THE EVALUATION MAP AND HOMOLOGY
Daniel H. Gottlieb

1. INTRODUCTION

There has been no serious study of the effects of the evaluation w: XX — X on
homotopy and homology groups. Perhaps this is due to the difficulty in calculating
the homotopy and homology groups of XX . However, w and the generalized evalua-
tion map @: XX X X — X are “universal” for many problems. Thus each action of a
group on X must factor through &. Also, each boundary map in the homotopy exact
sequence of a fibration must factor through w, [2]. Moreover, w plays an impor-
tant role in the study of evaluation maps of mapping spaces other than XX . The
general%zi:d Whitehead product for suspensions is closely related to w, on homotopy
groups |4].

Because of the various roles played by w, information about w will be valuable
in the study of topology. This is especially true in cases where w, is trivial on
some homotopy groups, for in these cases we can conclude that the transgression
homomorphism in the homotopy exact sequence of a fibration is trivial. We shall
show that the homology homomorphism w, is trivial for spaces whose homology
groups satisfy a certain simple criterion.

In Section 2, we establish our notation and record some facts about the evalua-
tion map. In Section 3, we study the effects of w, on the homology groups of X with
Z, or rational coefficients. Our main results tell us that H (X; Z) is a nontrivial
tensor product of two modules when w*(k) # 0, where A denotes a primitive element
in H (XX; Zp), or when w,(\) satisfies a certain condition. For many spaces, we

can thus show that Wy is zero in low dimensions.

Finally, in Section 4, we show that for suspensions w, is almost always zero.
We use the generalized evaluation map &: XX X X — X to study w,. We find that
63* for X is closely related to cﬁ* for ZX, even though w, for ZX is almost always
Zero.

2. PRELIMINARIES

We shall let L(X, Y; k) denote the space of maps homotopic to k: X — Y and
furnished with the compact-open topology. We also denote L(X, X; 1y) by XX.

Definition. The genevalized evaluation map & is the map @: XX X X — X given
by @(f, x) = f(x). Let xg be a base point of X. Then the evaluation map w: XX — X
is defined by w(f) = f(x,). The composition map u: XX x XX — XX is given by ‘
ulf, g) =f og.

Now w is always continuous, and @ and p are continuous if X is locally com-
pact. However, both @ and g carry singular simplices to singular simplices, and
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therefore both induce homomorphisms on homology groups (see [1, p. 274] for re-
sults that can be used to prove this).

The composition map p makes XX into an H-space. Let G be a ring with a
unit. If x and y are in H, (XX; G), we let xy denote p (x(X)y). The multiplication
is associative (since compos1t1on is associative), but not necessarily commutative.
With the diagonal map A: XX — XX x XX inducing a co-algebra structure on
H, (XX ; F), where F is a field, the group H, (XX ; F) becomes a Hopf algebra.

For A € H(XX; G) and x € H (X; G), we shall denote & (X&) x) by x-x. Thus
H,(X; G) isa left H, (XX; G)- module The commutative diagram

XX x xX —F 5 xX

o L

xX¥xx —% > x

glves us the equality o - w,(B) = w (ozB) where o and B are in H*(XX G). Thus
w4 H (XX G) — H(X; G) is an H (X ; G)-module homomorphism. Finally, since

w = w](XXXxo) weseethat?\ 1= (A@l)— w, ().

If A € H(XX; G), we can regard A as a homomorphism

A Hy(X; G) — Hy, (X; G)

i+n

given by Xx — A - X.

3. THE EVALUATION MAP AND HOMOLOGY

In this section, we study the effect of an element X € H,(XX; Z;) on the homol-

ogy H(X; Z,). First we introduce certain concepts and subspaces useful for our in-
vestlgatmn Next we show that if A is primitive and w,(A) # 0, then H_(X; Zy )
splits as a nontr1v1a1 tensor product of Zp-modules (Theorem 1) Then we Weaken
the hypothesis on A and show that we st111 get H (X Zp) as a nontrivial tensor
product of Z_ -modules (Theorem 2), although the splitting is not as nice as in Theo-
rem 1. Then we briefly consider cohomology and prove that if the Euler-Poincaré
number is not zero, then the lowest dimension for a nontrivial w, must be even
(Theorem 3).

