MAPPING THE PSEUDO-ARC ONTO CIRCLE-LIKE,
SELF-ENTWINED CONTINUA

J. T. Rogers, Jr.

The investigation of the continuous images of the pseudo-arc has aroused much
activity in this decade. Of particular interest has been the question of deciding
which circle-like continua are continuous images of the pseudo-arc.

In this paper, we define the notion of a circle-like, self-entwined continuum. We
find that circle-like, self-entwined continua are indecomposable, that all nonplanar,
circle-like continua are self-entwined, and that the planar, circle-like, self-entwined
continua separate the plane. Two of our results follow.

THEOREM. No avc-like continuum can be mapped onto a civcle-like, self-
entwined continuum,

THEOREM. The pseudo-circle is self-entwined.

Several known results follow as corollaries to these theorems. W. T. Ingram [6]
has shown that the pseudo-arc cannot be mapped onto a nonplanar, circle-like con-
tinuum, and L. Fearnley [5] and the author [11] have shown independently that the
pseudo-arc cannot be mapped onto the pseudo-circle.

In this paper, we use the methods of inverse limit spaces. The transition from
chains to inverse limits is discussed in [10] and [11]. We use the terminology of [3].

A continuum is a compact, nondegenerate, connected subset of a metric space.
A map is a continuous function.

1. THE REVOLVING NUMBER R(f)

Let C denote the unit circle in the plane. Orient C so that a definite sense of
rotation exists. Let C; and C; be triangulations of C, and let f: C; — C2 be a sur-
jective, simplicial map.

Let v denote a vertex of C,, and let zy, z;, ***, 2, denote the vertices of C;
that are mapped onto v, ordered by positive rotation. Suppose z,.; is another name
for zy. If f|[z;, z;41] is surjective, call [z;, z;;11] an A+ or A-, according to
whether the image of [z;, z;+1] emanates from v in the positive or negative direc-
tion.

If [x], x] is an arc in C;, oriented in the direction of positive rotation, we de-
fine the degree of [x;, X,]; to be the number of A+’s of f|[x;, x,], diminished by
the number of A-’s of f | [xl, xz]. Where no confusion is likely, we speak of the
degree of [xl , xz] without reference to the function f. For greater detail on these
concepts, we refer the reader to [10] and [11].

The author [11] has shown that if the map f has positive degree, then there
exists an integer i such that if [z;, z;] is an arc in C, then the degree of [z;, z;]
is positive. The point z; is called an initial point of C; with vespect to f. If
deg (f) = 1, then the initial point is unique [10, Lemma 6].
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If deg(f) =0, call z; an initial point of C; with respect to f if each arc [z;, zj]
in C; has nonnegative degree. One can prove the existence of an initial point in this
case by following Lemma 8 of [11].

The next definition and theorem are basic to the paper. Consider all arcs in C;
of the form [z;, z; ] (where z; is an initial point of C; and where [z;, z;] denotes
C1). Assume that the degree of f is nonnegative. Define R(f), the revolving number
of 1, to be the maximum of the degrees of the arcs [z;, z;]. A minimal arc [z;, z;]
on which such a maximum occurs is called a defining intefrval Jor R(f).

We note that it follows from [11] that R(f) > deg(f). We also note that R(f) de-
pends on the vertex v of V,, and that R(f) can vary by 1 if a new vertex is chosen.
Hence we adopt the convention that if we consider R (gof), where

. C, - C, and g:C3 —Cy

are simplicial, surjective maps of nonnegative degree and C3 is a subdivision of
C,, then for the vertex v of C3 that determines R(f), we choose a vertex of C, that
is a first point of a defining interval [v, a] of R(g).

THEOREM 1. Let f and g satisfy the conditions of the preceding pavagraph.
Then

R(gof) > R(f)-deg(g) - deg(g) + R(g).

Proof. Let [a;, a] and [v, az] be defining intervals for R(f) and R(g), respec-
tively. Then

(1) deglay, azlg o = deglay, azl¢-deg(g) = R(f) - deg(g).

Hence, in the case where R(g) = deg(g), the theorem follows from (1).
If R(g) > deg(g), then by Lemma 5 of [10],

deglas, v]g < 0.

