PIECEWISE LINEAR UNKNOTTING OF SP x §9 1IN sPtatl
Richard Z. Goldstein

INTRODUCTION

Denote by S™ the unit n-sphere in euclidean (n + 1)-space, and by D™ the unit
n-ball in euclidean n-space.

J. W. Alexander [2] proved that if S! x S! is piecewise linearly embedded in S3,
then the closure of one of the components of 83 - 8! xs! is homeomorphic to
Sl x D2, Alexander’s method is based on the study of the intersections of a plane
with S! X S! as the plane moves through euclidean 3-space.

A. Kosinski [6] generalized this result by showing that every product SP x 89
differentiably embedded in SP*2*! can be unknotted differentiably in SP*2t! pro-
vided p>q>1, p+q>5, and p is odd in case q = 2. For this, he used Smale
theory to show that one of the components of SPta+! - SP x 89 ig diffeomorphic to
S2x DP*1 | Then, using the fact that S9 unknots differentiably in SPT9"! under the
above assumptions on p and q, he was able to unknot SPx 89 in SPtatl  He asked
whether the same result is true in the PL (piecewise linear) category. Our purpose
is to answer this question and to drop some of the condition on p and gq. (This re-
sult has been proved independently by C. T. C. Wall.)

Reformulating Alexander’s theorem, we can say that if slx 8! is PL embedded
in S3 , then the closure of one of the components is a regular neighborhood of some
1-sphere embedded in S3. We generalize this reformulation, by proving that if there
is a locally unknotted PL embedding of SP x S in SP*2"! where p>q>1 and
p +q > 4, then the closure of one of the components of SPtat1 - 8P x 89 is a regular
neighborhood of a p-sphere embedded in SPT2*1, Using Zeeman’s unknotting theo-
rem and Whitehead’s regular neighborhood theorem [12], we can then show that
SPx S9 unknots in SPt9"!, We need the restriction that the embedding be locally
unknotted, since the Schoenflies conjecture has not been proved in the piecewise
linear category for dimension greater than 3; thus there is an essential difficulty in
local unknotting.

The author expresses his gratitude to his advisor, Professor C. T. Yang, whose
help and encouragement was indispensable throughout the writing of this paper.

1. THE PIECEWISE LINEAR CATEGORY

Throughout this paper, all simplicial complexes shall be finite simplicial com-
plexes. Sometimes we shall revert to polyhedra, in order to avoid excessive sub-
division. By a polyhedron we mean the space underlying a finite simplicial complex;
and by a subpolyhedvon of a simplicial complex, we mean the subspace underlying a
subcomplex of some rectilinear subdivision.

1.1. Definition. If K and L are simplicial complexes, then a map f: K — L is
said to be piecewise linear if there exist rectilinear subdivisions K' and L' of K
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and L such that f is a simplicial map from K' to L'. I, in addition, such a map f
is a homeomorphism onto, then K and L are said to be piecewise linearly homeo-
movphic.

1.2, Definition. An n-ball is any simplicial complex piecewise linearly homeo-
morphic to an n-simplex. An n-sphere is any simplicial complex piecewise linearly
homeomorphic to the boundary of an (n + 1)-simplex.

1.3. Definition. A combinatorial n-manifold is a simplicial complex M" such
that the link of a simplex s in M™ is either a ball or a sphere of dimension
n -1 - dim s. We denote the link of a simplex s in M" by lk(s, M").

Remark. Every combinatorial manifold is a topological manifold.

1.4. Definition. Let M™ be a combinatorial n-manifold. The union of those
simplexes whose links are balls is called the boundary of M™, and we denote it by
oM™ . We call the set M" - 9M" the inferior of M" (Int M"), Notice that oM"
either empty or is a combinatorial (n - 1)-manifold without boundary.

1.5. Definition, If M™ and M? are combinatorial manifolds and M™ c M%,
then this embedding is said to be proper if

oM™ coM? and IntM™ c Int MY,

When these conditions are satisfied, we call the pair (M%, M™) a (q, m)-manifold
pair. When both M9 and M™ are balls, we call the pair a (q, m)-ball pair; when
both are spheres, we call it a (q, m)-sphere paiv. The standard (q, m)-ball pair is
(29°™ s, s), where s is an m-simplex and Z9™™ denotes the (g - m)-fold suspen-
sion. The standard (q, m)-sphere pair is the boundary of the standard

(q + 1, m + 1)-ball pair.

_The following theorem will be used frequently. A proof can be found in [12,
Chapter 4].

