REPRESENTATION RINGS

Irving Reiner

1. INTRODUCTION

Let A be a ring with unity element. By a A-module we shall always mean a
finitely generated unitary left A-module. If C is some category of A-modules, we
may associate with C an abelian additive group a(C), generated by the set of sym-
bols {[M]: M € C}, with relations [M] = [M'] + [M"] whenever M = M' @ M". From
this definition it follows at once that [M] = [N] in a(C) if and only if there exists a
module X € C such that M@ X EN®X.

In particular, suppose that A is the group ring RG of a finite group G over an
integral domain R. Take C to be the category of R-torsion-free RG-modules, and
define multiplication in a(C) by means of

[MI[N] = [M®Rz N] (M, Ne C).
Then a(C) becomes a commutative ring, hereafter denoted by a(RG) and called the

representation ving of RG. Such rings have been studied in [4] to [7], and in [10].

Now let Z be the ring of rational integers, and let G be a group of order n. De-
fine

Z'={a/b:a,beZ, (byn) = 1}.
Then Z' is a semilocal ring, useful in the study of indecomposable ZG-modules.

The purpose of the present note is to investigate the relationship between the repre-
sentation rings a(ZG) and a(Z'G), and to settle a conjecture raised at the end of [6].

Two Z-free ZG-modules M, N are said to lie in the same genus (notation:
MV N) if and only if Z' @M = Z' Q) N. (The original definition of genus, as well
as its equivalence with the above definition, may be found in [3]. See also [1, Sec-
tion 81].)

In this note it will be shown that, as additive groups,
(1) a(ZG) = b(ZG) Da(Z'G),

where b(ZG) is some finite additive group which is an ideal in the ring a(ZG).
Explicitly,

(2) b(zG) = {[F] - [P]: F = free ZG-module, PV F}.
We easily deduce that

(3) b(zG) = {[zG] - [P]: PV ZG},
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from which the finiteness of b(ZG) is an immediate consequence. As in [13], one
shows that

(4) {6(zG)}¥> =0 in a(ZG).

Finally, we remark that b(ZG) is a quotient of the reduced projective class
group c(ZG) defined in [8] and [11].

2. MODULES OVER ORDERS

Throughout this section, R is a Dedekind ring with quotient field K, and 9% is a
finite-dimensional separable algebra over K. Let A be an R-order in 9, and let
C¢(A) be the category of R-torsion-free A-modules. For a prime ideal p in R, de-
note by R the localization of R at p, and by R* the p-adic completion of R,. We
set

- * _ 1ok
A, = RP®RA, Ap = REQR A.
Finally, let A(K) denote the direct sum of k copies of A.
As was shown by Higman [2] (see [1, (75.11)]), there exists a nonzero ideal i(A)
in R such that
i(A)- Exth (A, B) =

for all A-modules A and B, provided only that A is R-torsion-free. Now define

r = (] R, A'=R' Qg A.

P> 1(A)

Two modules M, N € C¢(A) are in the same genus (notation: MV N) if REM = REN
for all p. As in [3] or [1, Section 81], M V N if and only if R'M £ R'N. (In case
i(A) = R, the ring R' is chosen to the field K;) Equivalently, M V N if and only if
for each ideal q in R there exists a A-monomorphism ¢: M — N such that
q +ann (N/¢M) =
Here,
ann (N/¢M) = {@ € R: a-NC ¢M}.

Now let a(A) be the additive group associated with the category Cg(A), and de-
fine a(A'), a(AI";) analogously. There is an additive homomorphism

rra(n') —» 1l a(A}),
pDi(A)
defined by

rfMm]= 1II [R"I;M'] (M' € Cg(A")).
p:)i(A)

Since the Krull-Schmidt theorem holds for Ap -modules (see [1, (76.25)]), it follows
that for each p the additive group a(A*) is Z-free, with Z-basis
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{[Yl: Ye Ce(Af), Y indecomposable } .

Furthermore, the results in [3] show that 7 is monic. Thus a(A') is embedded in a
finite direct product of Z-free Z-modules, and therefore a(A') is also Z-free.

(In the trivial case where i(A) = R, the above discussion breaks down. However,
in this case R'=K, and A' = %, so it is clear that a{A') is Z-free.)

The next result is a special case of a general theorem due to Roiter [9], and we
give a simple proof for this case.