Let p represent either a prime number or «. We restrict ourselves to Zp co-
efficients; by Z_ we denote rational coefficients.

Let us consider a fixed A € H (XX; Z ) Suppose x € H;(X; Z;). We say that x
has depth d if there exists an element y & H; _4n(X; Z5) such that Ad - -y =x and
Ad+l.z # x for every z € H(X; Z )

Now we shall define a collection of vector spaces {Ag} with the properties
d .
(b) every element of Ag has depth d,
. ~ AQ q-1 0
(C) Hq(X} Zp) - Aq @Aq @ @A’ >

(d) A(Ag) D Agirl,, where )\(Ag) denotes the image of Ag under A.
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First we set AO Hy(X; Z,). Now suppose we have defined Ad Let K be the

subspace of A9 such that every x € K is mapped by A onto an element A-x of
depth greater jcqhan d+ 1. Then Ad = K@Q, where Q is a subspace complementing

K. We define Agi,ll- A(Q), and we defme Aq+n by setting it equal to some subspace
Q of Hq+n(X; Z ) such that

Hy (X5 Z,) 2 AHG(X; 2,)DQ.

We can easily verify that conditions (a), (b), (c), (d) are satisfied.

Now let N be a positive integer. Define a subspace MN of H*(X Z ) by let-
ting My be the direct sum of all the Ad with d =0, N, 2N, ---. Let [A] be the sub-
space of H(XX; Z ) generated by 1, 2, A , and let [x]y be the subspace of [A]
generated by 1, A, ---, AN-1 | Define a homomorphlsm Y: @ My — H(X; Zp)
by setting (Al ® x) = )ai -x; that is, let y be the restriction of w, to [A] & My.

LEMMA. The homomorphism  is surjective.

Proof. Let x € Hq(X Zp) Then x has a unique decomposition as a sum of
elements x = xy +x; + -+ + xg, where x; € A1 for each i. Each x; has the form

A -y, where 0<r<Nand r=i (mod N), and where y; is some element in My;.
Thus x; = Y0¥ @ y;), and therefore x must be in the image of .

Let T be the map that interchanges the two factors of a product space; that is,
define T: AX B —» BX A by T(a, b) = (b, a). Then T induces T, on homology
groups, and

T*((I@X) ( l)dn'na dlmxx® a.

We have the commutative diagram

(XX x X¥) X (X X X)

AXA llexl
(1) XE¥x X -85 xXxX) x XXxX)

lé lc?)xé}

X A > XX X,

where A stands for the diagonal map.

Now suppose that

AR = Z(x®x) and AN = 20N,

where x € Hy(X; Z ) and A € H(XX; Z ) Then we see from the diagram (1) and
the property of T that

(2) A% = DD ) ® 04 -],
1,)

where b; = dim x; and c¢; = dim }\; .

J
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. Replacing X with XX and @ with u, we have a similar diagram to the one
above, and it gives us the well-known properties of Hopf algebras.

Now let us assume that A is primitive, in other words, that
AN = D+ (AN

If in addition A has even dimension n, then
N .

(3) AON) = 25 (1;‘)#@;\1\‘-1],
i=0

where ( If) is a binomial coefficient. On the other hand, if n is odd, then

A 0% = 2R 1) + 1®2r?).

Note that A% has even dimension and is primitive, so that the previous formulas are
relevant.

We shall let R stand for the smallest positive integer such that AR = 0. When
such a number R exists, it must equal pX for some k in case A has even dimen-
sion, and it must equal 2pk in case A has odd dimension. Now let K stand for the
smallest positive integer such that w*()\K) = 0. Note that, since A, w, = (w*® w)A,,
we have the equation

N
A*()\N'l) - ?0 (lf)(?tll)®(?tN—ll):]

for each N, if A has even dimension, and the equation
AM%-1) = (%2101 +(1A®A%-1)

if A is odd-dimensional. Then, just as before, K = pX or K = 2pK for some k, de-
pending on whether A is even- or odd-dimensional.

THEOREM 1. Let ) € H (XX; Z
or ©. Then

p) be primitive, and let p be a prime number

H(X; Z2,) % w,N]®@Mg  as Z,-modules.

