COMPACT INTERTWINING OPERATORS
T. L. Kriete, III, Berrien Moore, III, and Lavon B. Page

Let T, and T, be bounded operators acting on Hilbert spaces H; and H;, re-
spectively. A bounded operator X from H; to H, that satisfies the condition
XT; = T, X is called an intertwining opevator for T and T,. We denote the class
of such operators by #(T;, T,). Clearly, with the usual operator norm, $(T;, T,)
is a Banach space.

It is of interest to look for compact operators in (T, T,). That nonzero
compact operators need not exist in #(T;, T;), even when #(T;, T,) is relatively
large, is clear if for example we take T; and T, to be the simple unilateral shift; it
is well known that there exist no compact analytic Toeplitz operators different from
zero. P. Muhly [7] in effect found conditions that guarantee the existence of nonzero
compact operators in J(T;, T5).

An example of the opposite extreme occurs when both T; and T, are the iden-
tity operator on a Hilbert space. In this case, there are so many compact operators
in 4(T,, T,) that if we let ¥(T;, T,) denote the subspace of #(T,, T,) consisting
of the compact operators, then #(T;, T,) has #(T, T,) as its second dual (R.
Schatten [11]). Another example of this phenomenon is the case where T; is a uni-
lateral shift of arbitrary multiplicity on a separable, complex Hilbert space, while
T, = Tf. That #(T;, T,) is here the second dual of %(T,;, T,) was shown by R. N.
Hevener [5] in case T, is the simple unilateral shift, and by Page [9] in case T; is
a shift of higher multiplicity. Hevener’s result is a consequence of the work of Z.
Nehari [8] on bounded Hankel operators and of P. Hartman [3] on compact Hankel
operators.

This paper concerns the second of the two extreme possibilities, that is, the
case where
@(T,, T,)™ ~ 4(T,, T,) .
We prove that this biduality relation holds if T} and T, are compressions of the
simple unilateral shift to co-invariant subspaces. (See concluding comments.)

Let 7 and m denote the unit circle in the complex plane and normalized Le-
besgue measure on [0, 27). The spaces LP(dm) (1 < p < «) will be the standard
spaces of appropriate complex functions on ‘4. Usually, LP(dm) and its Hardy sub-
space HP(dm) will be denoted simply by LP and HP. By H(l) we mean the subspace

2m
of functions f in H! for which S f(e't)dm(t) = 0. Following tradition, we use X to
0

denote the identity function on ¥, so that the simple unilateral shift on H? is given
by U: f — xf. For a more detailed discussion, see [4] and [6].
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Let ) and ¥ be nonconstant inner functions, and set K; = H2 @ y; H?
(i=1, 2). Let P; be the orthogonal projection of H% onto K; and set S; = P;U l K;.
If by & we denote the greatest common divisor (g.c.d.) of y; and y,, then we can
formulate a slight generalization of a result of D. Sarason [10, Section 2] as follows
(the symbol =~ is to be interpreted throughout as meaning “isometrically isomorphic
as Banach spaces”):

LEMMA 1. #(S;, S;) ~ H®/6H”.
Proof. By the lifting theorem of Sz.-Nagy and Foias (see [12] and [2]),
X € #(S;, Sp) if and only if X = P,Y |K;, where
i) YU = UY,
ii) P,Y(I- P;) =0, and
i) [y] = [|x].

Since the commutant of U is H°°, it follows from (i) that Y: f — ¢f for some ¢ € H”
with the property [ ¢|l, = |Y||. Therefore ¢y HZ c Y, HZ, by (ii), so that

oY1 =Y, for some A € H”. If we set 71 = 6y and vy = 6y, , then the g.c.d. of
Y1 and Y, is a constant of modulus 1. Using this and the relation ¢y; = y2, we can
conclude that ¢ € y, H™ . Conversely, a retracing of the above argument shows that

if ¢ € y2H, then Y(y1H?) C y2H?. Therefore, if
o = {Y € #(U, U): Y(y1 HD) < ypH?},

©0
then & ~ y2H .

