COMPACT INTERTWINING OPERATORS

T. L. Kriete, III, Berrien Moore, III, and Lavon B. Page

Let T_1 and T_2 be bounded operators acting on Hilbert spaces H_1 and H_2 , respectively. A bounded operator X from H_1 to H_2 that satisfies the condition $XT_1 = T_2 X$ is called an *intertwining operator* for T_1 and T_2 . We denote the class of such operators by $\mathscr{I}(T_1, T_2)$. Clearly, with the usual operator norm, $\mathscr{I}(T_1, T_2)$ is a Banach space.

It is of interest to look for compact operators in $\mathscr{I}(T_1, T_2)$. That nonzero compact operators need not exist in $\mathscr{I}(T_1, T_2)$, even when $\mathscr{I}(T_1, T_2)$ is relatively large, is clear if for example we take T_1 and T_2 to be the simple unilateral shift; it is well known that there exist no compact analytic Toeplitz operators different from zero. P. Muhly [7] in effect found conditions that guarantee the existence of nonzero compact operators in $\mathscr{I}(T_1, T_2)$.

An example of the opposite extreme occurs when both T_1 and T_2 are the identity operator on a Hilbert space. In this case, there are so many compact operators in $\mathscr{I}(T_1,T_2)$ that if we let $\mathscr{C}(T_1,T_2)$ denote the subspace of $\mathscr{I}(T_1,T_2)$ consisting of the compact operators, then $\mathscr{C}(T_1,T_2)$ has $\mathscr{I}(T_1,T_2)$ as its second dual (R. Schatten [11]). Another example of this phenomenon is the case where T_1 is a unilateral shift of arbitrary multiplicity on a separable, complex Hilbert space, while $T_2 = T_1^*$. That $\mathscr{I}(T_1,T_2)$ is here the second dual of $\mathscr{C}(T_1,T_2)$ was shown by R. N. Hevener [5] in case T_1 is the simple unilateral shift, and by Page [9] in case T_1 is a shift of higher multiplicity. Hevener's result is a consequence of the work of Z. Nehari [8] on bounded Hankel operators and of P. Hartman [3] on compact Hankel operators.

This paper concerns the second of the two extreme possibilities, that is, the case where

$$\mathscr{C}(T_1, T_2)^{**} \simeq \mathscr{I}(T_1, T_2)$$
.

We prove that this biduality relation holds if T_1 and T_2 are compressions of the simple unilateral shift to co-invariant subspaces. (See concluding comments.)

Let $\mathscr T$ and m denote the unit circle in the complex plane and normalized Lebesgue measure on $[0, 2\pi)$. The spaces $L^p(dm)$ $(1 \le p \le \infty)$ will be the standard spaces of appropriate complex functions on $\mathscr T$. Usually, $L^p(dm)$ and its Hardy subspace $H^p(dm)$ will be denoted simply by L^p and H^p . By H^1_0 we mean the subspace

of functions f in H^1 for which $\int_0^{2\pi} f(e^{it}) dm(t) = 0$. Following tradition, we use χ to

denote the identity function on \mathcal{I} , so that the simple unilateral shift on H^2 is given by U: $f \to \chi f$. For a more detailed discussion, see [4] and [6].

Received June 11, 1970.

The authors acknowledge partial support from NSF Grant GP-8981, NSF Grant GP-14784, and a grant from the North Carolina Engineering Foundation.

Michigan Math. J. 18 (1971).

Let ψ_1 and ψ_2 be nonconstant inner functions, and set $K_i = H^2 \ominus \psi_i H^2$ (i = 1, 2). Let P_i be the orthogonal projection of H^2 onto K_i and set $S_i = P_i U \mid K_i$. If by δ we denote the greatest common divisor (g.c.d.) of ψ_1 and ψ_2 , then we can formulate a slight generalization of a result of D. Sarason [10, Section 2] as follows (the symbol \simeq is to be interpreted throughout as meaning "isometrically isomorphic as Banach spaces"):

LEMMA 1. $\mathcal{I}(S_1, S_2) \simeq H^{\infty}/\delta H^{\infty}$.