Proof. Let K be the smallest integer such that w (AK) =1¥.1=0. Then
w,[r] is clearly isomorphic to [A] k. In view of the Lemma, we need only show that
Y is one-to-one, in other words, that if x € My, then AK-!-x =0 only when x = 0.
We divide the proof into three cases: first, n is even or p = 2; second, both n and
p are odd; and finally, p = «.

Let A*(x) =27 (Xi® x;). Then, in the first case, it follows from equations (2)
and (3) that

AN x) = _Z_)[(If)(xi-xj)@(ﬂ-i-x;)] :
1,]
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Now K = pk for some k, and x has depth equal to a multiple of pk, say mpk. Thus
x =x™K.y for some y € H(X; Zy). Now assume that 0= AK-1.x = (mtI)K-1.y
Then

(4) o . ?j [ ( mK +iK - 1) ()\i,yj)®(th+K—1-i YJ'):| = 0.

Now

mK+K-1\ _ mpkfrpk-1)
( K - 1 )—( SR 1 # 0 (mod p)

(see [7, p. 5]). Also, AK-1.1 % 0. Thus the term

( mKK+_K1— 1 ) ((K-1.1) ® (mK. y)

is not zero, and it appears in equation (4). It must be cancelled by a linear combi-
nation of terms of the form (A\K-1-J-z)®) (\™K+j.z'), where j is a positive integer
and z and z' are elements of H*(X; Zp). Thus A™K.y must be a linear combina~
tion of terms of the form AmK+j .z'. Thus, for some u in H(X; Z;), we have the
relation x = xmK.y = mK+l .y, Hence x has depth greater than mK, and this
contradicts our assumption.

Now assume that n and p are odd. Then

AN = 3 (lf) [(\2i+1 (R) AZN-2i) + (121 (R) A2N-2i+1)]

1

As before, we assume that AX-1.x =0, where x € Mg . Then x has depth mK,
and there exists a y such that x = x™mK .y Now we apply A, to both sides of the
equation 0 = xmK+K-1.y  In the expansion of the right-hand side, we have the term

(m+1)K/2 -1
( —I-(é-- 1 )(AK—1.1)®(}\mK.y).

Recall that in this case K = 2pK for some k. Thus the binomial coefficient is non-
zero in Z;, and also AK-1.1 # 0, so that the term above is not zero. Therefore,
as in the other case, the term must cancel against a linear combination of terms of
the form AK-1-j.z)amK+j-z' with j > 0. Hence x must have depth greater than
mK; this again contradicts our hypothesis and establishes the theorem for finite
values of p.

~If p =, we have rational coefficients, in which case K =« and M, consists of
elements of depth zero. Applying the previous methods, we easily see that Ax =0
implies x has depth greater than zero.

Remark. Compare this theorem with results of J. Milnor and J. C. Moore [5,
Theorem 4.4]. Their hypothesis requires w, to be injective, and their conclusions
concern tensor products of H (XX; Zp)—modules. o

We may apply Theorem 1 in the following situation. Let @ be in ﬂi(XX; 1x);
then hp(a) in H;(XX; Zp) is primitive. Here we denote by hp the composition
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7,(B) —> H,(B; 7) —> H,(B; Z).

We define G,(X) to be the image of the homomorphism w,: 7, (XX) — m;(X).

COROLLARY 1. Suppose x € G;(X) and hy(x) # 0 Then H,(X; Z,) = A® B,
where A has one genevator in dzmenszons 0, i, 21 e, (p-1)i zf i is even, and one
genevator in dimensions 0 and iif iis odd.

This corollary is a restatement of Theorems 4-1 and 4-4 of [3].

Suppose that in Theorem 1 we relax the condition that X € H(XX; Z) is primi-
tive. We shall say that x ¢ H (X Z ) is decomposable if x is the sum of terms of
the form @ -y, where y € H; (X Zp) and @ € H;(XX; Zp), and where @ and y have
positive dimension. That is, if A 1s the subrmg of H (X YA ) consisting of all
elements of dimension greater than zero, and if B is the subrmg of all elements of
higher dimension in H_(X; Z ) then the decomposable elements are & (K@ B). An
indecomposable element is one that is not decomposable.

THEOREM 2. Suppose that X\ is an element of H,(XX; Zp) and that w, (\) is
indecomposable and not zevo. Then

R

H (X; Zp) [A]p® M, as Zp-modules if n is even,

and
H,(X; 2p) = A ® M, as Z,-modules if n is odd.

