INVOLUTIONS FIXING PROJECTIVE SPACES
R. E. Stong

The object of this paper is to prove the following result.

THEOREM. Suppose (T, M) is a diffeventiable involution on a closed manifold
M™ (n > 2r), and its fixed point set is real projective space RP(2r). Then n = 4r,
and (T, M®) is cobordant to the involution of RP(2r) X RP(2r) that sends (X, y) into
(v, x).

This result was suggested by Conner and Floyd [2, Section 27]. In particular,

Conner and Floyd proved that n = 4r, and that if £&;: E — RP(2r) denotes the normal
bundle of RP(2r) in M™, then the Stiefel-Whitney class of ¢ is (1 +d)™, where

both m and the binomial coefficient ( Izr; ) are odd, and where d is the nonzero
class of HY(RP(2r); Z,). '

Proof of the theorem. Let RP(£) be the total space of the RP(2r - 1)-bundle
associated with &, and let p: RP(£) — RP(2r) be the projection. Borel and Hirze-
bruch [1] have shown that H¥(RP(£); Z,) is the free module over H*(RP(2r); Z;),
via p*, on the classes 1, ¢, ---, c2r-1 where c is the characteristic class of the
double cover of RP(£) by the sphere bundle of £. Multiplication in H*(RP(£); Z,) is
given by the formula f

2r 2r

0= Zczr'ip*(wi(‘g")) =2 (I.n)‘czr‘iozi
0 o ‘1

c2T + ¢27-1 o 4 terms of higher degree in «

(since m is odd), where o = p*(d). The Stiefel-Whitney class of RP({) is
:Zr
w = (1+a)?rtl 27 ( rln) (1+¢)2r-igh
0 .

(See [2, Theorem 23.3].)

By Theorem 28.1 of [2], the antipodal involution on the sphere bundle of £ bounds
a free involution, or equivalently, all of the generalized Stiefel-Whitney numbers

ciww[RP(é_';)] of RP(£) are zero (here wy denotes any product wil sew, of
S

Stiefel-Whitney classes).

Since m and (IZI; ) are odd, m > 2r + 1. If m = 2r + 1, then the bundle § and

the normal bundle of RP(2r) in RP(2r) X RP(Zr),V which is the tangent bundle 7 of
RP(2r), have the same Stiefel-Whitney class. Thus the bundles (£, RP(2r)) and
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(7, RP(2r)) are cobordant, so that the normal bundles of the fixed point sets of the
two involutions are cobordant. By Theorem 28.1 of [2], the involutions are then
cobordant.

Thus, one may assume that m > 2r + 1. Since ai=0 for i > 2r,

. 2 ‘ m “
_ (1 + a)?rtl | m-i il _ (1+a)* ™ Y §nom m-i i
_——————(1+c)m_2r‘ ‘E)O(i)(l+c) o _(1+c)m'2’ iZ=>c(i)(1+c) a

_ (1_|_ a)2r+1 (1 tedt a)m _ (1+a)2r+1 (1+ C+0l)2r+1 l+c+a m-(2r+1)
(1+ cym-2r (1+c) 1+c

_(l+c+alcta)Prtl f1+c+a m-(2r+1)

B (1+c) 1+c

= {1+ea(c+a)+calc+a)+cialc+a)+ -} {1+c2+a2(c+al}™

{1+ a+ca+ ot --}rErtl)

Because m is odd, m - (2r + 1) is even. Let m - (2r + 1) = 2°(1 + 2v), with
v>0, s> 1.
If s=1,then w,(RP(§)) = a(c+ a)+rc? + a? or ca = wy(RP(§)) +rc2. Then

c2t g2r-1 _ c(ca)Zr-l = C(Wz +cm)Zr-1’

which is zero, since it gives a generalized Stiefel-Whitney number when evaluated on
the fundamental class of RP(£). On the other hand,

c?T = ¢27-1 o + terms of higher degree in « ,

so that

ch aZr-l 2r-1 aZr

= C ’

which is the nonzero class of H4r‘1(RP(§); Z).
Thus s > 1, and w,(RP(£)) = a(c + a)+re? or alc+a) = w, + T
If 2° < 2r, then

(l+c+wy+ rc2)ertl

(1+c)

w(RP(£)) = {1402 +-3,

so that .
w,{(RP(£)) = 0% +P(w,, c),

where P(w,, c) denotes a polynomial in w, and c. Since 2r > 2% ) we let
2r =k2% +u (k> 1, 0 <u<2%), Then

s s
[a(c+a)]uak2 clr-l1-u _ guu k2™ o2r-l-u - g2r ch-l’

because all other terms of [a(c + a)[* ak2® contain a higher power of & and are
therefore zero. Thus

271027 = (w, + rc?)* (W, + P(w, , c)f<cér-1-u
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is zero, since it gives a generalized Stiefel-Whitney number. Since this is still the
nonzero class, we have established a contradiction.

Thus 2° > 2r, and
S
w(E) = (1+d)™ = (1+d)2r+1 (1+d)m-(2r+1) - (1+d)2r+1(1 +d2 )2v+l;

S
but d4 =0, since 25 > 2r. Hence w(£) = (1+ d)2**1, and as we noted for the case
m = 2r + 1, this establishes the theorem.
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