ON 3-MANIFOLDS THAT COVER THEMSELVES
Jeffrey L. Tollefson

1. Let M be a compact, connected 3-manifold. We say that M covers itself if
there is a nontrivial covering projection p: M — M. We classify all nonprime 3-
manifolds with this property, and we show that certain prime 3-manifolds fiber over
the circle in the sense of Stallings [12].

This work was suggested by Kwun [6], who considered the class of closed, con-
nected, orientable 3-manifolds (without boundary) that double-cover themselves.
Kwun succeeded in classifying all nonprime manifolds in this class, and he showed
that under certain technical restrictions the prime manifolds fiber over the circle.
His results are special cases of our Theorems 1 and 3.

2. Recall that a closed 3-manifold is prime if it is not the connected sum of two
3-manifolds each of which is different from S3. A compact 3-manifold with con-
nected boundary is prime if it is not the disk sum of two 3-manifolds, each different
from the closed 3-cell.

Milnor [9] has shown that every closed, orientable 3-manifold M is homeomor-
phic to a sum P; # P, # --- # P,, of prime manifolds, where the summands P; are
uniquely determined up to order and homeomorphism. (J. L. Gross [1], [2] has ob-
tained a result analogous to Milnor’s in the case where M is an orientable 3-mani-
fold with nonvoid, connected boundary.) Raymond [11] observed that Kneser [5] ac-
tually “proved,” modulo the validity of Dehn’s lemma, a unique decomposition theo-
rem for closed 3-manifolds, orientable or not. Kneser’s theorem states that every
closed 3-manifold can be written uniquely in normal form as the sum of prime
manifolds (“in normal form” means that the number of nonorientable handles N in
the sum is minimal).

Milnor proved that, with the exception of S3 and S!x SZ, an orientable, closed
3-manifold is prime if and only if it is irreducible. Raymond also observed that
Milnor’s proof extends to the nonorientable case if N is excluded.

In the next section, we classify closed, nonprime 3-manifolds that cover them-
selves.

3. Let P3 denote real, projective 3-space, and consider the manifold P3 # P
(orientation need not be specified, because P3 admits an orientation-reversing
homeomorphism). For every integer k > 0, P3 # P3 admits a k-sheeted covering
by itseli. This is exceptional behavior for a nonprime manifold, as the following
theorem shows.

THEOREM 1. A closed, connected, nonprime 3-manifold M covers itself if and
only if M = P3 # P3.

First we indicate the unique manner in which P3 # P3 covers itself, and then we
devote the remainder of this section to three lemmas that complete the proof of
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Theorem 1. P # P3 is homeomorphic to the sum P(k) = Py # 83 # - # S3 # P,

where 83 occurs k - 1 times as a summand. Let p: P(k) — P3 # P3 be the k-
sheeted covering projection by which the sphere-summands S3 of P(k) alternately
double-cover the P3 summands of the base space, in which the first P3 of P(k)
covers the left half of P3 # P3, and in which the last P3 of P(k) covers the left
(right) half of P3 # P3 if k is even (odd). It will follow from the following argu-
ments that this is essentially the only way P3 # P3 can cover itself.

We adopt the following notational conventions. Let Hg= {S3}, and let H; denote
the collection of nontrivial, prime, closed 3-manifolds. For n > 2, let H,, denote the
collection of closed 3-manifolds that are homeomorphic to connected sums of exactly
n elements of Hj.

LEMMA 1. If M € H,, then M covers itself k times (k > 2) if and only if
M= P3# Pj.

Proof. Suppose p: M — M is a k-sheeted covering projection. Let M~ A# B
(A, Be H;). Write A#B=A"'U B', where A' (B') is obtained from A (from B) by
deletion of a tame open 3-cell, so that A'N B'=S is a 2-sphere. Then p-1(S) is a
disjoint collection of 2-spheres {8;} ;.

Case 1. Suppose each S; separates A# B (i=1, ---, k). Then M - p-1(S) has
k +1 components, and the closure of each component covers either A' or B'. The
closures of at least two components, say U; and Uy, have connected boundaries Sj
and S,. Let C (D) be obtained from Cl1 U; (from Cl U,) by sewing a 3-cell along
S; (along S;). Then C and D each cover either A or B exactly once, and there-
fore C and D belong to H;. Since M € H,, we have the homeomorphism
A # B = C # D, and each of the remaining components must be homeomorphic to S3
minus two tame open 3-cells. An analysis of the situation reveals that either both A
and B are double-covered by S3, or A ~ B and one of them is double-covered by
S3. Livesay [8] has shown that the orbit space of the action on S3 by a free involu-
tion must be P3. This proves that A = B = P3.