Proof. By the lifting theorem of Sz.-Nagy and Foias (see [12] and [2]), $X \in \mathcal{I}(S_1, S_2)$ if and only if $X = P_2 Y \mid K_1$, where

$$i) YU = UY$$

ii)
$$P_2Y(I - P_1) = 0$$
, and

iii)
$$||Y|| = ||X||$$
.

Since the commutant of U is H^{∞} , it follows from (i) that Y: $f \to \phi f$ for some $\phi \in H^{\infty}$ with the property $\|\phi\|_{\infty} = \|Y\|$. Therefore $\phi \psi_1 H^2 \subseteq \psi_2 H^2$, by (ii), so that $\phi \psi_1 = \psi_2 \lambda$ for some $\lambda \in H^{\infty}$. If we set $\gamma_1 = \overline{\delta} \psi_1$ and $\gamma_2 = \overline{\delta} \psi_2$, then the g.c.d. of γ_1 and γ_2 is a constant of modulus 1. Using this and the relation $\phi \gamma_1 = \gamma_2 \lambda$, we can conclude that $\phi \in \gamma_2 H^{\infty}$. Conversely, a retracing of the above argument shows that if $\phi \in \gamma_2 H^{\infty}$, then $Y(\psi_1 H^2) \subseteq \psi_2 H^2$. Therefore, if

$$\mathscr{A} = \{ Y \in \mathscr{I}(U, U): Y(\psi_1 H^2) \subseteq \psi_2 H^2 \},$$

then $\mathcal{A} \simeq \gamma_2 H^{\infty}$.

The linear mapping $Y \to P_2 Y \mid K_1$ from \mathscr{A} to $\mathscr{I}(S_1, S_2)$ is onto by the lifting theorem. Its kernel is $\{Y \in \mathscr{A} \colon YK_1 \subseteq \psi_2 H^2\}$, which is easily seen to be isometrically isomorphic to $\psi_2 H^\infty$ under the natural isomorphism of the commutant of U onto H^∞ . Hence $\gamma_2 H^\infty/\psi_2 H^\infty \simeq \mathscr{I}(S_1, S_2)$. Finally, the mapping that sends a coset $\phi + \delta H^\infty$ in $H^\infty/\delta H^\infty$ onto the coset $\gamma_2 \phi + \psi_2 H^\infty$ in $\gamma_2 H^\infty/\psi_2 H^\infty$ is an isometric isomorphism. Therefore $H^\infty/\delta H^\infty \simeq \mathscr{I}(S_1, S_2)$, and the proof is complete.

Let C denote the complex-valued continuous functions on the unit circle. Define T_{ϕ} : $K_1 \to K_2$ to be the operator $T_{\phi}f = P_2(\phi f)$ for $\phi \in \gamma_2 \operatorname{H}^{\infty}$, and let A denote $\operatorname{H}^{\infty} \cap C$.

To follow the thrust of Lemma 1, we shall need Sarason's Theorem 2 of [10] stated in an intertwining rather than commutant framework. The original proof goes through with only minor modification, and therefore we omit it.

LEMMA 2. If $\phi \in \gamma_2 \operatorname{H}^{\infty}$, then T_{ϕ} is compact if and only if $\overline{\psi}_2 \phi \in \operatorname{H}^{\infty} + C$. LEMMA 3. $C(S_1, S_2) \simeq [\overline{\delta} \operatorname{H}^{\infty} \cap C]/A$.

Proof. By Lemma 2, T_{ϕ} is compact if and only if $\overline{\psi}_2 \phi \in H^{\infty} + C$, or equivalently, if and only if $\phi \in \psi_2(H^{\infty} + C)$. Hence

$$[\psi_2(H^{\infty}+C) \cap \gamma_2 H^{\infty}]/\psi_2 H^{\infty} \simeq C(S_1, S_2).$$

In addition,

$$[\overline{\delta} \operatorname{H}^{\infty} \cap (\operatorname{H}^{\infty} + \operatorname{C})]/\operatorname{H}^{\infty} \simeq [\psi_2(\operatorname{H}^{\infty} + \operatorname{C}) \cap \gamma_2 \operatorname{H}^{\infty}]/\psi_2 \operatorname{H}^{\infty}.$$

Let **F** denote the mapping of $[\overline{\delta} \operatorname{H}^{\infty} \cap C]/A$ to $[\overline{\delta} \operatorname{H}^{\infty} \cap (\operatorname{H}^{\infty} + C)]/\operatorname{H}^{\infty}$ given by $F(\phi + A) = \phi + \operatorname{H}^{\infty}$.

