THE HOMOTOPY EXCISION THEOREM

E. Spanier

Dedicated to Professor R. L, Wilder on his seventieth birthday.

1. INTRODUCTION

This paper is devoted to a study of the homomorphism of homotopy groups
induced by an inclusion map

e: (B, C) C (X, A)

such that B - C =X - A, Such an inclusion map is called an excision map, and we
see that C =A N B and X = A U B, so that an excision map is an inclusion map of
the form (B, AN B)C (AU B, A). In case A and B are open sets, it is well known
[4, pp. 199-200], [6, p. 189] that the excision map induces isomorphisms of all the
corresponding singular homology and cohomology groups; however, it need not in-
duce isomorphisms of the corresponding homotopy groups.

We present an example to illustrate this. For a space Y, let SY be the join of Y
with a pair of points p, p', and let S: 714(Y) — 74+1(SY) be the suspension homomor-
phism (thus, if @: S — Y represents El len (Y) then S[a] is represented by the
composite of a fixed homeomorphism Sat1 = SSq with Sa: SS? — SY). Then SY - p
and SY - p' are contractible, SY - (p U p') has the same homotopy type as Y, and
there is a commutative diagram

e
#
Tq+1(SY - p', (SY - p) N(SY - p')) — 744+(SY, SY - p)

T SY - (UP) = mg(¥) S ag,, (5Y).

It follows that e 7g+1(SY - p!, (SY - p) N (SY - p")) — 74+1(SY, SY - p) is an iso-
morphism if and only if S: 7 (Y) — 7q+1(SY) is also an isomorphism. Since the sus-
pension homomorphism is nc?t generally an isomorphism, neither is the homomor-
phism induced on homotopy groups by an excision map.

On the other hand, with suitable hypotheses an excision map does induce an iso-
morphism in homotopy for a certain range of dimensions, and this result can be used
to prove that the suspension homomorphism is an isomorphism for a corresponding
range of dimensions.

A palr (X, A) is said to be n-connected for n > 0 if for ¢ < n every map
(E9, sa-1 ) — (X, A) is homotopic relative to S9-1 04 map sending all of E? into
A. The following is the general result proved in this note.

HOMOTOPY EXCISION THEOREM. Lef A, B be subsels of a space X=A U B
such that (A, A N B) is n-connected and (B, A N B) is m-connected, where
n, m > 0. If either
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(a) X=int AU int B or
(b) A and B are closed and A N B is a strong neighborhood deformation retract
in A (or in B),

then, for each X, € AN B, the function
ey ﬂq(B, A NnB, xy — ﬂq(A U B, A, xg)

is injective for q < n+ m - 1 and surjective for q <n+ m.

The triad homotopy groups of Blakers and Massey [2], [3] have been used to
study homomorphisms of homotopy groups induced by excision maps. In particular,
the homotopy excision theorem above is a consequence of their triad excision theo- -
rem [1], [3], [7]. Our proof uses neither triad homotopy groups nor spectral se-
quences. We use function spaces to derive the theorem from the Hurewicz iso-
morphism theorem [5, p. 166], [6, p. 397]. We present a self-contained proof based
on the methods used to prove the homotopy excision theorem in [6, pp. 484-486] for
n, m> 2,

If Y is a space that is (n - 1)-connected for some n > 1, then
(SY -p, (SY-p) N (SY -p")) and (SY -p', (SY - p) N (SY - p"))

are n-connected, and the following is an easy consequence of the homotopy excision
theorem.

SUSPENSION THEOREM. If Y is (n - 1)-connected for n > 1, then for ygy € Y,
the suspension homomovrphism

S: TTq(Y, yO) — ?Tq.i.l(SY, yO)

is a monomorphism for q < 2n - 2 and an epimorvphism for q < 2n - 1,

For other applications of the homotopy excision theorem, see [6, pp. 487-490],
[8].

We reduce the homotopy excision theorem to the case where (a) is satisfied. If
A N B is a strong deformation retract of some neighborhood U in A, then
(B, A N B) is a strong deformation retract of (UU B, U) = (U U B, A N (U U B)),
and there is a commutative triangle

nq(B, AN B, xq) - Wq(U UB, AN (UU B), xg)

N

ﬂq(A U B, A, xq) .

