QUASI-COMMUTATIVITY OF H-SPACES
F. D. Williams

Two H-space multiplications m and n on a space X are called H-equivalent
provided there exists an H-map f: (X, m) — (X, n) that is a homotopy equivalence.
H-equivalence is an equivalence relation, and the enumeration of the H-equivalence
classes of multiplications is a topic of current interest. A question that arises in
this connection is whether each multiplication m on an H-space is H-equivalent to
its transpose, the multiplication n given by the relation n(x, y) = m(y, x). This is
certainly the case for each group multiplication, for we may choose the homotopy
equivalence that takes each element to its inverse. A similar situation exists in
loopspace multiplications. In [2], it is shown that every homotopy- Moufang H-space
multiplication on a space is H-equivalent to its transpose, and it is suggested there
that this relation may hold for all H-space multiplications. Problem 34 of [6] asks
whether this is the case for each multiplication on a finite H-complex. In this paper,
we develop an obstruction theory for this question, and we produce some counter-
examples. We exhibit a multiplication on a generalized Eilenberg-MacLane space
that is not H-equivalent to its transpose, and we demonstrate the existence of a
multiplication on 3-dimensional real projective space that has the same property.

PROPOSITION A. Let E =K(Z;, 1) XK(Z, , 4). The multiplication m on E
charactevized by making the composition
, i m P,
K(Z, ,1)¢ —> E> — E —> K(Z,, 4)

correspond to x® x3 € HYK(Z, , 1) AK(Z, , 1); Z,) is not H-equivalent to its
transpose.

We could verify this proposition directly by computing the elements involved in
the appropriate cohomology groups. Instead, we shall give an alternate verification,
as an application of the general theory.

PROPOSITION B. There exists an H-space multiplication on the veal projective
3-space Pj that is not H-equivalent to its transpose.

We now develop the formalism necessary to handle these propositions. Corre-
sponding to a pointed space X, we recall the space FX of unbased paths of varying
lengths on X. The elements of FX are maps A: [0, ] — X that are constant in
some neighborhood of «. The basepoint of FX is the constant path at the basepoint
of X. We shall consider the projections ny and 7, of FX to X given by evaluation
at 0 and «, respectively. We make FX into a groupoid as follows. Let A; and 2,
in FX be such that 7,(\;) = 713(2;). Then define their sum X; + 2, by.the formula

Ap(t) (0<t<ry),
(A +2,)[t] =
Az(t-rl) (1‘1 St_<_°°),

where
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r, = sup {x € [0, ]| there is a y > x such that A;(y) # A (%)} .
If X is an H-space with multiplication (x, y) — xy, then FX inherits a product
(A a) [t] = 2 () Ay(t). If £f: X — X' is a map, the induced map Ff: FX — FX' is
given by the formula Ff(d)[t] = f(A(t)). Let

PX = {A € FX| my(a) = x = basepoint of X}
and
ox = {x e PX| 7,(0) =x¢}.

Recall that if X and X' are H-spaces, a map 6: X — X' is called an H-map
provided there exists a homotopy V: X% — FX' such that

TooV(x,y) = 6(x) 6(y) and 7 _,0V(x,y) = 8(xy).
Suppose that ¢: X — X and ¢': X' — X' are homotopy equivalences. Then we call a

map 6: X — X' a (¢, ¢")-map provided there exists a homotopy G: X — FX' such
that

T,0G = ¢'00 and 7,0G = 60¢.

Following [2], we call an H-space quasi-commutative (a QC-space) provided there
exist a homotopy equivalence ¢: X — X and a homotopy Q¢: X% — FX such that

TeoQy(x, y) = é(y)é(x) and  7,°Qy(x, y) = é(xy).
Finally, if (X, ¢) and (X', ¢') are QC-spaces and 0: X — X' is a map, we call 4 a
QC-map provided there exist homotopies V: X2 — FX' and G: X — FX' that make
6 an H-map and a (¢, ¢')-map, respectively, and a secondary homotopy
D: X2 — F(FX') such that
’iTOOD:Qd)IO(GXQ), T oD = 90Q¢,
Fry(D(x, y)) = V(é(y), ¢(x)) + G(y) G(x) ,
Fr(D(x, y)) = Glxy) + F¢'(V(x, y))
(see Figure 1).