1.6. THEOREM. If q - m > 3, then every (q, m)-ball pair [(q, m)-sphere pair]

is pz]ecewzse linearly homeomorphzc to the standard (a4, m)-ball pair [(q - m)-spheve
pair

1.7. Definition. I (M, M™) is a (g, m)-manifold pair, we say that the embed-
ding of M™ in MY is locally unknotted if for each vertex v of M™, the
(q - 1, m - 1)-manifold pair [lk(v, M%), Ik(v, M™)] is piecewise linearly homeo-
morphic to the standard (q - 1, m - 1)-ball pair or to the standard (g - 1, m - 1)-
sphere pair.

1.8. PROPOSITION. Let M be a connected, closed combinatorial n-manifold
embedded in an (n + 1)-spheve S™*1 and let C be the closure of one of the compo-
nents of S*t1 - M. Then C is a combmatomal manifold if and only if the embedding
of M into S™! is locally unknotted,

The proof is left to reader.
1.9. LEMMA. If (8™, s*-!) isan (n, n - 1)-sphevre pair, where the embedding is
locally unknotted, then
(sm, s~y = standard (n, n - 1)-sphere pair for n +#4, 5.

Proof. The conclusmn is equivalent to the assertion that the closure of each
component of S™ - s2-1 js an n-ball. I D is the closure of one of the components
of S - 87! then D is topologically homeomorphic to an n-ball [3]. By 1.8, D is a
combinatorlal manifold. Thus the conclusion follows from [8].
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1.10. Definition. Let X be a polyhedron, and Y a subpolyhedron. We say there
is an elementary collapse from X to Y if there exists an n-ball B such that
X=YUBand YN B isan (n - 1)-ball in aB. We say X collapses to Y (notation:
X \Y) if there exists a finite sequence of elementary collapses going from X to Y.

1.11. Definition. Let M be a combinatorial n-manifold, and X a subpolyhedron.
A regular neighborhood of X in M is a subpolyhedron N of M such that

(i) N is a closed neighborhood of X in M,
(ii) N is a combinatorial n-manifold, and
(iii) N N X,
We shall need the following version of the Regular-Neighborhood Theovem. A
proof can be found in [12, Chapter 3].

1.12, THEOREM. If X C Int M, where M is a combinatorial manifold and X is
a subpolyhedron, then any two regulay neighborhoods of X in Int M are ambient
isotopic. Moreover, the isotopy can be chosen so that it keeps X U oM fixed,

1.13. PROPOSITION. Assume j >k + 2 and
(D3, S¥) = standard (j - 1, k)-sphere,
where DI is a j-ball. Let N be a vegular neighborhood of Sk in aD3. Then theve
exists a (k + 1)-ball D¥'! properly embedded in D3 such that
(i) aDk+1 = Sk,
(ii) DI ~ NuU Dk,

Proof. By 1.12 it is sufficient to consider the case where

D) = {(x, -, x;) € R%: |x;] <1 for each i},

sk = {(xq, -, x;) € D) x; = 0 for each i>k+2, and
|xy| = 1, for some h <k+1},

N = {(x,, ---,'xj) € DJ |xy| = 1 for some h<k-+1}.

Now define
Dktl = {x,, -, Xj) e D x; = 0 for each i >k +2}.

It is obvious that D¥*! is properly embedded in DJ and that D! satisfies (i). We
shall show that D¥*! satisfies (ii), by induction on j.

When j = 2, then k = 0, and the proposition follows immediately.

Assume we have proved the proposition for j - 1. Let DJ, sk N, and D¥*! pe
defined as above. If A c DJ, let

Ay = {(Xl; ) XJ) € A: Xj Z 0}:
Ao = {(xy, -+, xj) € Ar x5 = 0},

A = {(x, =, %) € Ar x; < 0},
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Now Dj UN, isa (j - 1)-ball in aD1. Thus D] N\ D} UN,. Therefore

D\ DJ UN. If k= j - 2, we have finished. If k <j - 2, then by the induction hy-
pothesis D-(‘) N DRIy N o- Thus, by combining the two collapsings, we get

DI\ DJ UN N (DX*! U N). This proves 1.13.

1.14. PROPOSITION. Let D and D; be two n-balls and M a combinatorial n-
manifold such that M = Do U D, . Assume fuvthev that theve exists a k-sphere
Skc M such that

Dy ND; = 8Dy N 9D, = a regular neighborhood of S¥ in 3D; (k <n - 4).
Then there exists a (k + 1)-sphere S¥T1 c Int M such that M \ Sk+1,
Proof, Since k <n - 4,
(@D;, 8¥) = standard (n - 1, k)-sphere pair,

by 1.6. Thus there exists a (k + 1)-ball C; C D; that satisfies the conclusions of
1.13. Define S¥t1=C, U C;. It is clear that Sk*! c Int M, and

M =DyuUD; ~DyUC; U(DyND;) =DyuUC;~ CouC, =8,

This completes the proof of 1.14.

