EXTENSIONS TO THE DISK OF PROPERLY NESTED PLANE
IMMERSIONS OF THE CIRCLE

George K. Francis

1. INTRODUCTION

Let f: S — E be an immersion of the oriented circle into the oriented plane.
For each point @ in the complement of the image [f], the winding number w(f, Q)
is the topological degree of the map t — (f(f) - Q) of the circle into the punctured
plane. The tangent winding number T(f) is the degree of the velocity t — £'(t).
If f is an interior boundary (that is, if f extends to a map of the disk D, and if this
map is topologically equivalent to an analytic map), then f has nonnegative civcula-
tion (thatis, w(f, Q) > 0 for all Q not in [f]). C. J. Titus showed in [4, p. 435] that
the converse of this is false. If f extends to an immersion of D, then 7(f) = +1.
The immersion f is said to be normal if its image [f] lies in general position.
Thus, a normal immersion f has but a finite number of selfintersections. ¥ N is a
selfintersection of [f], then £-1(N) = {t,, t,}, t; #t,, and the two vectors f'(;) and
£'(t,) are linearly independent. We call such a point a node of [f]. (It was called
Knotenpunkt in [2], crossing point in [6], double point in [4], and vertex in [5].) The
specification of a preferred outside starting point, as in [6, p. 281], orients each of
the nodes. A normal immersion is properly nested if each of its nodes is a cut
point of the graph (that is, decomposes [f] into two disjoint figures). See Figure 2,
for example.

Titus [4] gave a simple combinatorial criterion under which a properly nested
immersion of the circle extends to an immersion of the disk. The proof follows, for
example, from [5, p. 60]. (A different, explicit proof, based on [1], will be included
in a subsequent paper.) In this paper we offer a proof of the following theorem based
on the remarkable work of S. J. Blank [3].

THEOREM 1. A properly nested, normal immevrsion of the civcle into the plane
has at most one class of topologically equivalent extensions to an immevsion of the

disk.

Proof. Recall [6, p. 281] that the tangent winding number of a normal immer-
sion may be computed as the algebraic sum of the orientations of the nodes, plus
the orientation of the outside starting point. Thus, unless [f] is a Jordan loop,

7(f) = 1 implies that f has at least one negatively oriented node. Nonnegative cir-
culation for f implies that the outside starting point and the first subsequent node
must both be positive. If in addition f is properly nested, we can always find a first
negative node N, preceded by a positive node M. We can isolate a region 9, enclos-
ing the regions & and & such that [f] n (#2\ £ U &) has the appearance indicated
by the solid lines in Figure 3. We replace the simple arc XMNY of |f] with the arc
XZY over the region &. This new curve may be parametrized so as to produce
another properly nested immersion g with 7(g) = 1. Its image [g] has two fewer
nodes that [f]. In Section 3, we shall apply the methods of S. Blank [3] to prove the
following proposition.
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THEOREM 2. Two properly nested, normal immersions f and g of the civcle
into the plane, velated to each other as in the preceding paragraph, have the same
numbey of extension classes.

Now, if the extension class number of a properly nested immersion f is at least
one, then by Theorem 2, g has at least one extension to an immersion of the disk.
Therefore g has nonnegative circulation also, and we repeat the argument until the
number of nodes is zero. But the extension class number of a closed Jordan curve
with nonnegative circulation is unity. B

2. REVIEW OF BLANK’S THEOREM

Let f: S — E be a normal immersion of the circle into the plane. Pick a base-
point sg on S and an orientation. An edgepath loop from f(sg) in the image
[f] = £(S) is called primitive if it circumscribes exactly one bounded complementary
component of [f] in the positive (= counterclockwise) sense. Let the fundamental
group of [f] be presented by a finite number of primitive generators. Let Wy be the
image of the positive generator under the induced map fy: 7 (S, sg) — 7 ([f], £(sg)).
This word, Ws = fg(1), on a finite number of symbols and their negatives, we call the
Blank word of f. It depends on the choice of primitive generators for the free group
of rank equal to the number of bounded complementary components of [f].

An association of two instances of the same letter, but of opposite sign is called
a pairving. A family of properly nested pairings that exhaust all negatively occurring
symbols we call a grouping. (Poénaru [3] has no special name for the entire set of
pairings. For Blank, “grouping” and “pairing” meant essentially the same thing.
See Figure 2, for example.) The number of different groupings of W; we shall call
the grouping number G(Wg).

LEMMA 1. If W' is obtained from W undev an inner automorphism of the
group, then G(W) = G(W').

Proof. Performing the substitutions o — w&l awy in W, we obtain the word
w* , which may not be cyclicly reduced. For a given grouping of W, construct the
obvious set of pairings that group W¥*. In the process of reducing W* to W', some
letters will be deleted. Clearly, we shall delete both members of a pairing of W*,
leaving a well-defined grouping of the fully reduced word W'.