¢'(0(x) 6(y)) ¢' o 6(xy) 6 (o(xy))

L.

o' OVr(x, y) G(:(y)

v
L

Qy(0(x), 6(y)) 4 0 0Qy(x, y)

G( Y)\G(X) ) V(qb(y)i 3(x))
o'(0(y)) ¢'(6(x)) 8{((y)) 6(s(x)) 0 (d(y) ¢(x))

Figure 1.
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We now describe the behavior of these structures in Postnikov systems. Let n
be a positive integer, and let X be a space such that 7 (X) =0 (k >n). Let G be an
abelian group, and let K(G, n) denote an Eilenberg-MacLane space of type (G, n).

Let QK(G,n+ 1) - E T X be the principal fibration induced by a map
6: X - K(G, n+1).

Then E consists of pairs (x, A) € X X PK(G, n + 1) such that 6(x) = x(w).

PROPOSITION 1. If E is an H-space, then X can be made into an H-space so
that w and 6 are H-maps. Conversely, if an H-space multiplication for X is
chosen for which 8 is an H-map, then each H-space multiplication for E that
makes m an H-map is homotopic to one of the form

(x1, A1) (%2, 22) = (x) %, Ay 22 +V(x), %3)),

wheve V is a choice of homotopy V: X2 — FK(G, n + 1) as in the definition of H-
map.

PROPOSITION 2. If ¢": E — E is a homotopy equivalence, then theve exist
homotopy equivalences ¢: X — X and ¢': K(G, n+ 1) —» K(G, n + 1) such that 7 is a
(¢", ¢)-map and 6 is a (¢, ¢')-map. Conversely, if ¢: X - X and

¢': K(G,n+1) — K(G,n+1)

are homotopy equivalences such that 0 is a (¢, ¢')-map, then each homotopy equiva-
lence ¢": E — E that makes 7 a (¢", ¢)-map is homotopic to one of the form

¢"(x, A) = (¢(x), Fp"(A) + G(x)) ,

where G: X — FK(G, n + 1) is a choice of map as in the definition of (¢, ¢')-map.

PROPOSITION 3. Suppose that E and X ave H-spaces such that w1 and 6 are
H-maps. Suppose that ¢":E - E, ¢: X —» X, and ¢': K(G, n +1) = K(G, n+ 1) are
homotopy equivalences such that w is a (¢", ¢)-map and 6 is a (¢, ¢')-map.

1) If (E, ¢") is a QC-space, then X can be given a structure of QC-space such
that m and 6 are QC-maps.

2) Conversely, if (X, ¢) is a QC-space with homotopy Qy: X2 > FX, and 6 isa
QC-map, then each homotopy Q¢n: E2 — FE that makes E into a QC-space such
that m is a QC-map can be deformed (so as to preserve boundary conditions) into
one of the form

"((Xl ’ ?\1), (Xz ’ 7\2)) =(Q (Xl ’ Xz), FQ '(Al ’ 7\2) + D(Xl , XZ)) s
w ¢ ¢

where D: X2 — F(FK(G, n + 1)) is a choice of secondary homotopy as in the defini-
tion of QC-map.

The proof of Proposition 1 is found in [5, pp. 127-129]. Proposition 2 is con-
tained in the material on pp. 438-441 of [3]. Proposition 3 may be proved similarly
to Theorems 16 and 17 of [5].

The homotopy classes of maps V: X% - FK(g, n + 1) that preserve the boundary
conditions for H-map are in one-to-one correspondence with the group of homotopy
classes [X A\ X; QK(G, n + 1)], which in turn is isomorphic to HYX A X; G).
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Similarly, the classes of maps G: X — FK(G, n + 1) that preserve the boundary con-
ditions for a (¢, ¢')-map correspond to elements of H*X; G), and the classes of
maps D: X2 — F(FK(G, n + 1)) that preserve the boundary conditions for QC-map
correspond to elements of H*~1(X A X; G).

Our objective is to be able to decide whether an H-space multiplication on E is
quasi-commutative. We may write the multiplication in the form established by
Proposition 1,

(x1, A (xz,20) = (x1x5, A2 + F(x, x2)) .

