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SOME TOPOLOGICAL INVARIANTS OF STONE SPACES

Roger Wiegand

Most of the work of this paper was motivated by a still unsolved problem in
homological algebra: Let J be an ideal in the commutative regular ring R, and let
U[J] be the corresponding open subset of the maximal ideal space X(R). Is the pro-
jective dimension of J a topological invariant of U[J]? It can be shown that J is
projective if and only if U[J] satisfies the equivalent conditions of Theorem 2.2.
More generally, the projective dimension of J is at most equal to the cohomological
dimension of U[J], which in turn is at most equal to the covering dimension of U[J].
In Sections 2 and 5, we show by examples that the covering dimension of U [J] may
be strictly greater than the cohomological dimension of U [J]; but no example is
known to the author in which the cohomological dimension of U[J] is strictly greater
than the projective dimension of J. Most of the paper is concerned with a purely
topological investigation of the covering dimension and cohomological dimension of
Stone spaces, that is, of open subsets of Boolean spaces. (Stone spaces may be char-
acterized equivalently as locally compact, totally disconnected Hausdorff spaces.)

1. COVERING DIMENSION

Let % be an open cover of the topological space X. The order o(a ) is the larg-
est integer n such that there exist n + 1 distinct members of % with nonempty in-
tersection. If no such integer exists, we say o(# ) = ». The covering dimension
cov dim X is the least integer n such that every open cover of X has an open re-
finement of order at most n; if no such mteger exists, we set cov dim X =, Sup-
pose X is a Boolean space, that is, a compact, totally disconnected Hausdorff space.
It is well known (and easily proved) that each open cover of X has a finite, disjoint
refinement consisting of compact, open sets. We have the following analogue for
Stone spaces:

LEMMA 1.1. Let X be a Stone space, and assume X has a compact, open
cover of ovder n. Then each open covev of X has a compact, open refinement of
ovdey at most n. In parvticular, cov dim X < n.

Proof, Let % be an open cover of X. Choose a compact, open cover ¥ of
order n, and for each V € 7, let ‘9/ be a (finite) disjoint, compact, open cover of

V that refines %. Then % = U {OJI'V: V € 7} is a compact, open refinement of %,
and o(%/) < n.

THEOREM 1.2. Let X be a Stone space. Then cov dim X < n if and only if X
has a compact, open cover of ovder at most n.

Proof. One implication follows from Lemma 1.1. To prove the converse, let &
be a compact, open cover of X, and let ¥ = {V ie I} be an open refinement of
order at most n. Since each V has compact closure and » is point-finite, an easy
argument (similar to [3, Problem 5.V]) based on Zorn’s lemma shows that ¥ can be
shrunk to a compact, open cover % = {W ie I} with W; C V; for each i € I.
Clearly, o(9¢) < n.
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Recall that a space is metacompact provided every open cover has a point-finite
open refinement. By the same reasoning as above, we obtain the following theorem.

THEOREM 1.3. A Stone space is metacompact if and only if it has a point-finite,
compact, open cover.

THEOREM 1.4. A Stone space is paracompact if and only if its covering dimen-
sion is 0.

Proof. Every space of covering dimension 0 is obviously paracompact. Con-
versely, assume X is a paracompact Stone space, let % be a compact, open cover
of X, and let # = {V;:i € I} be a locally finite refinement of %. As in the proof of
Theorem 1.2, we can shrink % to a compact, open cover o = {W;: i € I}. For each
x € X, let N, be a neighborhood of x that intersects only finitely many of the sets
W;. For each i, let #; be a finite, disjoint, compact, open cover of W; that refines

{Ny: x € X}, and let & = Uie]’_ B;. Well-order &, say & = {Bg: £ <1}. Now
each B, since it is contained in some N, , intersects only finitely many W; and

therefore only finitely many By, . It follows that Cz = Bg \ U"?<§ By is a compact,
open subset of X. Thus & = {Cg: £ < 7&} is a disjoint, compact, open cover of X.

2. COHOMOLOGICAL DIMENSION

Let  be a sheaf of abelian groups over the space X. Let H*(X; .#) denote the
natural cohomology of X with coefficients in ., as defined in [8]. Let H*(a/; )

and ﬁ*(X; +), respectively, denote the cohomology of the open cover % and the
Cech cohomology of X, with coefficients in . We record the following result,
which is Theorem 4.1 of [10].