Choose a4 such that a; <ag <ap and a4 is the largest number in the interval
[a;, a,] whose image under f is a3. Then f([ay4, a3}) =[a3, v]. Accordingly,

deglay, azlyo ¢ = deglas, vlg = deg(g) - R(g).
Hence
degla), aglgor = deglar, azlgos - deglag, azlgor = R(f) - deg (g) - deg(g) + R(g) .

Since R{gof) > deglaj, a4l gof, the proof of the theorem is complete. =

2. CIRCLE-LIKE, SELF-ENTWINED CONTINUA

For the rest of this paper, we assume that each factor space of an inverse se-
quence is a triangulation of the unit circle C, and each bonding map is a piecewise-
linear, surjective map of nonnegative degree. We also assume that under these
maps, the image of each vertex is either a vertex or the midpoint of a one-simplex,
and adjacent vertices are mapped into a simplex. Such inverse sequences are called
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barycentrvic inverse sequences. Each circle-like continuum is the inverse limit of
such an inverse sequence [11, Lemma 8].

We say that the circle-like continuum X is self-entwined if X is the inverse
limit of an inverse sequence {Xj, £*!} and if each bonding map f}*! has positive
degree and revolving number at least 2. Notice that requiring each f{“ to have
positive degree implies that no arc-like continuum is self-entwined.

Self-entwined continua are strongly indecomposable.

THEOREM 2. If the circle-like continuum X is self-entwined, then X is inde-
composable.

Proof. Let X be the limit of {X;, fi*1}, where R(f1*1) > 1 for each i. If X
were decomposable, then X = H + K, where H and K are proper subcontinua of X.
Hence there exist points p = (p;, p2, ***) in H- K and q = (4, 42, *--) in K - H.

Recall that the collection
17N A s °0
{£;1(0): O is an open subset of X.}._,

is a basis for the topology of X. Therefore, there exist an integer n and disjoint
open sets U and V in X, such that

petlUUCH-K and qef](V)CK-H.

Since the revolving number of fﬁ“ exceeds 1, there exist an arc [x;, x,] in

X..+1 and points y; <y, <y3<y4 in [x}, x,] such that (without loss of generality)
1 +1 +1 +1
2y ) = 127 (y3) = by, fn (¥2) = fn (V4) = dn,

and 271 maps both [y, y3] and [y3, y;] onto X,,. Hence £-1.(y ) and £5},(y3)
belong to £-1(U). Since H is connected, f,,(H) contains either [y, y3] or

[y3, y1]. Accordingly, f,(H) = X,. This contradicts the fact that £;1(V) CK - H.
Hence X is indecomposable. =

We remark that there exist non-arc-like, indecomposable, circle-like continua
that are not self-entwined; the pseudo-arc with two opposite endpoints identified is
an example. The proof of this will follow from Theorem 6. However, such circle-
like continua exist only in the plane.

THEOREM 3. If X is a nonplanar, civcle-like continuum, then X is self-
entwined.

Prqof. Since X is nonplanar, X can be represented as the inverse limit of
{x,, fi*1}, where each fi*! has degree at least 2.

Since the revolving number of a map is never less than its degree, each bonding
map f;*l has revolving number at least 2; hence X is self-entwined. &

Theorem 3 bids us to concentrate our attention on plane continua, and it is na-
tural to examine the most famous (at least in the nonchainable class) circle-like
plane continuum, the pseudo-circle [2]. Certainly, the pseudo-circle should be
among the circle-like continua that are complicated enough to be self-entwined.

THEOREM 4. The pseudo-circle is self-entwined.
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The proof of this theorem is an exercise in changing R. H. Bing’s original de-
scription [2] in terms of circular chains into an inverse limit description. See also
[10] and [11].

We pause now to prove some results that will give us easy access to several
continua that are not self-entwined.