Two different groupings of W differ in the positive partner of some negative
letter. The nest of induced pairings in W* cannot vanish entirely under the cancel-
ling deletions. Therefore some letter of W' is paired to different letters in the
respective induced groupings of W'. Thus the process is injective. Since G(W) is a
finite number, the process is bijective. ®

THEOREM 3 (S. J. Blank). If 7(f) = 1, then the number E(f) of topologically
inequivalent extensions of £ to an immevrsion of the disk is equal to the number G(f)
of distinct groupings in a primitive presentation.

The only proof of this theorem available in the literature at this writing is in the
Seminar Bourbaki [3]. We shall give a brief description of Blank’s original and
rather formidable proof.

To compute a primitive presentation for 71([f]), draw a 7ay (an embedded
positive half-line) from the interior of each bounded complementary component to
the unbounded one, oriented towards infinity. The collection of rays R is to be
mutually disjoint, and each ray lies in general position with respect to f. We
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construct the word W; by starting at the base point and listing the symbol of the ray
crossed by the curve [f], with the sign given according to whether the ray crosses to
the right (a positive crossing) or to the left (a negative crossing).

Now, the word Ws may not yet be cyclicly reduced.

LEMMA 2. It is possible to reduce Ws to its cyclic reduction Wi by a succes-
sion of cancellations of the form

-£ +&

-g +
0 fmo™® - m or mefatw - mw (e=+1);

each cancellation of this form covvesponds to a rvelocation of the corvvesponding ray
[o].

Proof. The original rays were drawn disjoint and so that every bounded comple-
mentary component has a ray starting in it. Let X and Y be the crossings corre-
sponding to some cancellation on the letter a. None of the situations in the left of
Figure 1 can arise without the crossing, by another ray, of the segment of [f] be-
tween X and Y. Therefore that segment must be simple, and we can relocate the
ray as shown on the right. The a-cancellation corresponding to X and Y, possibly
with further a-cancellations due to situations such as at 6, constitutes the only
change in the word. m

The pairings in a grouping of Wy, where f extends to an immersion F: D — E
of the disk, also have their geometric meaning. The preimage F-1([f] U [R]) of the
curve and rays consists of S plus a number of disjoint simple arcs, some of which
begin and end on the boundary 9D (and which we shall call secants), and some (called

Figure 1.
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W= aByoes-tp!ye

| = |

Figure 2.

tails) that begin in the interior of D and terminate on the boundary. (For an exam-
ple, see Figure 2.) It follows that F and R decompose D into a two-dimensional
cell-complex K whose one-skeleton K! consists of S and the secants. In our exam-
ple, F is univalent on each of the two cells of K.

On the other hand, given a reduced word W¢, we can (by marking off the letters
on S) draw a set of secants prescribed by a grouping; these secants decompose D
into K. Since the rays cross [f] transversally at simple points, we can initially ex-
tend f to an immersion f* of a collaring (tubular neighborhood) of K!. The difficult
part of the theorem is to show that f* can be extended to an embedding of each open
two-cell D' of the two-skeleton of K2, provided 7(f) = 1 and the word is reduced.
There may be several pairings on the same letter, so that f* is not univalent on the
boundary of a cell. However, it is true that the extension F is univalent on each
secant and on 9D' N S. Moreover,

F(@D' N S) N F(BD'\ S) = &.

3. PROOF OF THEOREM 2

We shall prove Theorem 2 by showing that the relocation of the segment XMNY
to XZY as shown in Figure 3 preserves the grouping number, that is, G(f) = G(g).
Since the arc XZY is a simple detour of f with support on XMNY, the new immer-
sion g is regularly homotopic to f [1, Section 4, p. 274]. Hence, by [6, p. 279,
Theorem 1], 7(g) = 1 as well. Therefore, by Blank’s Theorem, E(f) = E(g).

We must first draw a suitable set of rays. In Figure 3, the points A and B are
evidently bounded by [f]. Since the node N is the first negatively oriented one, and
the curve begins outside and positively, w(f, D) > 0. Hence w(f, C) > 1, and there-
fore C is also bounded. In the region 2 there may be selfintersections of [f] other
than N and M. But, because the curve is properly nested, we may consider these to
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occur in the regions £ and &. In these regions, draw rays originating in bounded
complementary components of [f], so that each set {o;} and {};} issues from the
regions & and £ in a parallel bundle. The bundle {oj} is simply to leave the
region # and continue to the unbounded component. The bundle {A:}, however, is
to follow parallel along the lower side of the segment of [f] from N back to the
starting point. The same bundle also conducts the rays @, 8, and y from A, B, and
C to the unbounded component. (This is so because the starting point is positive.)
If the point D is already in the unbounded component, we may stop. Otherwise,
another ray 6 is drawn from D and included in the later bundle of rays.