Hence, we have reduced consideration of e to consideration of e' for sets A and
U U B satisfying (a).

Similarly, if A N B is a strong deformation retract of some neighborhood V in
B, then A is a strong deformation retract of A U V, and there is a commutative
square
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e
7rq(B, A N B, x;) g TTq(A U B, A, x,)

4]

e
7B, (AUV)NB,x) % 7 (AUB,AUY, xy).

Hence, we have reduced consideration of e to consideration of e" for sets AUV
and B satisfying (a). In either case we have reduced the problem to proving the
homotopy excision theorem in case (a) is satisfied; in the sequel, we assume that
(a) holds.

2. CONSEQUENCES OF CONNECTIVITY

This section derives some consequences of connectivity hypotheses. These will
be used to prove the homotopy excision theorem in low dimensions (by direct means
similar to techniques in [7]). We begin by stating without proof the following ele-
mentary fact [6, pp. 373, 402].

LEMMA 1. For a pair (X, A), the following properties ave equivalent:
(a) (X, A) is n-comnected, where n> 0.
(b) Every path component of X meets A, and

14X, A, x9) =0 for xge Aand 1 <q<n,.
(c) Given a map 1: (P, Q) — (X, A), wheve (P, Q) is a polyhedral pair with
dim (P - Q) < n, then £ is homotopic velative to Q to a map sending P into A.

LEMMA 2. Let A, B be subsets of a space X such that X =int A U int B and
(A, A N B) is n-connected. Given a polyhedron P with dim P < n, subpolyhedra
Pp, Pg of P, and a map £: P — X such that £(P5) C A and 1(Pg) C B, theve is a
homotopy

H: (PXI, Py, xI) - (X, A)

velative to Py from £ to some map sending P into B.

Proof. Let K be a simplicial triangulation of P, with P, and Pp triangulated
by subcomplexes of K, and assume K to be so fine that for every simplex s € K
either f(ls|) C A or f(|s|) C B (such a K exists, because

P c £-Y(int A) U £-1(int B)) .
Let K 4 and K g be the subcomplexes of K consisting, respectively, of the simplexes

s € K such that f(|s|) A and f(|s|) c B. Define Qp = |Ka| and Qg = |Kg|, and
observe that P =Qa U Qp and that P, C Qp and Py C Qp.

Because (A, A N B) is n-connected, it follows from Lemma 1 applied to the map
£/(Qa, Qs N Qp): (Qa, Q4 NQE) — (A, AN B)
that there exists a homotopy

H:Q, XI — A
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relative to Q5 N Qg from f|(Qa, QA N Qp) to a map sending Q4 to A N B. Define
H: (P X1, P, XI) - (X, A) by

£(p) peQp, tel,
H(p, t) =
H'(p,t) peQy,tel.

Then H has all the desired properties.

COROLLARY 1., If X =int A U int B and (A, A N B) is n-connected, then (X, B)
is also n-connected.

Proof. Let a: (E2, S2-1) — (X, B) be a map with q < n, and apply Lemma 2 with
P =E4, P, empty, and Py =S%"! to obtain the result.

LEMMA 3. If X=int AU int Band (A, AN B) is n-connected and (B, A N B)
is 1-comnected, then given a map f: (gntl , S™) — (X, A) and a proper polyhedral
subset C C S™ such that £f(C) C B, f is homotopic relative to C to a map
(Entl gn)_, (B, A N B).