2. HOMEOMORPHISMS OF SPx SP

In this section we consider automorphisms of H_(SP X SP, Z), and we try to de-
termine under what conditions an automorphism can be induced by a PL homeo-
morphism of SP X SP onto itself, We study this problem in the differential category,
since the maps can be expressed so nicely in that category. Then, using techniques
of [7, Chapter 10], we shall arrive at a similar result in the PL category.

2.1. Notation. By G we shall denote the group of all 2 X 2 matrices
X3 %y

under matrix multiplication, where the x; are integers and |x;x4 - X, x3| =1. By
G' we shall denote the subgroup of G consisting of all the matrices

X3 X4
such that x; =x4 (mod 2) and x, =x3 (mod 2).
2.2. PROPOSITION. G is generated by

G2 GG

For a proof, see [10, p. 108].
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2.3. PROPOSITION. G' is generated by
1 0 0 1 1 0
G G G
The proof similar to that of 2.2.

Remark. In order to remain consistent in notation, we let C® denote the unit n-
sphere in euclidean (n + 1)-space RPt1 with its usual differential structure, that is,

ntl

+ 2
cn = (Xl, "',Xn+l)€Rn 1: Zl xi =1
1=

If x, y € C?, then x+y will denote the inner product of x and y, where x and y are
considered as vectors in R2*1, If n =1, 3, 7, then for any x, y € C", we denote by
xy the product of x and y induced by the H-space structure of C™ [4].

2.4. Definition, If M is the differentiable manifold C™ X C® (or the combina-
torial manifold S X S™), then a preferred basis of M is a basis {z 1s zz} of
H_(M, Z) such that z, is represented by C" X v (or by 8" X v) and z, is repre-
sented by v X C® (or by v X S™), where v is any point of C™ (or any vertex of S™).
If f is a topological homeomorphism of M onto itself, and if

f(z)) = az; +cz,, f.(z,) = bz +dz,,

a b
we call ( ) the matrix induced by £ with respect to {z,, z,}.
c d

2.5, PROPOSITION. Let n be odd, and let {z,, z,} be a preferred basis for
c" x C”.
(i) If n =1, 3, 17, then for each g € G there exists a diffeomorphism

f: C™ X C™ — C™ X C™ such that the matrix induced by f with vespect to {z, z, }
is g.

(ii) For each g € G', there exists a diffeomorvphism f such that g is the matrix
induced by £ with respect to {z;, 2z, }.

Proof. Let f;: C* X C" — C® X C" be defined by

£, 5) = (y, x).

0 1
The matrix induced by f; with respect to {z;, z,} is ( ) Let f, be defined
1 0

by
f,(x, y) = (%, py),

1 0
where p is the reflection about the equator. The matrix induced by f, is ( )
0o -1
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To prove (i), it suffices to show, by 2.2, that there exists a diffeomorphism f; of
1 0

C" X C™ onto itself such that the matrix induced by f; is ( ) Such an f3 is
1 1

given by

13(x, y) = (%, xy).

Part (ii) will follow from 2.3, if we can find a diffeomorphism f, of C® X C™
1 0
onto itself whose induced matrix is ( ) Making use of the map defined in
2 -1
[9, p. 14], we define f, by

f4(X, Y) = (X; y- 2(X‘ Y)x) .

This completes part (ii), and the proposition is proved.
2.6. LEMMA. Letn be odd, and let {z,, z,} be a preferred basis for S x 87,

(i) If n=1, 3, 17, then for each g € G there exists a PL homeomovphism
f: 8" x 8™ — 8 X 8™ such that the matrix induced by £ with rvespect to {z, z,} is

g.

(ii) For each g € G', theve exists a PL homeomorphism { such that the matrix
induced by f with vespect to {z, z,} is g.

Proof. Use 2.5 and the fact that any diffeomorphism can be approximated by a
PL homeomorphism.

3. THE EMBEDDING OF SP x §9 IN gPte*l

In this section we consider the embedding f: SP x 8¢ — SPTa*1 where p >q > 1.
To save space, we write T = f(SP X §9). (This will also be advantageous in the proof
of the main lemma in this section, since we leave T fixed and alter the homeomor-
phism f.) All homology and cohomology groups will have Z, the group of integers, as
their coefficient group. Since Hp+ (T) = Z, it follows that SP‘L"l+l T has exactly
two components. Let C; and C, denote the closures of these components.