A necessary and sufficient condition for the existence of a homotopy equivalence

¢": E - E and a map Qgn: E2 — FE satisfying the definition of QC-space is that
there exist a secondary %omotopy D: X2 — F(FK(G, n + 1)) satisfying the definition
for 6 to be a QC-map with respect to the boundary conditions determined by the

G, ¢, ¢, Q¢ , and Qg+ obtained from ¢" and Q¢ » as in Propositions 2 and 3. The
obstruction to the existence of D may be transcribed to cohomology from Figure 1
as follows. It is the projection from H?(X X X; G) onto H*(X A X; G) of the class of

@ o6 -(6x o) oqh + 1o (px 9 o vH - v¥ o (4
+T# o (Gx @) om® - m* o GH)[.]

where ( € Cq(G, n; G) is a representative of the fundamental class, and where m
and m; are the multiplications in X and K(G, n + 1), respectively.

Example 1. Let X =K(Z,,1),and let 6: X — K(Z,, 5) be the constant map.
Then E = K(Z,, 1) XK(Z,, 4). We regard 6 as a homomorphism of loop spaces.
Hence ¢ and ¢', unique up to homotopy, may be taken to be the maps induced by re-
versing the parameter of loops. The maps Qg and Q¢. , again unique up to homo-
topies that preserve the boundary conditions, may be chosen to be the stationary
homotopies. Consequently, for elements

Ve H4(K(Z2 , 1) ANK(Z,, 1); Z5) and g e H4(K(ZZ, 1); Z2,),

the obstruction becomes
(T* - 1%)[v] - m*(g) .

Now H*(K(Z,, 1); Z,) is a polynomial algebra with generator x of dimension 1.
The nonzero element x* ¢ H¥K(Z,, 1); Z,) is primitive. If we choose the multi-
plication on K(Z,, 1) X K(Z, , 4) determined by v = x(X) x3, the obstruction is

x3 ®x - x® x3, and this is not zero. Hence we have a multiplication on
K(Z,,1) X K(Z,, 4) that is not quasi-commutative, and this proves Proposition A.

Example 2. We consider a Postnikov system for the 3-dimensional real projec-
tive space P;. Since P3 is the homotopy type of QBSO(3), we may choose the
spaces and maps to be loop spaces and loop maps. It is easy to compute that P3 has
only two homotopy classes of homotopy self-equivalences, the identity and another,
#, which we may represent by reversing the parameter of loops. It was proved in [1]
that no multiplication on P5 is homotopy-commutative. Hence, to find a multiplica-
tion on P3 that is not quasi-commutative, it is sufficient to find one, m, such that ¢
is not an H-map between m and its transpose.

The first Postnikov invariant is 6, € H4(K(ZZ , 1); Z2). We obtain a fibration
QK(Z, 4) > E, — K(Z,, 1). If we take the loop addition on E, and induce
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¢: E5, — E; by reversing the direction of loops, we can choose the homotopy Qg4 be-
tween ¢(x +y) and ¢(y) + ¢(x) to be the stationary homotopy. It is unique up to a
homotopy that preserves boundary conditions, since H2(K(Z, , 1) AK(Z>, 1); Z) = 0.
The second Postnikov invariant is 6, € H?(E, ; Z»), and this induces a fibration
QK(Z, ,5) —» E3 — E, . The obstruction for 6, tobe a QC-map with respect to ¢
takes the same form as that of Example 1,

(T* - 1) [v] - m*(g) € HX(E, A E;; Z,),

where v € H4E, AE,; Z,) and g € H¥E,; Z,) = H{P3; Z,) = 0. For any choice
of v € H¥E A E2; Z2) (and hence a choice of multiplication in E;), the quasi-
commutativity obstruction is T*(v) - v. In dimensions less than four, we have the
relation H*(E,; Z,) = H*(K(Z,, 1); Z,). If we again choose v = x(X) x3, we obtain a
multiplication mg for E; that is not quasi-commutative. It follows from Theorem
1.1 of [4] that each multiplication on a stage of a Postnikov system for P lifts to a
multiplication on P;. Any lifting of my to P3 produces a non-quasi-commutative
H-space structure on P;. This verifies Proposition B.

Remark 1. A similar (but longer) computation produces an H-space structure
that is not quasi-commutative on the underlying space of SU(3), thus providing a
simply connected example.

Remark 2. Since any homotopy-Moufang H-space multiplication is quasi-
commutative, our examples must be H-space structures that are not homotopy-
Moufang spaces.
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