ON TWO INVARIANT σ -ALGEBRAS FOR AN AFFINE TRANSFORMATION

Nobuo Aoki

1. INTRODUCTION

Suppose G is a compact, connected, abelian group and T $(T: G \to G)$ is an ergodic affine transformation. We shall prove that the maximal factor transformation of T with quasi-discrete spectrum is the maximal factor of T whose entropy is zero. This result was first obtained by W. Parry [5] for the case where G is metrizable. I benefitted from reading the papers by W. Parry [5] and P. Walters [6], and I am grateful to the referee for helpful suggestions.

2. PRELIMINARIES

An affine transformation T of a compact, connected, abelian group G is a transformation of the form T(x) = a A(x) ($x \in G$), where A is a continuous group automorphism of G and where $a \in G$. Such transformations T preserve Haar measure. For a compact, connected, abelian group G with Haar measure m, we consider the normalized measure space (G, E, m), where E is the completion of the σ -algebra generated by the open subsets of G (it is not a Lebesgue space, since G is nonmetrizable).

A collection $\eta = \{E_t\}$ of \mathcal{E} -measurable sets with the property that

$$\bigcup_{t} E_{t} = G \quad \text{and} \quad E_{t} \cap E_{t'} = \emptyset \ (t \neq t')$$

is called an E-measurable partition.

If ζ is an \mathcal{E} -measurable partition, we denote by $\mathcal{B}(\zeta)$ the σ -algebra generated by the members of ζ . Then $\mathcal{B}(\zeta)$ is a sub- σ -algebra of \mathcal{E} . Suppose $\{\zeta_{\alpha}\}$ is a collection of \mathcal{E} -measurable partitions. Then the algebra generated by $\bigcup_{\alpha} \mathcal{B}(\zeta_{\alpha})$ consists of finite unions of sets of the form $\bigcap_{j=1}^{n} A_{\alpha_{j}}$, where $A_{\alpha_{j}} \in \mathcal{B}(\zeta_{\alpha_{j}})$ and $\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\}$ is a finite subset of the collection of indices. By $\bigvee_{\alpha} \mathcal{B}(\zeta_{\alpha})$, we denote the σ -algebra generated by $\bigcup_{\alpha} \mathcal{B}(\zeta_{\alpha})$.

Suppose η is an $\mathfrak E$ -measurable partition of G; then H denotes the projection of G onto the factor space G_η ; in other words, H maps a point of G onto the element of η to which it belongs. If $T\eta = \eta \pmod 0$, then the factor transformation T_η is induced by T, that is, $T_\eta = HTH^{-1}$.

Let \mathfrak{E}_{η} be the σ -algebra generated by the subsets of G_{η} that belong to the subsets of-algebra $\mathscr{B}(\eta)$, and let m_{η} denote the measure on \mathfrak{E}_{η} induced by m. Then T_{η} is an automorphism of the factor space $(G_{\eta}$, \mathfrak{E}_{η} , m_{η}), and

Received June 30, 1969.

Michigan Math. J. 17 (1970).

$$\mathscr{B}(\eta) = \mathrm{H}^{-1} \, \mathrm{E}_{\eta} \; .$$

L. M. Abramov [1] gave the definition of an automorphism of (G, \mathcal{E}, m) with quasi-discrete spectrum, and F. Hahn and W. Parry [4] gave the definition of a homeomorphism with quasi-discrete spectrum. If G is a compact, connected, abelian group, then both definitions of an ergodic affine transformation with quasi-discrete spectrum on the complete normalized measure space (G, \mathcal{E}, m) coincide. We use the same symbol to denote continuous group automorphisms and their duals.

If G is also metrizable and T is ergodic, then T is totally ergodic. Hence, if T is ergodic on a compact, connected, abelian group G with character group Γ , then T is totally ergodic.

Choose $f \in \Gamma$, and let $gp\{A, f\}$ denote the smallest A-invariant subgroup of Γ containing f. Then $gp\{A, f\}$ is countable. The dual space of $gp\{A, f\}$ is a compact, connected, metric, abelian group, and therefore the affine transformation induced by T is totally ergodic. We have the relation

$$\bigcup_{f \in \Gamma} gp \{A, f\} = \Gamma.$$

Hence, if $g \circ T^n = g$ for some integer n and some $g \in \Gamma$, then g = 1; that is, T is totally ergodic.

Since G is connected, the only element of finite order in the character group is the unit element. Let T be an ergodic affine transformation of G, and let

$$\Gamma_n = \{f \in \Gamma: B^n f = 1\},$$

where $Bf(x)=(f^{-1}\,Af)(x)$. Then the group of quasi-proper functions of order n is $K\times\Gamma_n$ (direct product), where K is the circle group.

The spectrum of T is quasi-discrete if and only if $\bigcup_{n=1}^{\infty} \Gamma_n = \Gamma$. The maximal ϵ -measurable partition η for which the spectrum of T_{η} is quasi-discrete is the partition of G into cosets of ann $\left(\bigcup_{n=1}^{\infty} \Gamma_n\right)$, where ann $\left(\bigcup_{n=1}^{\infty} \Gamma_n\right)$ is the annihilator of $\bigcup_{n=1}^{\infty} \Gamma_n$; in other words,

$$\eta = \zeta \left(\operatorname{ann} \left(\bigcup_{n=1}^{\infty} \Gamma_n \right) \right).$$

Such a partition is called a group partition. For the theory of entropy of measure-preserving transformations, see [3]. By $\eta(T)$, we denote the σ -algebra generated by the cosets of ann $\left(\bigcup_{n=1}^{\infty} \Gamma_{n}\right)$, and we define the σ -algebra $\pi(T)$ by the relation

$$\pi(T) = \bigvee_{\mathcal{A} \text{ finite}} \{ \mathcal{A} : h(T, \mathcal{A}) = 0 \}.$$

3. THE THEOREM

As before, G is a compact, connected, abelian group with character group Γ , and T (T: G \rightarrow G) is an ergodic affine transformation.