LEMMA. Let M, N € C¢(A), and suppose that M \/ N. Then there exist a posi-
tive integer k and a module P € Cg(A) such that

MAA® = N@P.

Furthermore, P v A(K) ,and P is a projective A-module.

Proof. Since M V N, there exists a A-monomorphism ¢: M — N such that
i(A) + ann (N/¢M) = R,

Hence there is an exact sequence of A-modules:

h
0 - M—-N-T—=0,
where T is an R-torsion A-module such that i(A) + ann T = R. Let us write
1=a+p (¢ € i(A), B € ann T).

Then h = (1 - g)h = ah.
Now let
0>B—o>CSTo=0

be any exact sequence of A-modules. Then there is an exact sequence of R-
modules:

wk 0
Hom (N, C) — Homy (N, T) — Extj(N, B).
Since o € i(A), we see that
6(h) = 6(ah) = ad6(h) = 0,
and therefore h lies in the image of u*. We have thus shown that each diagram
N
| n
C—T —0

whose bottom row is exact can be completed to a commutative diagram
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Vd
i h
Ve
C—T—0.

In particular, choose a free module A(K) mapping onto T, and let P be the
kernel of the map. Then there exists a map N — A(k) makmg the following diagram
commutative:

h
N T 0

b

AR — 1 —+ 0.

Since the same argument also yields a map Alk) N, we obtain a commutative dia-
gram with exact rows:

0 M ~ N T —0

IRE

0—P— AR 7 9,
It follows then from the method of proof of Schanuel’s lemma (see [12], for example)
that
MAAK 2 NDP,
as desired.

The above isomorphism immediately implies that PV A(K) , since for each p we
have

* *(k) = px* *
RoM@®ATY =R N@R P,

and therefore (by virtue of the Krull-Schmidt theorem for A*—modules) we may con-
clude that

A;(k) X REP.

This also shows that P is A-projective ([1, (77.1)]).

COROLLARY. Let MV N, where M, N € C¢(A). Then theve exist a positive in-
teger k and a projective A-module P; in the same genus as A, such that

MAAR = NP, @alk-D),

Proof. Let P and k be as in the preceding lemma. Since PV A(k) the method
of Swan [11] (see [1, (78.5)]) can be used to show that

Pz Ak-D@p

for some projective A-module P; in the same genus as A.

Let us now define a mapping u: a(A) — a(A') by setting

pM] = [R'M] (M € C(n)).
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Then p is well-defined and is an additive homomorphism. It is easily seen that u
is an epimorphism (for example, see [13] or [1, (73.5)]). If we denote the kernel of
L by b(A), then there is an exact sequence of additive groups:

0 — b(A) — a(A) — a(A') — 0.
Since a(A') is Z-free, the sequence splits, and thus

a(A) = b(A) D a(r’)
as additive groups.

Furthermore, let [M] - [N] € b(A), where M, N € C¢(A). Then [R'M] = [R'N] in
a(A'), and so for each p, [REM] = [RFN] in a(A*) Since the Krull-Schmidt theorem
holds for Aj-modules, the last equality implies that REM = RpN for each p, and
thus MV N We may then apply the preceding corollary, obtaining the relation

[M] - [N] = [P)]- [A]  in a(a).
We have therefore shown that
b(A) = {[A] - [P;]: P, VAL,

Suppose now that the number of ideal classes in R is finite, and that for each
(nonzero) prime ideal p of R the residue class field R/p is finite. Then the Jordan-
Zassenhaus theorem is applicable (see [1, Section 79]), and so the number of iso-
morphism classes of A-modules P; in the same genus as A is finite. Thus, in this
case, the group b(A) is finite.

3. MODULES OVER GROUP RINGS

We now take A = RG, where G is a finite group of order n, and R is the ring of
all algebraic integers in some algebraic number field K. As shown in [2] (see [1,
Section 75]), the Higman ideal i(RG) is precisely the principal ideal nR.

As we remarked in the introduction, a(RG) and a(R'G) are rings, and it is ob-
vious that the maps p and 7 of Section 2 are ring homomorphisms. Thus, b(RG) is
not only a finite additive group, but it is also an ideal in a(RG).