Proof. The desired homotopy will be the result of a sequence of homotopies.
Let K be a simplicial triangulation of Entl with C triangulated by a subcomplex
of K, and assume K so fine that K=K U Ky, where

Ky, = {seK|f(|s])cA} and Kg = {seK]|i(]s])cB}.
Because (A, A N B) is n-connected, the map
£|(|K% ], KL NnKg|) (KR, K5 nKg|) = (A, AN B)

is homotopic relative to IKK n KB| to some map sending |KR| into A N B. This
homotopy extends to a homotopy H: Etl X I — X relative to |Kg| such that

H(z, 0) = £(z) for z € Ent! and H(|Ks| X I) c A. Since S™C |K4| and C c |Kg],
H is a homotopy relative to C from f to some map f;: (Entl Sr) — (X, A) such
that f; maps all of Er*1 except for a finite set of (n+ 1)-simplexes into B. By an
additional homotopy relative to S™, we can arrange it so that the (n+ 1)-simplexes
not mapped into B by f; are pairwise disjoint and contained in Entl - gn,

Because EPtl is path connected, we can enumerate these (n+ 1)-simplexes in a
sequence s;, S, **+, S, in such a way that there exist pairwise disjoint simple arcs

ap, a,, -, a, with the following properties: each a; meets U Isjl only in its end-
points a;; the arc a; is a path from some point of S™ - C to some point of Iél |; and
for i > 1, a; has one endpoint on |éi_ 1| and one endpoint on |$;|. We “thicken” the
arcs slightly to obtain “tubes” T; homeomorphic to a; X I* that are pairwise dis-
joint and have ends on S™ - C or on Isi] . We describe a sequence of homotopies, all
of which will be relative to the space Y equal to the closure of

g - (Uls)u Umy) .

Since (B, A N B) is 1-comnected, for 1 <i <k there exists a homotopy relative
to a; from f; | a; to some map sending a; into A B. These homotopies extend to
a homotopy relative to Y from f; to f,, where f, ( U ai) Cc A N B. By retracting
a smaller tube T! around a; inside T;, we obtain a homotopy relative to Y from

f, to f;, where f; (UT;) c AN B.
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The set U ]sjl U UT; is an (n+ 1)-cell D with boundary D = D; U D,, where
D, is the n-cell equal to T{ N (S™ - C) and D, is the closure of D - D). Since D,
is a strong deformation retract of D, there exists a homotopy relative to Entl - D
from f; to f,, where f,(En*1l) C B. Since each of the homotopies

fofiof,~fy~ 1),

is relative to C and keeps S™ X I mapped into A, the composite homotopy f =~ f4 is
a homotopy with the desired properties.

3. LOW-DIMENSIONAL CASES

Throughout this section, we assume that X = int A U int B, where (A, AN B) is
n-connected and (B, A N B) is m-connected, and we consider the excision maps
e: (B, ANB)C (X, A) and e": (A, A N B) C (X, B).

LEMMA 4. For q > 2 and any Xo € A N B, the following properties are equiva-
lent:

(a) eq: m(B, AN B, xg) — m(X, A, xg) has trivial kernel for k =q - 1 and is
surjective for k = q.

(b) el m(A, AN B, x9) — m (X, B, x¢) has trivial kevnel for k =q - 1 and is
surjective for k = q.

Proof. Note that the kernel is defined even for k = 1, where the homotopy sets
have distinguished elements but are not groups. We have exact sequences (all with
base point x,)

[y

14 ?
+ = m(B,ANB) - (X, AnB) = m(X, B) > 7 _(B,ANB) — -,

i i
- — m(A, AN B) H 7,(X, A N B)

Hae

!

1
'iTk(X, A) a—> ﬂ'k_l(A, An B) — ety

and e =juiy and ek = jgij. If ey is surjective for k = g, so is j§, and by exact-
ness of the second sequence, ij# has trivial kernel for k = q - 1. If e# has trivial
kernel for k = q - 1, so has iy, and by exactness of the first sequence, j# is sur-
jective for k = q. Therefore, if (a) holds, then i# has trivial kernel for k=q - 1

and j4 is surjective for k = q.

To prove the lemma, it suffices, in view of the symmetry, to prove that (a) im-
plies (b). To prove ek has trivial kernel for k = q - 1, assume ef(a) =0 for
o € ﬂq_l(A, A N B). Then jzija) =0, and by exactness of the first sequence, there
is B € m4_1(B, A N B) such that iy(g) = id(a). Clearly,

0 = jhiya) = jhigB) = e4(B),

and since ey has trivial kernel for k = q - 1, it follows that 8 = 0. Therefore
0 = i4(B) = i#a), and as we have already remarked, i;g has trivial kernel for
k=q -1, sothat ¢ =0.