3.1. PROPOSITION. C; and C, are simply connected.

Proof. By our assumptions on p and q, T is simply connected. Therefore, by
Van Kampen’s Theorem, 7;(SP*2*!1) is isomorphic to the free product of 7;(C;) and
71(C3). The proposition follows from the well-known fact that the free product of
two groups is trivial if and only if each of the groups is trivial.

3.2. PROPOSITION. C; and C, can be indexed so that H,(C;) = H,(SP) and
H,(C2) = H,(s9).

Proof. Use Alexander duality and the Mayer-Vietoris sequence.

Remark. From now on, we let C; be the closure of the component of sptatl _
that has the homology groups of a p-sphere, and we denote by i; the inclusion map of

T into Cj. Also, the embedding f: SP x 82 — §P*9%! i5 regarded as a PL homeo-
morph1sm of SP x 89 onto T.
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3.3. LEMMA. There exists a PL homeomorphism g: SP X 89 — T such that
1 © glu X 8) represents the zevo of 14(Cy).

Proof. By 3.1, 3.2, and the Hurewicz isomorphism theorem, C; is (g - 1)-
connected. Thus, the conclusion will follow if we find a PL homeomorphism
g: SPxs? T such that i; © g(ux S9) represents the zero of H (C 1)- There are
four cases.

Case (i). If p> q, then C; is g-connected and we may take g ={.

Case (ii). If p=q =0 (mod 2), let {z;, z,} be a preferred basis for
H,(SP X SP). Let {yl , Y2} be a basis for HP(SP x SP) such that

zZ; Nyi# 0 and z;"Ny;=0
whenever i #j, where ~ represents the cap product. It is well known that
yivyi =0, y\y; #0,

where \u represents the cup product. Let s; be a generator of H (C ), and t; a
generator of HP(C;). Then s; M t; # 0. Now consider i of: SPx SP - Cy, and let

(i; o £)* (t;) = my; +ny,.
It is clear that
(i; o £)* (t; v t;) = (my, +ny,) v (my, +ny,).
Since t;\ t; =0 and p is even,
0= mz(yl w y;)+2mn(y; U y,) + nz(yz U ¥2) = 2mn(y; v y,).
Thus either m =0 or n=0. ¥ n =0, then

(i, o H*(t;) = my,,
so that
[ 0 Dy (z)] Aty = (i) 0 8), (25~ [(iy 0 £ ))]) = (i 0 £), (2, ~ my;) = 0.
Hence, if n = 0, we may let g =f{.
If m = 0, we define a PL homeomorphism h that takes SP x SP onto itself by
h(x, y) = (y, x).

To complete the proof of Case (ii), we define g by g=fo h.

Case (iii). If p=q =3 or p =q =7, we use notation from (ii), and we obtain the
relations

(iyof),(z;) =ds;, (ijof),(z;) = (-b)s;

It is clear that (-b, d) = 1. Therefore there are integers a and ¢ such that
ad - bc = 1. Now let
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a b
'y=( € G.
c d

By 2.6, we have a PL. homeomorphism h: SP X SP — SP X SP that induces y with re-
spect to {zy, z,}. If we define g =f o h, then

(i o g)(z) = (ij © f), b, (z,) = (i; o f), (bz| + dz,) = (bds, +d(-b)s;) = 0.

This completes the proof for Case (iii).

Case (iv). Assume that p=q =1 (mod 2) and p # 3, 7. Using the notation from
case (ii), we again have the identities

(i, o), (z) =as,, (1 01),(z,)=cs],
(i o), (z}) = bs,, (i, 0f),(z,) = ds,.

Since the Mayer-Vietoris sequence used in 3.2 gives an isomorphism between H (T)
and H,(C)) @ HL(C;), we see that
a b
( ) € G.
c d

Since 7(C3) = Z, let ey SP — C; be a topological map that represents the generator
of 7 (Cl) Because SP and C; are simply connected and (e;), induces an isomor-
ph1sm between the homology groups of SP and Cj, it follows from [11, Theorem 3]
that e; is a homotopy equivalence. Therefore there exists an h;: C; — SP that is a
homotopy equivalence.