Case 2. Suppose (A # B) - S; is connected for some i, say i = 1. Since
(A # B) - S; is connected, either A or B must be a handle, that is, it must be home-
omorphic to either S! x S2 or N. Suppose B is a handle. Again, the closure of
each component of M - p-1(S) covers either A' or B'. If the closure of a compo-
nent U covers B', then the space consisting of Cl U plus some 3-cells sewn along
its boundary components is homeomorphic to a handle. This is so because
71(B') = Z has exactly one subgroup of a given finite index, and hence B' has a
unique, connected, m-sheeted covering, for each m.

It follows that the closure of only one component of M - p-1(S) covers B'.
Otherwise we should have at least three handles upstairs, in violation of M being in
H;. Therefore only Cl U covers B', and hence this covering is k-to-1. The
boundary of Cl U must be p-1(S). Since M - S; is connected, there must be another
handle upstairs, in addition to Cl1 U with k 3-cells attached. Thus both A and B
must be handles. The closure of some component, say Cl V, covers A' k times and
is such that CLU N C1 V = p-1(S). But this implies that there are k - 2 handles up-
stairs, in addition to Cl1 U and Cl V (with appropriate 3-cells attached). Since
M € H,, it follows that k = 2; but we shall now show that this is impossible (our
argument is essentially due to Kwun [6, Case 2 of Proposition 3.1]).

Because neither S; nor Sz separates A # B, the space A # B - (S; U S2) has
two components P and Q. Since p(P U Q) = (A # B) - S is disconnected,
p(P)=A'- B' and p(Q) =B' - A' (by proper choice of labeling). Let C and D be
closed manifolds obtained from Cl P and Cl Q, respectively, by attaching 3-cells.
Then
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A#B ~C#(S1xS?)#D or A#B = C#N#D.

By the uniqueness of the decomposition, either A or B (say A) is a handle. But this
implies that C is a handle, which in turn implies that both C and D are handles.
Hence the connected sum of three handles would be homeomorphic to the connected
sum of two handles. This contradiction rules out Case 2, completing the proof of the
lemma.

LEMMA 2. Suppose that M, € Hy, and M € Hy, and that M| contains no
handles. If m > 1 and theve exists a nontvivial k-to-1 covering projection
p: M} — My, then m > n.

Proof. We use induction on m. Let m=1. Write M, ~ A# B (A € H; and
B € H,_1). As usual, we write A# B=A'U B', where A'N B'=S is a 2-sphere.
Since M; has no handles, each component S; of p-1(S) =8; U --- U S must separate
M. There are at least two components of M; - p-1(S) such that the closure of each
covers either A' or B' exactly once. But unless n = 1, this is impossible, since
M; is prime.

We now show that if the lemma is true for all m < q, it also holds for m = g + 1.
Suppose M) € Hqy; and Mp € H,. We assume that n > q + 1, and we show this
leads to a contradiction, Write M, ~ A# B=A'U B!, where A€ H;, B € Hy_q,
and A' N B' =8 is a 2-sphere. Again, every component S;j of p-1(S) separates M.
Hence there must be at least two components of M - p-1(S) such that the closure of
each gives a one-to-one covering either of A' or of B'. Let C' be a component of
p-1(B'), and let C be the manifold obtained by capping the 2-sphere boundary com-
ponents of C' with 3-cells. It is easy to see that C € H; (1 <j<q). However, p
induces a covering of B by C, which violates our induction hypothesis, since j <n.
This completes the proof.

LEMMA 3. If M € H, (n> 2), then M does not cover itself k times for any
k > 2.

Proof. Let M~ Ay # Ay # -« # A, (A; € Hy for 1 <i<n).

Case 1. Suppose at least one A; is either Sl x 82 or N. Suppose the indices
are chosen so that the A; are handles for 1 <i < m, but not handles for i > m.
Write M= A] UA> U --- U A, where A] and A; are obtained from Aj and A,,
respectively, by deletion of a tame open 3-cell, and where Aj (1 <i<n) is ob-
tained from A; by deletion of tame open 3-cells. Since M is connected, A} N Aj4]
is a 2-sphere S;. A connected, t-sheeted covering of A} (1 <i<m or i=m if
m # 1, n) must be a handle minus 2t open 3-cells (or t 3-cells if i=1 or
i =m =n). Hence each component of M - p-1(S) that covers A (i < m) is of this
form. To cover Aj # A, # .-+ # A k times, we require at least k(m - 1) handles.
But M has exactly m handles, and the inequality k(m - 1) < m holds only when
k = m = 2. An analysis of this special situation reveals that it takes more than two
handles upstairs for double-covering M. Since M has only two handles, such an M
cannot double-cover itself. This rules out Case 1.