To prove e} is surjective for k = ¢, assume a ¢ ﬂq(X, B). As we noted in the
first paragraph of this proof, j4 is surjective for k = q; hence, there exists a
B e 7rq(X, A N B) such that jy(B) = a. Since ey is surjective for k = q, there is
v € 'Hq(B, A N B) such that eg(y) = ji(B). Therefore
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iaBGg) 1) = i4(B) (eaty))! = 0,

and by exactness of the second sequence, thereis a 6 € T (A, A N B) such that
1#(6) Bligly)) - 1 Since jig =0,

= ju(B) = j4ip(6) = ei(8).

Proof of the homotopy excision theovem in case n <1 or m < 1. (a) We first
consider the case where n is arbitrary and m = 0, and we show that

e#: ﬂq(B, AN B, Xo) - ﬂq(X, A, Xo)

is injective for 1 < q < n and surjective for 1 < q <n. For the first part, let
ag, ay: (B2, 8971 pg) — (B, A N B, xg), for q < n, represent elements of
T (B A N B, xq) mapped by ey to the same element of (X A, xy). Let

H- E? x I — X be a homotopy relative to po from ea to ea;. Apply Lemma 2 to
H with

— 4 _ aq-1 _ -
P=E'XI, P, =8 X1, Pg=EYXIUp,;xI

to obtain a homotopy H ~ H' relative to E2xI U po X I such that H'(E2xI)C B
and H'(S2"! XxI) C A. Then H' is a homotopy from ao to oy , and this shows that
e# is injective for q <n.

For the second part, let a: (E4, S9-1 p,) — (X, A, x;) represent an element of
7rq(X, A, xg), where q < n. Apply Lemma 2 with P = E2, Pp = Sa-1 and Py = po to
obtain a homotopy @ = 8 relative to p;, where 8 defines a map

g': (B4, 891 po) — (B, A n B, x;)

representing an element of ﬂq(B, A N B, xy) such that ep' = 8 =~ «; it follows that
e4# is surjective for q <n.
(b) Next we consider the case n=0 and m > 1. Observe that by Corollary 1,
(X, A) is m-connected, and therefore
ey 7(B, A N B, x5) — m(X, A, x;)

is a one-to-one correspondence, because both homotopy sets are trivial. By (a), we
know that

el m (A, AN B, x)) - m (X, B, x,)

is injective for 1 < q < m and surjective for 1 <qg<m. From Lemma 4 and the
above observation it follows that e is also injective for 1 < q < m and surjective
for 1 <q<m.

(c) We now assume n> 1 and m =1, To prove the result in this case, it is in
view of (a) sufficient to show that e# is injective for q = n and sur]ectlve for
q =n+ 1. For the first part we apply Lemma 3 to a homotopy

H: (ER XL, ER xiU s2-l x1) — (X, A)

from ea; to ea; with C = ER X i‘ U pgXL Wo obta?n ‘é. homotopy H ~ H', Where
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H: (EPXL E*xI U s®!x1) - (B,ANB)

is a homotopy from @ to o, and we see that ey is injective for q = n.

For the second part, we apply Lemma 3 to a map a: (Er*l 8r) - (X, A) with
C = py to obtain a homotopy o =~ 8, where B defines a map

g (2t s7) — (B, AN B)

representing an element of 7,,,(B, A N B, x3) such that e' = ~ «; and we see
that e# is surjective for q =n+ 1.

(d) In case n =1 and m > 1, it follows from (c) that e¢ is injective for
1 <q <m and surjective for 1 <q <m + 1. By Lemma 4, it follows that ey is
injective for 1 < q < m and surjective if 1 <q < m + 1.

4. FIBRATIONS

In this section we recall some properties of fibrations (Hurewicz fiber spaces).
By definition, a fibvation p: E — B is a map satisfying the homotopy lifting property
for arbitrary spaces (that is, if f: Y - E and G: Y XI — B are maps such that
G(y, 0) = pf(y), then there exists a map F: Y XI — E such that F(y, 0) = f(y) and
pF = G).