Proof. Firstlet n be even. Let x € Mp. We must show that AP-1-x # 0 if
x € M, and x # 0. We proceed as in the proof of Theorem 1.

To choose a basis for H,(X; Zp), we begin by choosing a basis for the decom-
posable elements; then we add w (A) and then we fill out the basis with indecompos-
able elements. Let y;, ***, ¥i, - be the basis so chosen.

We claim that if A -x = 0, then x has depth d = -1 (mod p). To see this, suppose
x =Ady. Then 0 =x-x = Ad+] . -y. Thus A (ad*!.y) = 0. Since

Aly) = (y®1)+(1®y>+§(yi®y;>

and

A0 = 0®1)+ @) + ? (@),

we have the term (d+1)(x 1)) (04-y) in the expansion of A (AdH -y). This term

must cancel with a linear combination of terms of the form y1® (ad+l -y, ;) and

()LJ y1)® (AJ yi). The expansions of the terms Aj-yi in terms of the basis

Y1, ', ¥i, ** do not contain the basis element w,(A) =x-1. Thus terms of the

type (35 ¥ & (A *y:) do not cancel with (d + 1w (h))@ (xd-y). Thus only a linear

COmbmatlon of terms of type y; Q) (ad+1. y) cancels w (A)@(?xd y). Hence

Ad-y = x is equal to a linear combination of terms of the type ad+l. yi. Thus
=ad+l.y for some u, and hence X has depth greater than d; this contradicts our

assumption. Only when d + 1 = 0 (mod p) do we escape a contradiction. Thus we

have shown that A -x =0 only if d = -1 (mod p).
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If x has depth d # -1 (mod p), then X -x has depth d + 1. (For otherwise,
A X =X-v, where v has depth greater than d. Thus x - v # 0 and x - v has depth
d. Now X-(x - v)=Xx-x - A-v=0; by the preceding paragraph, this implies that
d = -1 (mod p), and this is a contradiction.)

Now suppose x € M. Then x has depth d = 0 (mod p), and hence A -x, which
is not zero, has depth d = 1 {mod p). Therefore X2 -x has depth d = 2 (mod p) and
is not zero, and this process continues until AP~ -x # 0. Thus Y(\P~! ®x) = 0;
hence y is one-to-one, and hence, by the Lemma, { is an isomorphism. Thus, if n
is even, the theorem is proved.

In the case n is odd, the proof runs similarly. First we show that the relation
A-x =0 implies d = 1 (mod 2). The remainder of the proof is identical with that
above.

Let us consider the homomorphisms induced on cohomology by w and ®. We
shall assume that H¥(X; Z;) and H*XX; Z p) are of finite type, in other words, that
the ith cohomology groups are finitely generated for each i. This condition occurs
frequently (for example, when 7.(X) is of finite type and X is strongly simple, that
is, n-simple for all n). We can use the Federer spectral sequence to show that
7,(X%) is of finite type; then Theorem 20 on page 510 of [6] tells us that the homol-
ogy is of finite type.

Consider the homomorphism
% HY(X; Zp) — HYXX; Zp) Q HYX; Zp) .

If xe HYX; Z p) it is easily seen that 0*x) = (1X®x) +(w*x)X®1) + 27 ;X x;).

Now recall that p: XX x XX — XX is the composition map. We see that
@ o (1 X w)=w o u. Thus we have the formula

pXe*®) = (1® 0*x) + (1) + 27 04 ® w*(x;)

We shall use the theorem of Milnor and Moore [5, Proposition 4.21] that tells us
that a primitive decomposable element « in a connected Hopf algebra over Zp with
associative commutative multiplication has the form a = gP.

THEOREM 3. Suppose H,(X; Z) is finitely genevated and H*(X Z) has finite
type Suppose X(X) # 0. Let n be the smallest positive dimension such that
w, H (XX; Z )—> H,(X; Zp) is nontrivial. Then n is even.

Proof. Assume n is odd. Suppose X € H,(X¥; Z,) and w,(A) # 0. Together
with the hypothesis that x(X) # 0, Theorem 1 1mp11es that A is not primitive.