THEOREM 2.1. Let & be a sheaf of abelian groups over the Stone space X, and

let % be a compact, open cover of X. Then, for each n > 0, the natural homomor-
phisms

HY%; A) — HY(X; &) —» HYX; )

arve isomorphisms.

Let dim X denote the cohomological dimension of X, that is, the largest integer
n such that HMX; .#) # 0 for some sheaf of abelian groups « over X. If no such
integer exists, we set dim X = o,

Combining Theorem 1.4 with [10, Theorem 5.1], we obtain the following result.

THEOREM 2.2. The following thvee conditions on a Stone space X are equiva-
lent:
(a) dim X = 0, (b) covdim X = 0, (c) X is paracompact.

By [10, Example 5.4], there exist Stone spaces of infinite cohomological dimen-
sion. Our goal in this section is to exhibit, for each n > 0, a Stone space with co-
homological dimension n. We need an upper bound on dim X. (Of course,
cov dim X > dim X, but the spaces we shall consider have infinite covering
dimension.)

Definition. The rank of a topological space X is the least integer n such that X
can be expressed as the union of 8, compact subsets. If no such integer exists,
rank X = o,




SOME TOPOLOGICAL INVARIANTS OF STONE SPACES 291

The following result was announced in [9]. We shall give the proof in the next
section.

THEOREM 2.3. Let X be a Stone space. Then dim X < rank X.

Example 2.4. Let n be a nonnegative integer, and let Y,, be the Cantor space
2%n . Let X, be the open subset of Y, obtained by deletion of the point all of whose
coordinates are 1. The Boolean ring of Y, is the free Boolean ring on 8, genera-
tors, and the ideal corresponding to X,, has homological dimension n, by [7 , Theo~
rem 5.1]. It follows immediately from [10, Theorem 2.1] that dim X,, > n. But X,
is covered by the 8, compact sets 753!(0), where mg: 8, — 10, 1} is the oth pro-
jection map. Therefore, by Theorem 2.3, the cohomological dimension of X, is
precisely n.

We remarked earlier that the spaces X, (n > 1) have infinite covering dimen-
sion. One way to see this is as follows: Let X be a Stone space with a compact
open basis of cardinality at most R, and let X* pe its one-point compactification.
Then one can clearly define a one-to-one continuous map ¢: X* — Y,, in such a way
that ¢(X) = ¢(X*) N X, , that is, X is homeomorphic to a closed subset of X, . In
particular; let X be the space of countable ordinals with the order topology. Then
X is not metacompact, since X is countably compact but not compact [3, Problems
5.E, 5.V]. It follows that X, (n> 1) is not metacompact.

3. PROOF OF THEOREM 2.3
Let X be a topological space. By a well-ordered open cover of X we shall mean
an open cover {Ua: a < h}, indexed by an ordinal A and satisfying the conditions
i) Uy C Uﬁ if « <B <A and ii) Uy = Uoz <y U, if y is a limit ordinal.
PROPOSITION 3.1. Let « be a sheaf of abelian grvoups over X. Suppose X has
a well-ovdeved open cover {Ua: a < A} such that

H* (U, ; ) = H“H(Ua; A) =0 for each a <x.

Then HM1(X; ) = 0.

Proof. Let F*: 0 — oA — FO- gl -~ ... pea flabby resolution of .« . For each
a < let Ay =A| Uy, and let Fh = Fi | Uy . The induced sequence
g;; 0—> 2y — gg — gé — ... is then a flabby resolution of /. Therefore
HP(U,, ; ) is isomorphic to the pth cohomology group of the complex

LF* 0 —» I(Uy, #°) — DUy, #1) — -
In particular, the sequence
(1) T(Uy, 771 2 Uy, 79 2 Ty, 7Y 2 Uy, #72)

is exact for each @ < A. (In order to treat the case n=0, let #-! =0.) We must
verify that the sequence
@) rx, 57 % rx, #7) S px, #72)

b
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is exact. Let s € I'(X, #7'1), and suppose 6s =0. For each a <2, let sy =s|Ugy.
We shall define, inductively, sections t, € I'(Uy, #7) such that 6ty = s, and

tg =ty I Ug for 8 < a. This will show that the sequence (2) is exact, and the proof
will be complete.