Sarason [10] and other authors have observed that the theorem of F. and M. Riesz may be used to show that H_0^1 is the dual of C/A. Furthermore, L^∞/H^∞ is the dual of H_0^1 , and the canonical injection of C/A into its second dual L^∞/H^∞ is the mapping $\phi + A \to \phi + H^\infty$. (See the proof of Theorem 2 in [10].) Clearly, F above is isometric, since it is the restriction to $[\overline{\delta}H^\infty \cap C]/A$ of the canonical injection of C/A into its second dual. We need only show that F is onto. If $y \in \overline{\delta}H^\infty \cap (H^\infty + C)$, then there exist η and λ in H^∞ and $c \in C$ such that $y = \overline{\delta}\eta = \lambda + c$. Moreover, $c \in \overline{\delta}H^\infty \cap C$, and this implies that $F(c + A) = c + H^\infty = \overline{\delta}\eta + H^\infty = y + H^\infty$. Thus F is onto; hence,

$$[\overline{\delta} H^{\infty} \cap C]/A \simeq [\overline{\delta} H^{\infty} \cap (H^{\infty} + C)]/H^{\infty} \simeq C(S_1, S_2),$$

and the proof is complete.

Suppose that, considered as a function on the open unit disc \mathcal{D} , α is an inner function, and let $\beta\sigma=\alpha$ be its unique factorization into a Blaschke product β and a singular inner function σ . Then

(1)
$$\beta(z) = kz^n \prod_{j \geq 1} \frac{\bar{z}_j}{|z_j|} \frac{z_j - z}{1 - \bar{z}_j z} \quad (|z| < 1)$$

and

(2)
$$\sigma(z) = \exp \left\{ - \int_0^{2\pi} h(t, z) ds(t) \right\} \quad (|z| < 1);$$

here k is a constant (|k| = 1), n is a nonnegative integer, $\{z_j\}$ is the sequence of zeros of α in 0 < |z| < 1, h(t, z) = $(e^{it} + z)(e^{it} - z)^{-1}$, and s is a singular, finite, positive, regular Borel measure on $[0, 2\pi]$.

The support of β is the intersection of the closure of $\{z_j\}_{j\geq 1}$ with \mathscr{I} , the support of σ is the closed support of the measure on \mathscr{I} induced by s, and the support of α is the union of the supports of β and σ .

Remark. An inner function is continuous on the complement of its support.

Corresponding to each inner function α , we denote by Q_{α} the class of inner functions μ that divide α and for which the support of $\alpha \overline{\mu}$ has Lebesgue measure 0.

LEMMA 4. Let α be an inner function. The g.c.d. of all functions in Q_{α} is a constant.

Proof. Let $\alpha = \beta \sigma$ where β and σ have the forms (1) and (2). Then

$$Q_{\alpha} = \{ \mu_1 \ \mu_2 \colon \mu_1 \in Q_{\beta} \text{ and } \mu_2 \in Q_{\sigma} \}.$$

If α_0 is the g.c.d. of all functions in Q_{α} , then $\alpha_0 = \beta_0 \sigma_0$, where β_0 and σ_0 are the g.c.d.'s of all the functions in Q_{β} and Q_{σ} , respectively. Note that β_0 is a Blaschke product and that σ_0 is singular. We shall show that both are constant inner functions.

Assume that β_0 is not constant, and write $\beta_0(z) = kz^m \prod_{j \ge 1} \frac{\overline{w}_j}{|w_j|} \frac{w_j - z}{1 - \overline{w}_j z}$.

If the set $\{w_i\}$ is empty, then $\beta_0(z) = kz^m$, where m > 0. Let

$$\beta_1(\mathbf{z}) = \mathbf{k} \prod_{\mathbf{j} \geq 1} \frac{\bar{\mathbf{z}}_{\mathbf{j}}}{\left|\mathbf{z}_{\mathbf{j}}\right|} \frac{\mathbf{z}_{\mathbf{j}} - \mathbf{z}}{1 - \bar{\mathbf{z}}_{\mathbf{j}} \mathbf{z}}.$$

Clearly, β_1 divides β , and $\beta\overline{\beta}_1=z^n$ has empty support. Thus, $\beta_1\in \mathbf{Q}_\beta$. However, β_0 does not divide β_1 , contrary to the definition of β_0 .