LEMMA 5. If B is a path-connected space, there exists a fibvation p: E — B
such that E is simply connected, and such that for each %X, € E,

pg m(E, x) = 7, (B, p(xy))  for k> 1.

Proof. By successively attaching cells to B, beginning with dimension 3, we can
imbed B in a path-connected space B' such that for any b € B, m1(B, b) =~ 7; (B', b)
and 7. (B', b) =0 for k> 1. Let p": E' — B' be the path fibration over B' (of paths
in E' beginning at some base point bb € B'), and let p: E — B be the restriction of
this fibration to B. Then p: E — B has the desired properties.

A fibration p: E — B having the properties stated in Lemma 5 will be called a
genevalized univevsal covering space of B. The next result will serve in place of
the spectral sequence of a fibration in the later applications.

LEMMA 6. Let p: E — B be a fibvation with fiber F over a point bg € B' C B.
Let E' = p~1(B'), and assume that (B, B') is n-connected and the reduced integral
singulay homology group Hq(F) is 0 for q <m, where m > 0. Then

Py Hq(E, E') — Hq(B, B')

is an isomorphism for q < n+ m and an epimorphism for ¢ =n+m + 1.

Proof. Because (B, B') is n-connected, we can successively attach cells to B!,
beginning with dimension n + 1, to obtain a relative CW complex (B, B') such that
B' is the n-skeleton of B and such that there exists a weak homotopy equivalence
f: B— B with f(b') = b' for all b' € B'. Let p: E — B be the fibration induced from
p by {, and using the exactness of the homotopy sequence of a fibration and the five-
lemma, observe that f induces a weak homotopy equivalence f': E — E. From the
exactness of the homology sequence of a pair and the five-lemma it follows that
there exists an isomorphism H_(E, E') = H_(E, E') induced by f'. Since (B, B') is
also n-connected and there exists a commutative square
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H,(E, E') - H,(E, E")

Py | 1 Py
H,(B, B') - H,(B, B'),

we have reduced consideration to the case where the base pair is a relative CW
complex (B B') whose n-skeleton equals B'.

Let BK be the k-skeleton of this relative CW complex, and set EX =p-1(Bk), If
{eJ} j is the set of k-cells of (B, B!), there are isomorphisms
@ quﬁ'l(ej), p L&)
J

[@ Hk(ej ’ eJ)] ® Hq_k(F)
J

Q

Hy(Ey, Ex_3)

Q

Q

H, (B¥, Bk‘l)®Hq-k(F).
Because ﬁq(F) =0 for q < m, it follows that if q - k < m, then
0 q#k,

Aolfie 1) = H(BX, B*"!) q¢=k.

Hence, B,: Hq(Ey, Byx_1) = H (Bk Bk-1) if q - k < m. Therefore, for each
k>n + 1 the homomorphlsm

Hy(Ex, Ex-1) — Hy(B¥, Bk-1)

is an isomorphism for ¢ < n+ m and an epimorphism for g =n+m+ 1 (it is an
isomorphism for ¢ <n+m+ 1 except for k = n+ 1, in which case P, is an epi-
morphism because H,;,,+3(B2t1l, B?) = 0, since m > 0). Using mduct1on on k and
the five-lemma, we find that for k > n + 1,

Hy(Ex, E') — Hy(B¥, BY)

is an isomorphism for ¢ < n+ m and an epimorphism for q =n+ m + 1. The result
follows on using the isomorphisms

Lim{Hy(Ey, E)} = Hy(E, E'), lim{Hg(Bk, B)} ~ Hy(B, BY).
k k

5. THE GENERAL CASE

In this section we assume that X = int A U int B, where (A, A n B) is n-con-
nected and (B, A N B) is m-connected with n, m > 2, and we consider the excision
map

e: (B, AN B, x5) C (X, A, x5), Xp€ ANB.
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If we let A' be the path component of A containing x3, and B' the path compo-
nent of B containing x;, then A' N B and A N B' are contained in the path com-
ponent of A N B containing x, (because (A, A N B) and (B, A N B) are 1-con-
nected). Since the path component of A N B containing x is contained in A' N B!,
we see that A' N B! is the path component of A N B containing xg. Clearly
X'=A' U B' is the path component of X containing x¢ (because (X, A) and (X, B)
are l-connected, by Corollary 1). There is a commutative square

t

e
’qu(B', A' N B, x;) g (X', A, Xg)
e
1q(B, AN B, x5) — 7y(X, A, xg).

