), 729-756.
- 4. G. E. Lang, Evaluation subgroups and related topics. Dissertation, Purdue University, 1970.
- 5. J. W. Milnor and J. C. Moore, On the structure of Hopf algebras. Ann. of Math. (2) 81 (1965), 211-264.
- 6. E. H. Spanier, Algebraic topology. McGraw-Hill, New York, 1966.
- 7. N. E. Steenrod, *Cohomology operations*. Annals of Mathematics Studies, No. 50. Princeton Univ. Press, Princeton, N.J., 1962.

Purdue University Lafayette, Indiana 47907