If $\{w_j\}$ is not empty, set $\beta_1(z) = kz^n \prod_{\substack{z_j \neq w_1 \\ 0 \text{ does not divide } \beta_1}} \frac{\bar{z}_j}{|z_j|} \frac{z_j - z}{1 - \bar{z}_j z}$. As before, $\beta_1 \in Q_\beta$ but β_0 does not divide β_1 . Hence β_0 is constant.

Now assume that the factor σ is not constant. If s_0 is the associated singular measure of σ_0 , then $s_0 \leq s$, since σ_0 divides σ . By the definition of σ_0 , it follows that $s_0 \leq u$ whenever u is a positive Borel measure with $u \leq s$ and s- u is supported on a closed set of measure 0.

Since s is singular, there exists a set $\mathcal{E} \subset [0, 2\pi)$ of Lebesgue measure 0 such that $s(\mathcal{E}) = s([0, 2\pi)) > 0$. Corresponding to each $\varepsilon > 0$, there exists a closed set $\mathcal{K} \subseteq \mathcal{E}$ such that $s(\mathcal{K}) > s(\mathcal{E}) - \varepsilon$. We define a measure u by

$$u(\mathcal{F}) = s(\mathcal{F}) - s(\mathcal{F} \cap \mathcal{K}).$$

Clearly, $u \le s$ and $(s - u)(\mathscr{F}) = s(\mathscr{F} \cap \mathscr{K})$, so that s - u is supported in \mathscr{K} . Hence $s_0 \le u$, but $u(\mathcal{E}) = s(\mathcal{E}) - s(\mathscr{K}) < \varepsilon$; therefore, s_0 is the zero measure. Thus σ_0 is constant, and together with the argument above, this implies that α_0 is constant.

LEMMA 5. $H^{\infty} \cap \delta C$ is weak-star-dense in H^{∞} .

Proof. $H^{\infty} \cap \delta C$ is invariant under multiplication by χ , as is its weak-star closure. Thus the weak-star closure of $H^{\infty} \cap \delta C$ has the form ξH^{∞} for some inner function ξ [4, p. 25]. Suppose $\alpha \in Q_{\delta}$; then $\delta \overline{\alpha}$ has closed support \mathfrak{F} of Lebesgue measure zero. We can choose a continuous outer function η that vanishes on \mathfrak{F} [6, p. 80]. Since $\delta \overline{\alpha}$ is continuous on $\mathfrak{F} - \mathfrak{F}$, it follows that $\overline{\delta} \alpha \eta$ is continuous on \mathfrak{F} . Therefore, $\alpha \eta \in H^{\infty} \cap \delta C \subseteq \xi H^{\infty}$. Thus $\alpha \eta = \xi \mu$ for some $\mu \in H^{\infty}$. Since η is an outer function, ξ divides α . Thus, by Lemma 4, ξ is a constant inner function. The proof of the lemma is complete.

Definition. If B is a Banach space and D is a subspace of B, then D^{\perp} , the annihilator in B* of D, is

$$D^{\perp} = \{b \in B^*: b(d) = 0 \text{ for all } d \in D\}.$$

THEOREM. $C(S_1, S_2)^{**} \simeq \mathscr{I}(S_1, S_2)$.

Proof. By virtue of Lemmas 1 and 2, it suffices to identify $H^{\infty}/\delta H^{\infty}$ with the bidual of $[\overline{\delta}H^{\infty}\cap C]/A$. We indicated earlier that $(C/A)^*\simeq H_0^1$. We claim now that δH_0^1 is the annihilator in H_0^1 of $[\overline{\delta}H^{\infty}\cap C]/A$ in C/A. To see this, note that $\delta H_0^1\subseteq\{[\overline{\delta}H^{\infty}\cap C]/A\}^{\perp}$. On the other hand, if $g\in H_0^1$ is in $\{[\overline{\delta}H^{\infty}\cap C]/A\}^{\perp}$, then $\int g\overline{\delta}\lambda dm=0$ for all $\lambda\in H^{\infty}\cap\delta C$. Let $\phi\in H^{\infty}$; by Lemma 5, some net $\{\lambda_j\}$ in $H^{\infty}\cap\delta C$ converges to ϕ in the weak-star topology. Consequently,

$$\int (g\overline{\delta})\phi dm = \lim \int (g\overline{\delta})\lambda_j dm = 0$$

and hence $g\overline{\delta}\in H^1_0$. Therefore, $\delta H^1_0=\left\{\left[\overline{\delta}\,H^\infty\,\cap\,C\right]/A\right\}^\perp$.