Hence, to study ey it suffices to study el. Since (X, A) is 1-connected, it follows
that X' Nint A C A', and since (X, B) is 1-connected, X' N int B C B'. Thus, in
X', X' =inty, A' U inty, B', and so A' and B' satisfy all the original hypotheses,
and in addition, A' N B’ is path connected.

Therefore, without loss of generality we may now assume that A and B satisfy
the original hypotheses, and also that A N B is path connected. Then A, B, and X
are also path connected. Let p: E — X be a generalized universal covering space of
X (which exists, by Lemma 5). Let E, and Eg be the parts of E over A and B,
respectively, and note that Ep N Ep is the part of E over A N B. Then
(Ep, Ep N ER) is n-connected (because (A, A N B) is n-connected) and
(Eg, Ep N Eg) is m-connected (because (Eg, Ep, N Eg) is m-connected). Since
n, m > 2, the spaces Ep, Eg, and Ep, N Eg are all simply connected. Since
E =int E5 U int Eg and there is a commutative square

8y
Wq(EB, EA N EB’ Zo) — TTq(E, EA’ Zo)
l = l =
€
nq(B, AN B, x3) — wq(X, A, x;)

(where 2z € p-l(xo)), we have reduced the consideration of e4 to the consideration
of é# .

Thus, without loss of generality, we may assume that A and B satisfy all the
hypotheses, and in addition, that A N B, and hence also A, B, and X, are simply
connected. Let P be the space of paths w: (I, 0) — (X, B) topologized by the com-
pact-open topology, and define a fibration p: P —» X by p(w) = w(1). The fiber F of
p over xg€ A N B is the space of paths in X beginning in B and ending at x. Let
p': PX — X be the path fibration of all paths in X ending at xy and with p'(w) = w(0).
Then F =p'-}(B), and since PX is contractible, there are isomorphisms

P4 G
14X, B, x9) < 74(PX, F, wg) = 7q-1(F, wg)

(where wg is the constant path at xg). By Corollary 1, (X, B) is n-connected, and
so F is (n - 1)-connected.

We let E'=p-1(A) and apply Lemma 6 (with n and m interchanged) to see that
the homomorphism
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Pyt Hy(E, E') — Hy(X, A)

is an isomorphism for q < n+ m and an epimorphism for q =n+m + 1. Let

f: (B, An B) — (P, E'") be the lifting of e: (B, A N B) C (X, A) that assigns to each
b € B the constant path at b. The map { [ B imbeds B as a strong deformation
retract of P (with deformation retraction P — f(B) that contracts each path to the
constant path at its initial point). Therefore, f | B: B — P is a homotopy equiva-
lence.

From the commutative triangle

H(B, AnB) | P EY

it follows that f,: Hy(B, A N B) — Hy(P, E') is an isomorphism for q <n + m.
Since (f | B),: H,(B) =~ H (P), we deduce from the five-lemma that

(f| A N B),: Hy(A N B) — H(E")

is an isomorphism for g <n-+m - 1.
Since A N B and E' are both simply comnected, it follows from the Whitehead
theorem [5, p. 167], [6, p. 399] that
(] AN B),: 7q(A 0 B, x5) = 7o(E', wg)

is an isomorphism for q < n+ m - 2 and an epimorphism for ¢ =n+m - 1. Since
(f | B),: 7, (B, Xqg) = 7 (P, wy), the five-lemma implies that

f4: 74(B, A N B, xg) — 7y(P, E', wg)

q

is an isomorphism for q <n+ m - 1 and an epimorphism for q =n+ m. The
homotopy excision theorem now follows from commutativity of the triangle

Iy
‘i'Tq(B, AN B, Xo) - Wq(P, E', (.00)

N

Wq(X, A, x4) .
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