THEOREM. $\pi(T) = \eta(T)$, modulo 0.

Proof. If Λ is a subgroup of Γ , then σ -alg (ann (Λ)) denotes the σ -algebra of measurable sets that are unions of cosets of ann (Λ).

We show first that $\eta(T) \subseteq \pi(T)$. Since T_{η} is an affine transformation of a compact, connected, abelian group, we may suppose that $\eta(T) = \mathcal{E}$; in other words, T has quasi-discrete spectrum. If $\gamma_1, \dots, \gamma_r \in \Gamma$, then the group

gp
$$\{A, \gamma_1, \cdots, \gamma_r\}$$

is finitely generated, and T induces a totally ergodic affine transformation with quasi-discrete spectrum on the finite-dimensional torus G/ann(gp $\{A, \gamma_1, \cdots, \gamma_r\}$). By Abramov [1], the entropy of this factor is zero. Since

$$\varepsilon = \bigvee_{\gamma_1, \dots, \gamma_r} \sigma - alg (ann (gp \{A, \gamma_1, \dots, \gamma_r\})) \pmod{0},$$

it suffices (by [3, p. 80]) to show that $h(T, \mathcal{A}) = 0$, for each finite subalgebra satisfying the relation

$$\mathcal{A} \subseteq \bigcup_{\gamma_1, \dots, \gamma_r} \sigma$$
-alg (ann (gp {A, $\gamma_1, \dots, \gamma_r$ })).

The last assertion follows from the arguments above, because there exist characters γ_1 , \cdots , γ_r such that

$$\mathcal{A} \subseteq \sigma$$
-alg (ann (gp {A, $\gamma_1, \dots, \gamma_r$ })).

Hence $\eta(T) \subseteq \pi(T)$.

We now proceed to show the inclusion $\pi(T) \subseteq \eta(T) \pmod{0}$. It suffices to show that if \mathscr{A} is finite and $h(T, \mathscr{A}) = 0$, then $\mathscr{A} \subseteq \eta(T) \pmod{0}$.

Let Θ denote the collection of all countable subsets of Γ . For $\alpha \in \Theta$, let $Y_{\alpha} = \operatorname{gp} \{A, \alpha\}$ (note that Y_{α} is a countable group). Then $G/\operatorname{ann}(Y_{\alpha})$ is metrizable. If

$$T_{\alpha}$$
: G/ann $(Y_{\alpha}) \rightarrow G/ann (Y_{\alpha})$

is the map induced by T on G/ann (Y_{α}) and if H is the projection of G onto G/ann (Y_{α}) , we have the inclusion

$$\sigma$$
-alg $(\operatorname{ann}(Y_{\alpha})) \cap \mathscr{A} \subseteq \operatorname{H}^{-1}(\pi(T_{\alpha}))$.

But

$$\mathscr{A} = \bigvee_{\alpha \in \Theta} (\mathscr{A} \cap \sigma \operatorname{-alg}(\operatorname{ann}(Y_{\alpha}))) \pmod{0}.$$

One can see the last relation as follows. Choose $A \in \mathcal{A}$. Then, for each n, there exist $\alpha_n \in \Theta$ and $B_n \in \sigma$ -alg $(\operatorname{ann}(Y_{\alpha_n}))$ such that $\operatorname{m}(B_n \triangle A) < 1/n$; moreover, if $\alpha = \bigcup_n \alpha_n$, then $\alpha \in \Theta$ and $A \in \sigma$ -alg $(\operatorname{ann}(Y_{\alpha}))$ $(\operatorname{mod} 0)$.

It follows that

$$\mathscr{A} \subseteq \bigvee_{\alpha \in \Theta} H^{-1}(\pi(T_{\alpha})) \pmod{0}.$$

But, since $G/ann(Y_{\alpha})$ is metrizable, it follows from [5] or [6] that

$$H^{-1}(\pi(T_{\alpha})) \subseteq \eta(T) \pmod{0}$$
,

and hence $\mathscr{A} \subseteq \eta(T)$ (mod 0).

REFERENCES

- 1. L. M. Abramov, Metric automorphisms with quasi-discrete spectrum. Amer. Math. Soc. Transl. (2) 39 (1964), 37-56.
- 2. N. Aoki, On zero entropy and quasi-discrete spectrum for automorphisms. Proc. Japan Acad. 45 (1969), 20-24.
- 3. P. Billingsley, Ergodic theory and information. John Wiley and Sons, Inc., New York, 1965.
- 4. F. Hahn and W. Parry, Minimal dynamical systems with quasi-discrete spectrum. J. London Math. Soc. 40 (1965), 309-323.
- 5. W. Parry, On the coincidence of three invariant σ-algebras associated with an affine transformation. Proc. Amer. Math. Soc. 17 (1966), 1297-1302.
- 6. P. Walters, On the relationship between zero entropy and quasi-discrete spectrum for affine transformations. Proc. Amer. Math. Soc. 18 (1967), 661-667.

Josai University Sakado, Saitama Japan