Let t; be an element of I'(Up, #7) whose coboundary is sg. Suppose t, has
been chosen for each @ < y. If y is a limit ordinal, condition ii) and the compati-
bility of the ty provide an obvious choice for a satisfactory t, . On the other hand,
if ¥ =B +1, choose an r,, € I(Uy, ") such that 6ry =s, . Then &(r, | Ug - tg) = 0;
hence there is a section pg € I‘(UB, gn’l) such that opg = ry ] Ug - tg. Since
go-1 is flabby, pg can be extended to p, € T(U,, #71). Now let t, =r,, - 6py .
Clearly, 6t, = s,, and t,, | Uy =ty for each a <y.

COROLLARY 3.2. Let X be a topological space that has a well-ordeved open
coveyr consisting of sets with cohomological dimension at most n. Then
dim X <n+1.

We can now give a simple proof of Theorem 2.3. (Our method was suggested by
the proof of a corresponding theorem on the global dimension of regular rings [7],
which is based on a module-theoretic analogue of Corollary 3.2 due to M. Auslander
[1].) Since every compact subset of a Stone space X is contained in a compact open
set, we see that rank X < n if and only if X has a compact open cover of cardinality
at most &, . If rank X =0, clearly cov dim X = 0; therefore dim X = 0. Since
every Stone space of rank n has a well-ordered open cover consisting of open sets
of rank at most n - 1, the theorem follows by induction on n.

4. SPACES WITH FINITE COVERING DIMENSION

In this section we show that there exist Stone spaces of arbitrary covering di-
mension. The following theorem says somewhat more.

THEOREM 4.1. For each n> 0, there exists a Stone space with rank n and
covering dimension n that is the union of n+ 1 paracompact open sets.

Proof. Let Ay, *++, A, be pairwise disjoint, well-ordered sets such that Ay is
order-isomorphic to 8y (0 <k <n). Give each Ay the discrete topology, and let
By, = A, U {*} be the one-point compactification of Ay. Let Y, be the cartesian
product By X -+ X By, and let X, =Y, \ {(*, -+, ¥)}. For each i <n and each
§ e A, let

U(i, £) = BpX =* X Bj_; X {&} X Bj41 X *** X By,

and let U; = U{U(i, £)| £ € Aj}. Then X, =Ug U -+ U Uy, and since each Uj is a
disjoint union of compact open sets, the last assertion follows. Let

= {U(, £)] 0 < i< n, £ A;}.

Then % is a compact open cover of X, of order n. Suppose ¥ is an open cover of
X, that refines %. We shall show that o(7’) > n.

For each pair (i, £) with £ € A;, choose an open set V(i, £) € 7 that contains
the point x(i, &) = (¥, «--, * &, * -«  *). Since U(i, £) is the only member of % that
contains x(i, £), it follows that V(i, £) C U(i, £) and that the V(i, £) are all distinct.
We shall show that there exists a point (£q, **, £,) € Ag X ** X A, that lies in
V(O, Eg) N e N V(n, £n).
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By construction, (&, *, ---, *) € V(0, &), for each £; € Ay . Assume inductively
that there exist oy € Ay and functions o5: Ajp X = X A — A; (0<i<k- 1) such
that (£q, =, £y, *, ==+, ¥) € V(0, £g) N > N V(k, £x) whenever
(3) §x > O Eroy > oy 1(Er), v, &g > ool 1) .

If k¥ =n, we have finished; therefore assume that k <n. Since only 8; sequences
(&g, ***, &) satisfy (3), there must exist some 7,; € A,; so large that

(go, T gk’ gk-l—l: *: ty *) € V(O? gO)ﬁ ot ﬂV(k, gk)
whenever £y, > 73y and (§,, -+, &) satisfies (3). Also, since
(*, oo, K gk+1’ ¥ eee *) € V(k+ 1, £k+1)
for each &y, € Ay, there exists pi(§41) € Aj, for each i <Kk, such that
(Egy "5 E1es Eqerys % 0y ¥) € V(k+1, £,,)  whenever &;> pi(&,;) (0<i<Kk).