Let ‘
w) represent (S x v) in ﬂp(SPX sP),
Wy représent (u X SP) in 77P(S1D x sP),
w represent a generator of ﬂp(Sp).
Then
(hyoi,of) (w;)=aw, (h,oi,of) (w,)=cw,
(hy oiy of) (wy) = bw, (hyoi,of) (w,)=dw
We define

st (SPxv U uxgP) — sP

by taking h; o i o f restricted to (SPXv U ux SP). Then ¢; determines an element
of 7. L(s! ) that is equal to

[+aw, tcw] when j=1,

[+bw, +dw] when j =2
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(we use the square-bracket product of Whitehead [4, p. 8]). Now
[+aw, +cw] = +ac(w, w],
[+bw, +dw] = +bd[w, w].

Since SP is not an H-space [1], [w, w] # 0, so that it is an element of order 2
[4, p. 18]. Since ¢; can be extended to hj o ij o f: SP x 8P — SP, we obtain from [4]
the relations
+ac|w, w] = 0, +bd[w, w] = 0.
Thus
ac = 0 (mod 2), bd =0 (mod 2).

a b d c
Therefore ( € G', and hence y = € G'.
c d -b  -a

By 2.6, there is a PL homeomorphism
6: SPx P — gPx sP
that induces y with respectto {z,, z,}. Let g=f o 6. Then
(il o g)*(zz) = (i1 of), 9*(z2) = (i Of)*(czl - az,) = acs; -acs; = 0.

Hence the proof of 3.3 is complete.

4. UNKNOTTING T IN SPtatl

In this final section, we assume that we have a locally unknotted submanifold
T ¢ SPTa*! and a PL homeomorphism g: SP X S2 — T such that g(u x S9) repre-
sents the identity in 74(C ), and that p>q > 1, p+q # 4. We shall show that C, is
a regular neighborhood of some p-sphere embedded in SP*9*1, Then it will follow
that T is unknotted in SPtatl,

4.1. PROPOSITION. There exists a (q + 1)-ball Dpat!l , broperly embedded in
C1, such that 3DIT! = g(u x S9) for some vertex u of SP.

Proof. Consider g restricted to (u X S9), where u is any vertex of SP. This
represents the identity element in wq(C 1). Thus we can find a fopological map
h: D91 C,.
such that h restricted to 9D9*! is PL and h(3D2*!) = g(u x §9). By [12, Theorem
5], we may assume that h is in general position.

Now the conditions of [5, Theorem 1.1} are satisfied. Thus we have a proper
embedding

s: DIt C,

such that s(@D9"1) = g(u x S9). Hence the proof of 4.1 is complete.
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4.2, LEMMA. C; is a vegular neighborhood of a p-sphere embedded in SPTat!

Proof. Let M be the second derived neighborhood of s(DqH) in C;. Then M
isa (p+q+1)-ball. Now M N 3C; is a regular neighborhood of g(u x S9) in 9C;.
By the construction of g, the set g~!}(M N 8C;) is a regular neighborhood of
(uxs?) in SPxS?. By 1.12, g-1(M N 3C;) can be assumed to be equal to DP x §9,
where u € Int DP. Thus there exists a PL homeomorphism h, taking SP X S9 onto
itself, such that

hlg-1(M naC,;)] = sSPx 82 -g~l(Mn aCy),
h restricted to 3 [g~1(M N aC,)] = identity.
Therefore g o ho g-! is a PL homeomorphism of 0C; onto itself such that
gohogl[@C,)NnM] = 6C;) - M

and goho g'l is the identity on 9 [(oC 1) N M]. Therefore, M is PL homeomor-
phic to 9(C; - M). Since M and C; are locally unknotted, it follows that (C; - M)
is locally unknotted in SP*2*1, Therefore C; - M is a (p +q + 1)-ball. Since

(C, - M) N M is the closure of the complement of a regular neighborhood of an un-
knotted q-sphere in oM, it follows that (C; - M) N M is a regular neighborhood in
oM of a (p - 1)-sphere. Therefore, by 1.14, C; is a regular neighborhood of a p-

sphere. Thus the proof of 4.2 is complete.

4.3. THEOREM. Ifp>q> 1 and p +4q # 4, then a locally unknotted SP x S9
unknots in SPTatl

Proof. Let T® and TP be two locally flat embeddings of SP x 849 in SPtatl, By
4.2, the closure of one of the components of SPTa"! - TV say C?, isa regular

neighborhood of a p-sphere SP c sPtatl (, = @, B). By 1.6, we can find a PL ho-
meomorphism h: SPa+! _, sP+atl gych that

h(sg) = S§.

Now h(Cy) and Cp are regular neighborhoods of Sg. Thus, by 1.12, there is a PL
homeomorphism h'; SPTaT! _, gPratl gych that

h' o h(Cy) = (CB)°
Thus
h' o h(Tg) = (Tp),

and the proof of 4.3 is complete.
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