INVOLUTIONS FIXING PROJECTIVE SPACES

R. E. Stong

The object of this paper is to prove the following result.

THEOREM. Suppose (T, M^n) is a differentiable involution on a closed manifold M^n (n > 2r), and its fixed point set is real projective space RP(2r). Then n = 4r, and (T, M^n) is cobordant to the involution of RP(2r) × RP(2r) that sends (x, y) into (y, x).

This result was suggested by Conner and Floyd [2, Section 27]. In particular, Conner and Floyd proved that n = 4r, and that if $\xi : E \to RP(2r)$ denotes the normal bundle of RP(2r) in M^n , then the Stiefel-Whitney class of ξ is $(1+d)^m$, where both m and the binomial coefficient $\binom{m}{2r}$ are odd, and where d is the nonzero class of $H^1(RP(2r); \mathbb{Z}_2)$.

Proof of the theorem. Let $RP(\xi)$ be the total space of the RP(2r-1)-bundle associated with ξ , and let $p: RP(\xi) \to RP(2r)$ be the projection. Borel and Hirzebruch [1] have shown that $H^*(RP(\xi); Z_2)$ is the free module over $H^*(RP(2r); Z_2)$, via p^* , on the classes 1, c, ..., c^{2r-1} , where c is the characteristic class of the double cover of $RP(\xi)$ by the sphere bundle of ξ . Multiplication in $H^*(RP(\xi); Z_2)$ is given by the formula

$$0 = \sum_{i=0}^{2r} c^{2r-i} p^*(w_i(\xi)) = \sum_{i=0}^{2r} {m \choose i} c^{2r-i} \alpha^i$$

= $c^{2r} + c^{2r-1}\alpha$ + terms of higher degree in α

(since m is odd), where $\alpha = p^*(d)$. The Stiefel-Whitney class of $RP(\xi)$ is

$$w = (1+\alpha)^{2r+1} \left\{ \sum_{i=0}^{2r} {m \choose i} (1+c)^{2r-i} \alpha^{i} \right\}.$$

(See [2, Theorem 23.3].)

By Theorem 28.1 of [2], the antipodal involution on the sphere bundle of ξ bounds a free involution, or equivalently, all of the generalized Stiefel-Whitney numbers $c^i w_{\omega}[RP(\xi)]$ of $RP(\xi)$ are zero (here w_{ω} denotes any product w_i w_i of Stiefel-Whitney classes).

Since m and $\binom{m}{2r}$ are odd, $m \geq 2r + 1$. If m = 2r + 1, then the bundle ξ and the normal bundle of RP(2r) in RP(2r) × RP(2r), which is the tangent bundle τ of RP(2r), have the same Stiefel-Whitney class. Thus the bundles $(\xi, RP(2r))$ and

Received March 15, 1966.

The author is indebted to the National Science Foundation for financial support during this work.

 $(\tau, RP(2r))$ are cobordant, so that the normal bundles of the fixed point sets of the two involutions are cobordant. By Theorem 28.1 of [2], the involutions are then cobordant.

Thus, one may assume that m > 2r + 1. Since $\alpha^i = 0$ for i > 2r,

$$w = \frac{(1+\alpha)^{2r+1}}{(1+c)^{m-2r}} \left\{ \sum_{i=0}^{2r} {m \choose i} (1+c)^{m-i} \alpha^{i} \right\} = \frac{(1+\alpha)^{2r+1}}{(1+c)^{m-2r}} \left\{ \sum_{i=0}^{m} {m \choose i} (1+c)^{m-i} \alpha^{i} \right\}$$

$$= \frac{(1+\alpha)^{2r+1}}{(1+c)^{m-2r}} (1+c+\alpha)^{m} = \frac{(1+\alpha)^{2r+1} (1+c+\alpha)^{2r+1}}{(1+c)} \left\{ \frac{1+c+\alpha}{1+c} \right\}^{m-(2r+1)}$$

$$= \frac{(1+c+\alpha(c+\alpha))^{2r+1}}{(1+c)} \left\{ \frac{1+c+\alpha}{1+c} \right\}^{m-(2r+1)}$$

$$= \left\{ 1+\alpha(c+\alpha)+c\alpha(c+\alpha)+c^{2}\alpha(c+\alpha)+\cdots \right\} \cdot \left\{ 1+c^{2}+\alpha^{2}(c+\alpha)^{2} \right\}^{r}$$

$$\cdot \left\{ 1+\alpha+c\alpha+c^{2}\alpha+\cdots \right\}^{m-(2r+1)}.$$

Because m is odd, m - (2r + 1) is even. Let m - (2r + 1) = 2^s(1 + 2v), with v > 0, s > 1.

If
$$s = 1$$
, then $w_2(RP(\xi)) = \alpha(c + \alpha) + rc^2 + \alpha^2$ or $c\alpha = w_2(RP(\xi)) + rc^2$. Then
$$c^{2r} \alpha^{2r-1} = c(c\alpha)^{2r-1} = c(w_2 + rc^2)^{2r-1},$$

which is zero, since it gives a generalized Stiefel-Whitney number when evaluated on the fundamental class of $RP(\xi)$. On the other hand,

 $c^{2r} = c^{2r-1} \alpha + \text{terms of higher degree in } \alpha$,

so that

$$c^{2r} \alpha^{2r-1} = c^{2r-1} \alpha^{2r}.$$

which is the nonzero class of $H^{4r-1}(RP(\xi); \mathbb{Z}_2)$.

Thus s > 1, and $w_2(RP(\xi)) = \alpha(c + \alpha) + rc^2$ or $\alpha(c + \alpha) = w_2 + rc$ If $2^s < 2r$, then

$$w(RP(\xi)) = \frac{(1+c+w_2+rc^2)^{2r+1}}{(1+c)} \{1+\alpha^{2^s}+\cdots\},$$

so that

$$\mathbf{w}_{2s}(\mathbf{RP}(\xi)) = \alpha^{2^{s}} + \mathbf{P}(\mathbf{w}_{2}, \mathbf{c}),$$

where $P(w_2$, c) denotes a polynomial in w_2 and c. Since $2r \ge 2^s$, we let $2r = k2^s + u$ (k ≥ 1 , $0 \le u < 2^s$). Then

$$[\alpha(c+\alpha)]^{u} \alpha^{k2^{s}} c^{2r-1-u} = \alpha^{u} c^{u} \alpha^{k2^{s}} c^{2r-1-u} = \alpha^{2r} c^{2r-1},$$

because all other terms of $[\alpha(c+\alpha)]^u \alpha^{k2}$ contain a higher power of α and are therefore zero. Thus

$$c^{2r-1} \alpha^{2r} = (w_2 + rc^2)^u (w_2^s + P(w_2, c))^k c^{2r-1-u}$$

is zero, since it gives a generalized Stiefel-Whitney number. Since this is still the nonzero class, we have established a contradiction.

Thus $2^s > 2r$, and

$$w(\xi) = (1+d)^{m} = (1+d)^{2r+1}(1+d)^{m-(2r+1)} = (1+d)^{2r+1}(1+d^{2s})^{2v+1};$$

but $d^{2^{s}} = 0$, since $2^{s} > 2r$. Hence $w(\xi) = (1+d)^{2r+1}$, and as we noted for the case m = 2r + 1, this establishes the theorem.

REFERENCES

- 1. A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, I, Amer. J. Math. 80 (1958), 458-538.
- 2. P. E. Conner and E. E. Floyd, *Differentiable periodic maps*, Ergebnisse der Mathematik und ihrer Grenzgebiete N. F. no. 15, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964.

Mathematical Institute
Oxford University