The linear mapping Y — P,Y | K, from o to #(S;, S,) is onto by the lifting
theorem. Its kernel is {Y € YK; € IJIZHZ}, which is easily seen to be isometri-
cally isomorphic to 2 H* under the natural isomorphism of the commutant of U
onto H®. Hence v, H” /Y, H" =~ 4(S;, S,). Finally, the mapping that sends a coset
¢ + 6H® in H*/6H™ onto the coset y2 ¢ + 2 H® in v, H® /Y2 H” is an isometric
isomorphism. Therefore H” /6H™ ~ #(S;, S2), and the proof is complete.

Let C denote the complex-valued continuous functions on the unit circle. Define
Ty K; — Kz to be the operator Tyt = Py(¢f) for ¢ € y2H ", and let A denote
H® nC.

To follow the thrust of Lemma 1, we shall need Sarason’s Theorem 2 of [10]

stated in an intertwining rather than commutant framework. The original proof goes
through with only minor modification, and therefore we omit it.

LEMMA 2. If ¢ € y2H”, then T is compact if and only if Y2 ¢ € H” +C.
LEMMA 3. C(S;, S,) ~[3H” N C]/A.
Proof. By Lemma 2, T¢ is compact if and only if ¥, ¢ € H” + C, or equivalent-
ly, if and only if ¢ € Y,(H™ + C). Hence
[W2(H® +C) N v, H®] /Y, H® ~ C(8;, S,).
In addition,

[6H™ N (H” + C)]/H® =~ [Y2(H® + C) Ny, H®]/Y2H™.
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Let F denote the mapping of [6H™ N C]/A to [6H™ N (H® + C)] /H® given by
F(o+A) = ¢+ H.

Sarason [10] and other authors have observed that the theorem of F. and M.
Riesz may be used to show that Hé is the dual of C/A. Furthermore, L™ /H® is the
dual of H(I) , and the canonical injection of C/A into its second dual L® /H% is the

mapping ¢ +A — ¢+ H®. (See the proof of Theorem 2 in [10].) Clearly, F above is
isometric, since it is the restriction to [6H® N C]/A of the canonical injection of
C/A into its second dual. We need only show that F is onto. If y € 6H™ N (H® + C),
then there exist 7 and A in H® and ¢ € C such that y = 65 = A +c. Moreover,

c € 0H® N C, and this implies that F(c + A)=c+H” =% + H® =y + H°. Thus F
is onto; hence,

[6H” nC]/A ~ [6H® n (H* + C)]/H® ~ C(S;, S»),

and the proof is complete.

Suppose that, considered as a function on the open unit disc &, « is an inner
function, and let 8o = @ be its unique factorization into a Blaschke product 8 and a
singular inner function ¢. Then

Zj Zj-Z

(1 B(z) =kznj1211‘|;j|—m (|z] <1
and
27
(2) o(z) = exp {- S h(t, z)ds(t)} (|z| <1);
0

here k is a constant (|k| = 1), n is a nonnegative integer, {zj} is the sequence of
zeros of @ in 0 < |z| <1, hit, z) = (eit + z)(eit - z)-1, and s is a singular, finite,
positive, regular Borel measure on [0, 27].

The support of 8 is the intersection of the closure of {z;} j>1 with 7, the sup-

port of o is the closed support of the measure on J induced by s, and the support
of @ is the union of the supports of 8 and o©.

Remavrk. An inner function is continuous on the complement of its support.

Corresponding to each inner function @, we denote by Qg the class of inner
functions p that divide o and for which the support of o has Lebesgue measure 0.

LEMMA 4. Let o be an inner function. The g.c.d. of all functions in Qg is a
constant.

Proof. Let o =80 where B and ¢ have the forms (1) and (2). Then

Qy = {H112: 1) € Qg and up € Qg .

If ap is the g.c.d. of all functions in Q, then ag =8p0 g, where Bp and oy are
the g.c.d.’s of all the functions in Qp and Qg , respectively. Note that Bo is a
Blaschke product and that ¢ is singular. We shall show that both are constant
inner functions.