3. MAPS OF DEGREE ZERO
Suppose that X = lim {X;, fi*'} and Y =1im {Y;, g%“} are circle-like con-
tinua and that h is a continuous map of X onto Y. Let {¢,} be a sequence of posi-
tive numbers converging to zero and bounded above by 1/2. The existence of h im-
plies the existence of an infinite diagram (see [1] and [9])

Xn(l) < Xn(Z) <€<—— e €— Xn(k) <

@) hll hzl hkl

Y )<—'— Ym(Z) €< o0 L Ym(k) <— -

-

m(l

where {m(k)} and {n(k)} are increasing sequences of positive integers, {h, } isa
sequence of surjective maps, and every subdiagram

Xnx) < Xu(r)

(3) i |

Ym(k) ¢ Ym(r)

is g -commutative, for each r > k.

If each map hy in (2) has degree n, then we say that the map h has limif de-
gree n.

THEOREM 5. Let X and Y be civcle-like continua, and let Y be self-entwined,
Then theve does not exist a map of X onto Y with limit degree zevo.

Proof. Let X = lim {X;, f%“} and Y = lim{Y;, g?l , where the revolving
number of each bonding map g}“ exceeds 1. Suppose that there exists a map of X

onto Y with limit degree zero. Choose the sequence {&¢,} and diagrams (2) and (3)
as before, with the additional hypothesis that each map h; have degree zero.

We show that for large r, the revolving number of hy © fﬂ&; is much less than

that of grr‘;&; oh,.. Accordingly, we must maximize R(hy o fghI; ). Since the two
composite maps may differ by g, , it might be possible to stretch a map at both ends
of a defining interval and add at most 2 to the revolving number (1 at each end).

For this reason, we shall add 2 to R(hy © fﬁ%ig) in the following inequalities.

Since hy is a map of degree zero, fﬂ%;g just makes many copies of h, ; hence

n{r)

for each r.
On the other hand, by Theorem 1,
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R(git! o glt?) > R(gli?)- deg (gi'!) - deg(gi*!) + R(gi*?)
> deg(git!) + R(git!) > 3.

Repeated applications of Theorem 1 show that, by choosing a sufficiently large r,
we can make R(gm(r)) and hence R(gmgi; oh_), as large as we please. In particu-
lar, if we choose r so large that

R(gm(r oh_) > R(h)+2,

then we obtain a contradiction to (3). This contradiction shows that the map h does
not exist. |

The following result is an application of Theorem 5.

THEOREM 6. The pseudo-arc cannot be mapped onto a civcle-like, self-entwined
continuum,

Proof. Let X =lim {X;, £{7!} be the pseudo-arc, and let Y = lim {Y;, gl+1} be
a circle-like, self-entwined continuum. Accordingly, we may assume for all i that

deg(g}“) >0 and R(g 1+1) > 1

and, since X is arc-like, that deg (£1*1) =0

Assume that there exists a map h of X onto Y. By Theorem 5, it suffices to
show that h has limit degree zero.

Choose a sequence {&,} .and diagrams (2) and (3) as in the introduction to this
section. Diagram (3) and Lemma 4 of [10] assure us that

deg (hy 0 (L) = deg(eliz) ohy) (> k).

Since deg (fn(r)) = 0, we have that

deg (hy, © fai)) = O,

and hence

deg (gﬁ&% °h.) = 0.

Finally, since gﬁéi} has positive degree, the degree of h,. must be 0. Hence
deg(h,) = 0 if r > 1; therefore, h has limit degree zero. ®

Theorem 6 has several important corollaries. First, we can exhibit circle-like
continua that are not self-entwined.

COROLLARY 1. If Y is a circle-like continuum that is formed by identifying
two opposite endpoints of an arc-like continuum, then Y is not self-entwined,

Next we obtain new proofs of two known mapping relations. The first was proved
independently by Fearnley [5] and the author [11]; the second was proved by Ingram

[8].

COROLLARY 2. The pseudo-circle is not a continuous image of the pseudo-arc.
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COROLLARY 3. The pseudo-arc cannot be mapped onto a nonplanayv, civcle-like

continuum,

Finally, we state a more general form of Theorem 6, which follows at once from

[4], [7], or [8].

COROLLARY 4. No avc-like continuum can be mapped onto a civcle-like, self-

entwined continuum,

=2}

-3

10.

11.
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