Case 2. Suppose no A; is a handle. Write M = A # B, where A =A] and
B=A, #--#A,. As before, let A# B=A"'U B', where A' N B' is a 2-sphere S.
Since M contains no handles, each component of p~1(S) must separate M. Hence
the closures of at least two components of M - p-1(S) must have connected 2-sphere
boundaries and provide one-to-one coverings. Call two of these components U and
V. Then Cl1U =~ C1V = A', for otherwise we would have too many summands up-
stairs (at least 2(n - 1) > n). Let W' be a component of Cl{(p-1(B')). I we cap the
2-sphere boundary components of W' and B' with 3-cells, we get the closed
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3-manifolds W and B (W € Hq and B € Hy_), where q <n - 1). But p | W' in-
duces a covering of B by W, which is impossible, in view of Lemma 2. This rules
out Case 2. Thus we have completed the proof of this lemma and consequently the
proof of Theorem 1.

Remark. In the proof of Lemma 2, we showed that a nonprime 3-manifold cannot
be covered by an irreducible, closed 3-manifold. However, a covering by a prime
3-manifold is possible (for example, S! X S2 double-covers P3 # P3). It remains an
open question whether a closed covering space of a prime, closed 3-manifold must
be prime.

4., THEOREM 2. If a compact, connected 3-manifold M with connected boundary
covers itself, then M is a prime, ivveducible 3-manifold, and Bd M is either a
torus ov a Klein boltle.

Proof. Suppose p: M — M is a k-to-1 covering projection (k > 2). Then
p|Bd M: Bd M — Bd M is also a k-to-1 covering projection. Let x(Bd M) denote
the Euler characteristic of Bd M. The relation x(Bd M) =kx(Bd M) [1, p. 277] im-
plies that x(Bd M) =0. Hence Bd M =~ S! x S! or Bd M =~ K (the Klein bottle).

Now suppose that M is not prime. Then M is homeomorphic to the disk sum of
two 3-manifolds A and B, neither of which is a 3-cell. With proper choice of nota-
tion, we may suppose that Bd A ~ Bd M and Bd B ~ S2. Consider 2M, the double
of M, obtained by sewing two copies of M together along their boundaries by the
identity map. It is clear that 2M =~ 2A # 2B, where 2A and 2B are nontrivial. The
projection p induces a k-to-1 covering of 2M by itself. By Theorem 1,
2M =~ P3 # P3. By the uniqueness of the connected-sum decomposition, 2B ~ P3.
But this implies that Z; = 71(B) * 71(B), where * denotes the free product. This is
a contradiction, and therefore M must be prime.

We want to show that M is also irreducible. Since 2M covers itself, there are
only three cases to consider, namely 2M = P3 # P3, 2M irreducible, and 2M ho-
meomorphic to a handle. For clarity of notation, we suppose that 2M =M U M/,
where M=M' and MN M'=Bd M =Bd M'.

First suppose that 2M =~ P3 # P3. Let S C Int M C 2M be a tamely embedded
2-sphere. If S does not bound a 3-cell in M, then S must bound P3 less a tame,
open 3-cell. By the symmetry of 2M, a corresponding tame 2-sphere S' in Int M'
also bounds a copy of P35 less a tame, open 3-cell. If we let ™M and M' denote M
and M', respectively, with the P3’s removed and replaced by 3-cells, we find that
2M ~ S3. Since there is a retraction of 2M onto M, 7;(M) = 0. It follows that
71(M) 2 Z,. But this is impossible (7,(M) contains subgroups of index k™ for all
n > 1, since M covers itself k times). Hence, if this case occurs, every 2-sphere
tamely embedded in M bounds a 3-cell.

Now suppose 2M is irreducible. Let S CInt M C 2M be a tamely embedded 2-
sphere. Let 2M - S = A U B, and suppose that A C Int M. Then Cl A must be a
3-cell. For if A were not a 3-cell, C1 B would have to be. But there is a 2-sphere
S' in Int M' corresponding to S. We have the inclusions S' C Int M' € C1 B, and S’
bounds a homeomorphic copy of A in Cl B. This is a contradiction, since Cl B
would be a 2-cell and would therefore be irreducible. Hence, if 2M is irreducible,
then M is irreducible.

The next lemma takes care of the last case, where 2M is a handle.

LEMMA 4. Let M be a compact 3-manifold with connected boundary. If
2M ~ Sl x 82 o7 2M =~ N, then M is irreducible.
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Proof. Let S C Int M be a tamely embedded 2-sphere. If S separates 2M, then
S must bound a 3-cell in 2M, and this 3-cell lies in Int M. Hence it is sufficient to
show that every 2-sphere tamely embedded in Int M C 2M must separate 2M.