It is easy to verify that $\operatorname{H}^{\infty}$ in $\operatorname{L}^{\infty}$ is the annihilator of H^1_0 in L^1 . It follows then from a standard dual-space theorem [1, Section 1, Theorem 3] that $\operatorname{H}^{\infty} \simeq [\operatorname{L}^1/\operatorname{H}^1_0]^*$. Also, $\delta\operatorname{H}^{\infty}$ in $\operatorname{H}^{\infty}$ is the annihilator of $\overline{\delta}\operatorname{H}^1_0/\operatorname{H}^1_0$ in $\operatorname{L}^1/\operatorname{H}^1_0$. Putting the pieces together, and using repeatedly the theorem cited above, we conclude that

$$\{[\overline{\delta} H^{\infty} \cap C]/A\}^{**} \simeq [H_0^1/\delta H_0^1]^* \simeq [\overline{\delta} H_0^1/H_0^1]^* \simeq H^{\infty}/\delta H^{\infty}.$$

Therefore, $C(S_1, S_2)^{**} \simeq \mathcal{I}(S_1, S_2)$.

Comments. We would like to know what happens when U is replaced by a shift of infinite multiplicity and the inner functions ψ_1 and ψ_2 are replaced by operator-valued inner functions. In this general setting, S_1 and S_2 represent the most general strict contractions. Since the relation $C(S_1, S_2)^{**} \simeq \mathscr{I}(S_1, S_2)$ does not always hold, any generalization of the theorem of this paper involves complications that are not obvious to us. A step in the direction of this study is provided by the existence of an analogue of Lemma 2 for operator-valued inner functions [7], at least when $\psi_1 = \psi_2$.

REFERENCES

- 1. M. M. Day, *Normed linear spaces*. Ergebnisse der Mathematik und ihrer Grenzgebiete. N. F., Heft 21. Academic Press, New York, 1962.
- 2. R. G. Douglas, P. S. Muhly, and C. Pearcy, Lifting commuting operators. Michigan Math. J. 15 (1968), 385-395.
- 3. P. Hartman, On completely continuous Hankel matrices. Proc. Amer. Math. Soc. 9 (1958), 862-866.
- 4. H. Helson, Lectures on invariant subspaces. Academic Press, New York, 1964.
- 5. R. N. Hevener, A functional-analytic approach to Hankel and Toeplitz matrices. Thesis, University of Virginia, 1965.
- 6. K. Hoffman, Banach spaces of analytic functions. Prentice Hall, Englewood Cliffs, N. J., 1962.
- 7. P. S. Muhly, Commutants containing a compact operator. Bull. Amer. Math. Soc. 75 (1969), 353-356.
- 8. Z. Nehari, On bounded bilinear forms. Ann. of Math. (2) 65 (1957), 153-162.
- 9. L. Page, Bounded and compact vectorial Hankel operators. Trans. Amer. Math. Soc. 150 (1970), 529-539.
- 10. D. Sarason, Generalized interpolation in H^{∞} . Trans. Amer. Math. Soc. 127 (1967), 179-203.
- 11. R. Schatten, Norm ideals of completely continuous operators. Ergebnisse der Mathematik und ihrer Grenzgebiete. N. F., Heft 27. Springer-Verlag, Berlin, 1960.
- 12. B. Sz.-Nagy and C. Foiaș, Dilations des commutants d'opérateurs. C.R. Acad. Sci. Paris Sér. A-B 266 (1968), A493-A495.

University of Virginia, Charlottesville, Virginia 22901 University of New Hampshire, Durham, New Hampshire 03824 North Carolina State University, Raleigh, North Carolina 27607