Now let 7,(£y,,) = max{o, pyléyy1)}, and for i <k, let

TiEia1, s b)) = max{o &y, 0, £, piEr )}
Then, if &, ., > 7y, and &; > Ti(§i+1, oo ‘5k+1) for 0 <1i <k, we have the rela-
tion
(g(): Yy §k+l, *7 tty *) € V(O; gO) n - N V(k+ 13 gk+l)'

This completes the proof that cov dim X, = n. We need only verify that rank X, = n.
Clearly, rank X < n. The opposite inequality follows from the observation that each
compact open set contains at most finitely many of the 8, points x(n, £) (£ € A)).

5. DECOMPOSITION OF STONE SPACES

The preceding example raises two questions:
1) If cov dim X =n < =, is the rank of X necessarily at least n?

2) Is every Stone space of covering dimension n the union of n + 1 paracompact
open subsets?

In this section we answer both questions negatively. We first record the follow-
ing observation, which is an immediate consequence of Theorem 1.2.

PROPOSITION 5.1. Let U and V be open subsets of a Stone space, with cover-
ing dimensions r and s, rvespectively. Then cov dim(UU V) <r+s-+1.

Definition. Let X be a Stone space of covering dimension n. We say that X is
completely decomposable if X is the union of n + 1 paracompact open subsets; X
is indecomposable if X is not the union of two open sets of covering dimension less
than n.

If X is a completely decomposable Stone space of covering dimension n (say, the
space X,, of Theorem 4.1), and if r and s are nonnegative integers whose sum is
n - 1, then, by Proposition 5.1, we can write X =U U V, where U and V are open
subsets with covering dimensions r and s, respectively.
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We now give examples of indecomposable Stone spaces of rank 1 with arbitrary
covering dimensions.

THEOREM 5.2. Theve exists a Stone space X of rank 1 with closed subsets
Ayc Ay C A, C -+ such that i) cov dim A, =n for each n > 0 and ii) A, is not the
union of countably many velatively open subsets of covering dimension less than n.

Proof. Let Q be the first uncountable ordinal, and let Y be the Cantor space
282, We regard Y as the set of subsets of ©. For each pair of finite disjoint sub-
sets F and G of , let B(F,G)={y e Y| FCy, y N G=@}. (The compact, open
sets B(F, G) form a base for the topology on Y.) For each nonnegative integer n,
let X, ={y e Y| Iyl >n+1} (where |y| denotes the cardinality of the subset y).
Let X =Xg, and let A, =X\ X,,;; for each n> 0. Now fix n, and let
B(F, G, n) = B(F, G) N A, . Then

B, = {B(F,G,n),lg |F| <n+1, |G] <=, FNG = #}

is a compact, open base for the topology on A, .

The sets B({£}, @, n) form a compact, open cover of A, of order n; therefore
covdim A < n. The proof will be complete once we verify ii). Suppose % is a
countable open cover of A,,. Then some open set U ¢ % contains uncountably many
singletons {&} (£ € ©). We shall show that cov dim U > n. Let ¥ be a compact,
open cover of U, Clearly we may assume ¥ C %, . For each {g} € U, choose
Vi e 7 sothat {£} € V¢. Then V¢ must be of the form B({{}, G, n), where Gg
is some finite set not containing £. Since Y is separable [4, p. 139] and each set
B({£}, Gg) is a nonempty open set in Y, there exists a sequence £g < -+ < &, such

that n?:o B({&;}, Gg ) # @. The point x = {&g, ===, £} is certainly in this inter-
1
section. Since x € Ay, we seethat Vg N NVg #g. W

Remark. By replacing © by Ry, we obtain a Stone space A, i, of rank k and
covering dimension n, that cannot be expressed as a union of fewer than &, open

8
subsets of covering dimension less than n. Although the Cantor space 2 ™ is not
necessarily separable, it still has the countable chain condition, which is enough to
produce the required sequence £ < --- < §&,.

PROPOSITION 5.3. Let X be a Stone space of covering dimension 1, If
fl(x; Z,) =0, then X is completely decomposable.