Assume that B8, is not constant, and write By(z) = kz™ II — .
i>1 |wy| 1 - W5z
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If the set {Wj } is empty, then By(z) = kz™, where m > 0. Let

2 Zj- 7
|Zj|1-5jz'

Bi(z) =k II
i>1

Clearly, 8, divides B, and BEI = z" has empty support. Thus, 1 € QB' However,

By does not divide Bl , contrary to the definition of B .

Z: oz -

If {wj} is not empty, set B;(z) =kz" II L)
zj #Fw]

but B8, does not divide B, . Hence B, is constant.

|—z—j—| 1—_$ As before, B; € Qg

Now assume that the factor o is not constant. If sy is the associated singular
measure of 0, then sy <'s, since 0 divides 0. By the definition of 0y , it follows
that sy < u whenever u is a positive Borel measure with u < s and s - u is sup-
ported on a closed set of measure 0. -

Since s is singular, there exists a set € C [0, 27) of Lebesgue measure 0 such
that s(€) = s([0, 27)) > 0. Corresponding to each & > 0, there exists a closed set
H C & such that s(o¢) > s(€) - €. We define a measure u by

wF) = s(F) -s(F NH).

Clearly, u<s and (s - u)(#) =s(# N &), so that s - u is supported in . Hence
5o <4, but u(&) = s(€) - s(ox') <¢; therefore, s, is the zero measure. Thus 0 is
constant, and together with the argument above, this implies that @, is constant.

LEMMA 5. H® N 6C is weak-star-dense in H” .

Proof. H® N 6C is invariant under multiplication by ¥, as is its weak-star
closure. Thus the weak-star closure of H® N §C has the form £(H* for some inner
function & [4, p. 25]. Suppose ¢ € Qg ; then 0o has closed support ¥ of Lebesgue
measure zero. We can choose a continuous outer function 7 that vanishes on § [6,
p. 80]. Since 6@ is continuous on 4 - 7, it follows that an is continuous on 7.
Therefore, an € H” N 6C C £EH®. Thus an = &y for some u € H” . Since n is
an outer function, § divides «. Thus, by Lemma 4, £ is a constant inner function.
The proof of the lemma is complete.

Definition. If B is a Banach space and D is a subspace of B, then Dl, the an-
nihilator in B* of D, is

D' = {be B*:b(d) = 0 forall de D}.

THEOREM. C(S;, S»)** =~ #(8,, S)).

Proof. By virtue of Lemmas 1 and 2, it suffices to identify H™ / 6H™ with the
bidual of [6H® N C]/A. We indicated earlier that (C/A)* ~ Hj. We claim now that

6H} is the annihilator in H} of [6H” n C]/A in C/A. To see this, note that
sHl c {[38° ncl/a}*. On the other hand, if g € H} isin {[5H® nC]/A}+,

then ngdm =0 forall A € H°N5C. Let ¢ € H; by Lemma 5, some net {Aj}
in H” N 6C converges to ¢ in the weak-star topology. Consequently,

S(ga)cbdm = lim S (gﬁ)hjdm =0
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and hence g6 € Hé . Therefore, GH(I) ={[BH” ncl/a}t.

It is easy to verify that H” in L™ is the annihilator of Hé in L1. It follows
then from a standard dual-space theorem [1, Section 1, Theorem 3] that
H” = [L! /Hl]*. Also, 6H® in H® is the annihilator of 3H}/H} in L'/Hj. Put-
ting the pieces together, and using repeatedly the theorem cited above, we conclude
that

{[6H” ncl/a}** ~ [1} /6H}1* ~ [BH} /HJI* ~ H* /6H.
Therefore, C(S;, S)** =~ #(s1, S2).

Comments. We would like to know what happens when U is replaced by a shift
of infinite multiplicity and the inner functions y/; and ¥, are replaced by operator-
valued inner functions. In this general setting, S; and S, represent the most gen-
eral strict contractions. Since the relation C(S;, S,)** ~ #(S;, S,) does not always
hold, any generalization of the theorem of this paper involves complications that are
not obvious to us. A step in the direction of this study is provided by the existence of
an analogue of Lemma 2 for operator-valued inner functions [7], at least when

V1 =vY,.
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