Let i: Bd M — 2M be the inclusion map. Suppose that SCInt M C 2M - Bd M is
a nonseparating, tame 2-sphere. Then i(Bd M) C 2M - S, and the induced map
ig: m;(Bd M) — 7,(2M) is trivial, since 2M - S » S2 x (0, 1). Consider the commu-
tative diagram

ﬂl(Bd M)

6 Nkz
G=7T1(M)/ i#/

obtained from the Van Kampen theorem. If we let

G'= 'ITI(M')

7, (2M)

m(BdM) = (z:f), G=(x:7), G =2(F:8),

we can write 1)(@M) 2 (X, ¥: T, 8, {61(Zk) 02(Zx)"! : Zx € Z}). Since ig =0 and M
is a retract of 2M, 6; and 0, are trivial. Therefore 71(2M) £ G * G', where

G = G'. But this is a contradiction, since 7;(2M) £Z and Z is not the free product
of two isomorphic groups. Therefore every tame 2-sphere S in Int M must sepa-
rate 2M and hence bound a 3-cell in M.

Remark. Using Lemma 4, Kwun [7] observed that if 2M ~ S! X §2 and Bd M is
connected, then M is a solid torus. It also follows that if 2M ~ N and Bd M is con-
nected, then M is the product of the Mobius band with the unit interval.

5. In this section, we show that certain prime 3-manifolds that cover themselves
fiber over the circle. A complete classification of such manifolds seems difficult.
Let p: M — M be a regular k-sheeted covering projection (k > 2 and prime). If
some covering transformation of this covering space is homotopic to the identity
homeomorphism of M, we say that M properly covers itself. This is equivalent to
saying that the action on M by the group of covering transformations is proper [4].

THEOREM 3. Let k > 2 be a prime integer. Suppose that M is a compact,
connected, ovientable 3-manifold such that H l(M; Z) has no element of order k and
Bd M is either empty ov connected. If M properly covers itself k times, then M
can be fibered over the civcle.

Proof. M admits a proper free action by the group Zj. of covering transforma-
tions. If M is closed, then M is a prime, closed 3-manifold (by Theorem 1), since
each covering of P; # P3 by itself is not proper. S! x 82 fibers over the circle;
therefore, if M is closed, we may assume for this argument that M is irreducible.
On the other hand, Theorem 5 implies that if Bd M # @, then M is prime and irre-
ducible. In either case, we can now apply the main result of [14] to show that M
fibers over the circle.

Remark. Fiberings over the circle such as those given by Theorem 3 do not
necessarily have unique connected fibers. For example, in [13] we show that for
every integer n > 2 there is a fibering of T2 X S! over S! with fiber T, where
T, denotes a closed surface of genus n. Results about nonunique fibers have also
been obtained by W. Jaco [4].
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6. In this section we describe a class of nontrivial manifolds that properly cover
themselves. But first we consider a class of trivial examples, to motivate a ques-
tion. If T is a compact 2-manifold and k is an integer (k > 2), then the map
1p Xp': T X sl 7xsl (where p' is the standard k-sheeted covering projection of
the circle) is a proper k-sheeted covering projection. It is natural to seek conditions
of this type that characterize products of the form T X S!. Kwun has posed the fol-
lowing question.

Question. If a closed, orientable 3-manifold M covers itself properly k times,
for every prime k, is M a product of a 2-manifold and S1?

We show in Theorem 3 that such a manifold fibers over the circle, and thus is at
least “almost” a product. If we alter the question by requiring merely that M cover
itself properly k times for every odd prime k, we can answer in the negative with
an example.

Let T, be a closed surface of genus 2. Consider the homeomorphism
h: T, — T, obtained by interchanging the holes of T2 in such a way that h has
exactly two fixed points, and such that h? is the identity. Let M be the manifold
obtained from the product T, X I by identifying (T X 0) and (T X 1) by h, that is,
M=Tx1/{(t, 0) ~ (h(t), 1)}. Then M covers itself properly k times for every
positive odd integer k.

This example is contained in the following class of manifolds that cover them-
selves in such a manner that the action of the group of covering transformations can
be extended to an effective SO(2) action (see [10] for notation). Let M be the closed,
orientable, irreducible 3-manifold

{-1,(0, g 0,05 (x+1,1), A+1, )} (, g>0).
M is a proper k-sheeted covering of itself for every k =1 (mod X + 1). Moreover,
H;(M; Z) is a free abelian group of rank 2g + 1, but M is not a product of the form

T % S!. (The proofs of these facts are essentially computational, and they depend on
the classification theorems in [10].)
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