Proof. Let % = {U;: i € I} be a compact, open cover of order 1, and assume I
is totally ordered. Consider the cochain complex C*(#/; Z;), where

CNau; Z,) = I1 F(Uio...in, Z5y).
ig< e <ip

By Theorem 2.1, HY(C*(#; Z,)) = 0. Define f ¢ clu; Z,) by letting fi;x) =1
whenever i < j and x € U;;. Then f is a cocycle, since C2(a; Z,) = 0. Hence
there exists g € C%(@; Z,) such that g = f, that is, g;(x) + gj(x) = 1 whenever

x € Uj;. Let U= UieI g{l(O) and V = UIeI gi'l(l). Clearly, U and V are para-
compact, open sets whose union is X.

Remarks. The converse of Proposition 5.3 is false: the space X; of Theorem
4.1 is a counterexample. To show that H1(X;; Z,) # 0, it is sufficient to find a con-
tinuous map f: Uy N U; — Z, that cannot be expressed in the form fg + f;, where
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fo and f; can be extended continuously to Ug and Uj, respectively. (See, for ex-
ample, [2, pp. 219, 220].) Since Ug N U, is the discrete space w X §, we may define
f(n, @) = e¢(n)e(a), where €(e) =0 if @ is a limit ordinal and e(a + 1) = e(a) + 1.
The verification that f is not of the required form is easy.

Unfortunately, I know of no space satisfying the hypotheses of Theorem 5.3. If
we grant the continuum hypothesis, however, we can easily exhibit a Stone space X
of cohomological dimension lvsuch that Hl(X; ZZ) = 0. Let X be some non-o-com-
pact open subset of the Stone-Cech compactification of the integers. Then, by the
countable-chain condition, X must have infinite covering dimension. Therefore
dim X > 1. By Theorem 2.3 and the continuum hypothesis, dim X = 1. To see that
HI1(X; Z,) = 0, let R be the Boolean ring of subsets of the integers, and let J be the
ideal corresponding to the open set X. Then Extl (J , R) =0, since R is self-injec-
tive [6, Corollary 24.3]. Therefore H!(X; Z,) = 0, by [10, Theorem 2.1].

Notice that there is no hope of generalizing Proposition 5.3 to higher dimensions,
since for n > 2 the spaces A, of Theorem 5.2 are indecomposable even though they
have trivial n-dimensional cohomology.

Another type of decomposition is possible for every Stone space of finite cover-
ing dimension.

THEOREM 5.4. Let X be a Stone space. Then X has a dense, open, paracom-
pact subset D. Movreover, if X has finite covering dimension, then D may be chosen
so that cov dim (X \ D) < cov dim X.

Proof. The first statement is trivial: take D to be the union of a maximal fam-
ily of pairwise disjoint, compact, open sets. Now suppose cov dim X =n <. By
Zorn’s lemma, there exists a compact open cover %, maximal with respect to the
property that o(#) = n. Let R be the set of points that are contained in precisely
n + 1 members of %, and let S be the set of isolated points of X. Clearly,

D =R U S is an open, paracompact subset of X, and cov dim(X\ D)<n - 1. To
show that D is dense, suppose to the contrary that x ¢ D, and let Ng be a compact
open neighborhood of x that misses D. Since x is not isolated, there exists a
strictly decreasing sequence Ny D N; D *-- of compact, open neighborhoods of x.
Since o(#) < =, some Ny does not belong to %/, contrary to the maximality of .

Suppose X is a completely decomposable Stone space of covering dimension
n > 1. Then X cannot be normal. For if it were, the paracompact open cover
{Ug, +++, Uy} could be shrunk to a closed (paracompact) cover {Vg, ---, Vn}, and
it would follow that X is paracompact [5, Footnote 2]. This raises the following
question: Are there any normal Stone spaces with finite positive covering dimen-
sion? The answer is unknown to the author; but Theorem 5.4 and induction provide
an apparently simpler formulation: Is there a normal Stone space X of finite, posi-
tive covering dimension with a dense open subset D such that D and X \ D are both
paracompact? If X is the space A; of Theorem 5.2 and D = A; \ Ag, then D and
X \ D are both discrete (in the relative topology). Of course, A; is not normal.
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