Let us consider w* in cohomology. For positive dimensions less than n, w™® is

trivial, by duality. For dimension n, there exists an x € H(X; Z;) such that w*(x)
is not zero and is decomposable. Now

¥ 0*) = (1@ 0* @) + (@R @1 + 2 (1 @ w*xy)
= (1R 0*x) + (v (@ X 1),
since w*(x;) = 0 by hypothesis. Thus w*(x) is primitive and decomposable, and

hence w*(x) = BP, by the theorem of Milnor and Moore. Since n is odd, n/p must
be odd and p must be odd. Thus 8 is an odd-dimensional cohomology class, so that
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B2 = 0. Therefore BP =0, and this contradicts the fact that w*(x) = 0. Thus n must
be even.

4. THE EVALUATION MAP AND SUSPENSIONS

If X is in an H-group, then XX = XXX X (where X¥ is the subspace of XX
that preserves base points), and the evaluation map is the projection onto X. Thus
w, is surjective. On the opposite extreme we have the suspensions ZX. Here, for
the most part, w, is trivial. However, the homology homomorphism u'S* for appro-
priate ZX is closely related to the homology homomorphism 63* for appropriate X.

Let =: Hy(X; Zy,) —> H,,,(2X; Zp) be the suspension isomorphism. Let CX
be the cone over X, and let C; X and C_ X be the upper and lower hemispheres of
2X. Then we have the diagram

H,(X) <5 Hy1(C1 X, X) —1‘:> H_,,(ZX, C_X) % H (X, ¥,

where i and j are inclusions and ¢ is the boundary homomorphism. Now
Z=jRliant

We define S: XX — =XZX py letting S(f): £X — ZX be the suspension of the
map f: X — X. Then we have a commutative diagram

-~

Wy
H,(xX) ®H, (X) > H_(X)
A

Tl@a 9

X¥)®H,(C, X, X) —> H,(CX, X)

1Xi,, i,
Y Y
H, (X¥X) ®H,(ZX, C_X) ——> H,(ZX, C_X)

A A

1X)j 4 iy

H,(X*) ® H (ZX, *) —> H (ZX, *)

The horizontal homomorphisms are induced by the map XX >< ZX — ZX given by
(f, x) — Sf(x). Thus we have the commutative diagram

~

~ W ~
H (X*) Q@ H(X) — H (X)

l S,z ) l z
£X ©x .
H (ZXZT) R H (ZX) —> H(ZX) .
This proves the following theorem.

'THEOREM 4. S,(\)-(Zx) = 27 (x+x) for x'e H(X; Zp).
COROLLARY 2. The kernel of S, is contained in the annihilator of H(X; Z,).
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The corollary follows from the fact that 27 is an isomorphism.

Although the homomorphism &, on ﬁ*(X) is closely related to &, on ﬁ*(ZX),
the next theorem shows that w, is almost always trivial.

THEOREM 5. If w: Hn(ZXZX; Zp) — HL(ZX; Zp) is nontrivial, then ZX is a
rational homology n-spheve and a Zy-homology n-sphere; and if p is odd, then n
must be odd.

Proof. Let n be the smallest positive dimension such that there exists a
A € H,(ZXZX; 7,,) satisfying the condition w,(A) # 0. Now suppose

AL = @D+ AR + 27 ().
By noting that A (x) = (1X®x) + (xX® 1) for each x € ﬁ*(EX; Zp), we obtain the
equation

AN =0 x@D+ARrx)+A 1®x)+x®r-1)

+ 22 (O 1A %) + (- x@ AL D).

But 2;-1=w,(;) =0, since dim A; <dim A. Thus
AMX) = -x@D+AXN %)+ (0N P x) + xR w, M) .

Hence X -x is not primitive or zero unless (0, () x) + (x®) w,()) = 0. This can
only occur if w,(\) =kx for some k € Z,, where either p =2, or n is odd (use
Theorem 3). Thus ZX is a homology Zy, -sphere and hence must be a rational
homology sphere.

In the case of homotopy groups, the homomorphism w: 7 (ZX2ZX) — 7,(2X) is
usually not trivial. It is related to the Hopf construction, and it is found in a long
exact sequence where the following homomorphism is the generalized Whitehead
product with 1y~ . This is shown by George Lang in his thesis [4].
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