We have now established formulas (1) to (3) of Section 1, and we proceed to
sketch the proof of (4), as found in [13]. We shall show that {b(RG)}2 = 0 in a(RG).
Let

M;, N; € C/(RG), M;VN; (i=1,2).
There exist exact sequences
0-M;, - N;,-T;, -0 (i=1,2),
with- Ty and T, R-torsion RG-modules such that
(5) ammT;+ann T, =R, ammT;+nR =R (i=1, 2),

Thus, there are exact sequences of RG-modules:
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(6) 0> MM, - NIQM,; - T, @M, — 0,
(7) 0> M;®N; - NJQN; = T, ®N, — 0,
and also an exact sequence of R-modules:

(8) Tor}(T,, T,) - T,®M, - T, ®N, — T, ®T,.

The first and last terms in (8) are both zero, by virtue of (5). Therefore

T;®M, = T; ®N,. These modules are R-torsion RG-modules whose annihilator
is relatively prime to nR. Applying the method in Section 2, we may thus deduce
from (6) and (7) that

MM, @ N;®N, EM;QN, @ N, Q@M,.

This shows that
([M1] - [Nl])([M2] - [Nzl) =0,

and establishes that {b(RG)}?=0.

To conclude, let us investigate the relationship between b(RG) and the reduced
projective class group c(RG) defined in [8] and [11]. According to [8],

c(RG) = {[M] - [N]: M, N projective RG-modules, KM = KN} .

Further, [M] = [N] in ¢(RG) if and only if thére exists a free RG-module F such
that M@ F = N@ F. However, it was proved in [11] (see [1, Section 78] ) that if M
is any projective RG-module, then there exists a free RG-module F such that

M V F, and thus automatically KM = KF. Conversely, an RG-module in the same
genus as a free module must be projective. Therefore

c(RG) = {[F] - [M]: F = free RG-module, MV F}.
An easy argument (see [11]) then shows that
c(RG) = {[RG] - [P: PV RG}.

From the preceding discussion, we conclude at once that the map
A: ¢(RG) — b(RG), defined by letting the expression [RG] - [P] map onto itself, is a
ring epimorphism. However, A need not be an isomorphism. Indeed, if P V RG,
then [RG] - [P] = 0 in c¢(RG) if and only if there exists a free module F such that
RGO F=P@® F. On the other hand, [RG] - [P] =0 in b(RG) if and only if the iso-
morphism RG® X ¥ P(® X holds for some R-torsion-free RG-module X. It seems
difficult, however, to give a specific example in which A is not a monomorphism.

In order to determine the ring structure of a(RG), it is necessary to give first
the structure of a(R§ G) for each prime ideal p. Once this is known, we may regard
the ring a(R'G) as known, and we can try to describe its action on the additive group
b(RG). This is likely to be a difficult question, since the corresponding problem for
Grothendieck groups is already quite complicated (see [13]).



REPRESENTATION RINGS 391
REFERENCES

1. C. W. Curtis and I. Reiner, Representation theory of finite groups and associa-
tive algebras, Interscience, New York, 1962.

2. D. G. Higman, On orders in separable algebras, Canad. J. Math, 7 (1955), 509-
515.

3. J.-M. Maranda, On the equivalence of representations of finite groups by groups
of automorphisms of modules over Dedekind vings, Canad. J. Math. 7 (1955),
516-526.

4. 1. Reiner, The integrval representation ring of a finite grvoup, Michigan Math. J.
12 (1965), 11-22.

, Nilpotent elements in vings of integval vepresentations, Proc. Amer.
Math. Soc. 17 (1966), 270-274.

, Integral representation algebras, Trans. Amer. Math. Soc. 124 (1966),
111-121, '

, Relations between integral and modular representations, Michigan
Math. J. 13 (1966), 357-372.

8. D. S. Rim, On projective class groups, Trans. Amer, Math. Soc. 98 (1961), 459-
467.

9. A. V. Roiter, On integral vepresentations belonging to a genus, Izv. Akad. Nauk
SSSR Ser. Mat. 30 (1966), 1315-1324.

10. V. P. Rud’ko, On the integral vepresentation algebra of a cyclic group of order
p2, Dopovidi Akad. Nauk Ukrain RSR, Ser. A, Fiz.-Meh.-Mat. Nauki (1967), 35-
39.

11. R. G. Swan, Induced representations and projective modules, Ann. of Math. (2)
71 (1960), 552-578.

, Periodic resolutions for finite groups, Ann. of Math. (2) 72 (1960), 267-

12.
291.

13.

, The Grothendieck ring of a finite group, Topology 2 (1963), 85-110.

University of Illinois
Urbana, Illinois