Since N is the first negatively oriented node, there are only positive crossings
of this ray bundle outside the region #, and they all read O0A«fy, where
A=, o, AL
All other necessary rays {nn} are drawn so as to be invisible in the picture.
If for convenience we read Wy starting from just below B, then

Ws = B~ LaByVAas,

where
+1 +1 +1 +1
A=x2rpon, L=LRy), V=V(06AaBy, o7 ,n57 ), S=58(7).

A priori, Wy need not be a reduced word. The subwords L, S, V, and A may be
empty. However, V is reduced inthe «, 8, v, 0, Aj, since they appear only posi-
tively. We may make the necessary relocations of A; entirely in region £. In the
proof of Lemma 2, we saw that a cancellation requires that at least one part of [f]
is simple between the two relocation points. Hence the 0j can be relocated either
entirely inside the region & or entirely outside the region 4. Finally, the n; may
be relocated outside the region &#. Hence we may assume that L, V, S are reduced,
and therefore W, is reduced.
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The case where D is unbounded (so that no ray 6 is needed and V does not
contain any a, 8, v, Aj) is easy to dispose of.

After performing the detour from X to Y, we read
W* = 8~ LaByV00S (0 denotes blanks) .

Since B is now in the unbounded component and A shares a bounded component with
C, the ray 8 and one of the rays @, y have become superfluous. Deleting o and B,
we read

wW** = 0L00yV00S.

As we noted above, no cancellation on a o ; can occur between the residual V
and 8. Therefore W** is also reduced, and we may use it as W, where g is the
detoured immersion of the circle.

Each grouping of W¢ allows only one choice for the pairing of the 8-1. Hence
the word L is positive, and no letter in it is paired. Consequently, the grouping
goes over to a grouping of W** with the sole deletion of the S-pairing. On the
other hand, each grouping of W** Wg extends to a grouping of Wy, by the unam-
biguous 1nsert10n of the single B- pa1r1ng .

The case where D is not in the infinite component (so that § appears) is a trifle
more complicated. This time,
1 +1
).

W** = 0L00yUO0S,  where U = V(6A00y, ni ", o7

LEMMA 3. W** is a reduced word.

Proof. Since V was reduced, so is U. Again, as we have seen, no o- cancella—
tion is possible between U and S. Even if S should be blank, no initial ?x" can
cancel in U, because each 7\“ occurs in a subword of the form 6Av in U |

In each grouping of Wy, the initial -1 must pair. The purpose of drawing the
rays as we did was to insure that the positive partner of the 8-! is entirely deter-
mined by the pairing that involves L.

Let K be the subdivision of the disk D induced by the extension F of the group-
ing. Let D' be the two-cell to the right of the only B-segment of K!.

If there is no pairing of a letter in L to the outside of L, then F(@D' N S) in-
cludes both the ascending and the descending arcs of [f] visible in the picture. But
by Blank’s theorem, F(8D' N S) N F(@D'\ S) = ¢. Therefore the only -1 of W;
must pair with the first g*1.

If there is a pairing from L to the outside, consider the left-most x-1 in L
that pairs out from L. Since the g-! pairs in V, so must this A-1. We claim that
if it pairs with some occurrence of A in a subword O6AafBy of V, then the 8- ! must
pair with the 8 of that same subword. Again, consider F(3D'). As it emerges from
the region &, it moves west along [A] until it turns south on [f] somewhere outside
of the p1cture The curve must turn east along [8] as soon as it reaches [8], in
order to prevent F(@D' N S) from intersecting F(@D'\ S).

We conclude that in no grouping of Wy can the final A be a part of such a pair-
ing. Its deletion on passing to W* kills no pairing. To reach W** = W, , we delete
the only B-pairing there is; the others remain intact. This groups Wg. For each
grouping of Wy there is only one grouping of W;. Hence G(f) = G(g). This com-
pletes the proof of Theorem 2. ®m
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4. CONCLUSION

It follows from the final remark in [3] that Theorem 1 extends to the case where
f: S — V is a properly nested, normal immersion of the circle into a two-manifold
other than the sphere or the prOJectlve plane. For in that case, the universal cover-
ing space V of V is the plane. The lift T. S — V of f also is normal and properly
nested. If E(f) > 1, then [f] is null homotopic in V, and each extension F: D — V of
f lifts to an extension ¥: D — V of T. Thus E{) > 1 and by Theorem 1, E(f) = 1.
Suppose F and G both extend f; then there is a homeomorphlsm H: D — D such that
F=0oH. If p: V-V is the covering projection, then F=po¥=poGoH = GoH.
Consequently, E(f) = 1.

It remains an open problem to give a topological classification of the extensions
F: M — V of an immersion f: S — V to an arbitrary compact 2-manifold M whose
boundary is the circle S.
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