NAIMARK’S MOMENT THEOREM
S. K. Berberian

There are intimate connections between the Naimark—Nagy dilation theory, the
theory of group representations, and the theory of integration with respect to posi-
tive operator-valued measures. The object of this largely expository article is to
inspect some of the details, raise a few questions, and record some partial answers.
The principal results are some minor improvements on Nalmark’s dilation theorem
and Naimark’s moment theorem; these results are then related to the Nagy dilation
of a contraction, and the article concludes with a historical note.

I am indebted to J. G. Stampfli and R. G. Douglas for several key suggestions,
and to G. Piranian for insisting on two revisions, each of which improved the paper.

1. COMPLEMENTS TO NAtI‘MARK’S DILATION THEOREM

Our basic references for Hilbert space and measure theory are the books [9],
[10] of P. R. Halmos; thus inner products are denoted by (x, y), continuous linear
mappings are called operators, a nonempty class of sets is called a #ing if it con-
tains differences and finite unions, and a nonnegative extended real valued function
defined on a ring of sets is called a measure if it is countably additive and vanishes
on the empty set. Before stating Naimark’s dilation theorem, we review some con-
cepts that are not quite standard. The first definition is motivated by the finite ad-
ditivity of the classical Jordan content: \]

Definition 1. An operator content is a quadruple (X, #, «, F), where X is a
set, # is a ring of subsets of X, & is a Hilbert space, and F is a function defined
on & whose values are positive operators in &, such that F(M U N) = F(M) + F(N)
whenever M and N are disjoint sets in #£.

To simplify notation, let us fix an operator content (X, #, o, F); we may then
refer briefly to F or to (s, F) as an operator content. If M and N are sets in #
such that M C N, then F(M) < F(N); that is, F is monofone. It follows that if M, is
an increasing sequence of sets in # whose union M is also in &, then F(M,) is an
increasing sequence of (positive) Hermitian operators bounded above by F(M), and
therefore LUB F(M,) < F(M) [2, p. 6, Proposition 1].

Definition 2. We say that F is continuous if F(M) = LUB F(M,,) whenever M,
is an increasing sequence in ‘#' whose union M is also in &; briefly, M, T M im-
plies F(M,) T F(M). We then call F an operator measure.

Continuity is equivalent to the condition that for each vector x in &, the set
function M — (F(M)x, x) is a (finite) measure on # [2, p. 8, Theorem 1]. In order
that F be continuous, it is necessary and sufficient that F be countably additive in
the weak (or the strong) operator topology (see [10, p. 59, Theorem 3] and [2, Section
3]). If o is one-dimensional, the values of F may be regarded as real numbers,
thus operator measures are a generahzatmn of finite (numerical) measures.

Definition 3. We say that F is bounded if there exists a positive real number k
such that [|[F(M)| <k for all M in # (equivalently, F(M) < kI for all M in &,
where I is the identity operator in ).
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An operator measure defined on a o -ring is necessarily bounded [2, p. 13, Theo-
rem 5]. An operator content whose values are projections (that is, Hermitian idem-
potents) is bounded. If X € &, then F is bounded because 0 < F(M) < F(X) for all
M in £.

Definition 4. If X € # and F(X) =1, we say that F is normalized,

Definition 5. If F is normalized and projection-valued, we say that F is spec-
tral. An operator measure that is spectral is called a spectral measure.

In general we assume merely that F is an operator content; the properties of
continuity, boundedness, normalization, and spectrality will be stated explicitly when
they are called for.

Definition 6. An operator content (X, #, 9, E) is called a dilation of the oper-
ator content (X, #, o#, F) if ¢ is a closed linear subspace of %, and if moreover

F(M)x = PE(M)x

for all x in & and M in %, where P is the projection of @ on #. We say briefly
that (2, E) is a dilation of (s#, F), or that (s¢, F) is a compression of (@, E) (8,
p. 126]. If, moreover, the set of vectors F(M)x (x € o#, M € &) is total in @, we
say that (@, E) is a minimal dilation of (¢, F).

Definition 1. Two dilations (27, Ej) and (9, , E;) of («#, F) are said to be
isomorphic over s if there exists an isometric linear mapping W of %, onto 2,
such that WE(M) = E,(M)W for all M in %, and Wx = x for all x in .

We can now state Naimark’s dilation theorem concisely as follows [14]:

NAi’MARK’S DILATION THEOREM. Let (X, R, K, F) be a normalized operator
content.

Existence: There exists a minimal spectral dilation (D, E) of (¢, F).

Uniqueness: Any two minimal spectrval dilations of (s, F) are isomorphic over
C%'

Continuity: If F is continuous, then so is E.

Nalmark’s proof makes crucial use of the assumption that F is normalized (see
[14] and [24]) and therefore bounded; at the expense of uniqueness, the theorem can
be extended to bounded operator contents:

THEOREM 1. Let & be a ring of subsets of a set X, and suppose F is a finitely
additive set function on R whose values ave positive opevralors in a Hilbevt space
oH. Assume that theve exists a positive veal numbey k such that ll F(M) || <Lk for
all M in 2.

Then theve exists a Hilbert space @D containing # as closed linear subspace,
and a finitely additive set function E on R whose values are projection operators in
D, such that

F(M)x = kPE(M)x

for all X in & and M in R, wheve P is the projection of @ on #. If F is con-
tinuous, we can take E to be continuous also.

Our hypothesis, briefly, is that the operator content F is bounded by k; the con-
clusion is that k! F possesses a projection-valued dilation E, and that E can be
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taken to be continuous if F is continuous. We remark that k is any upper bound for
the || F(M)|; it is not assumed to be minimal.

Proof of Theorem 1. We can suppose that k = 1 (replace F by k-1 F); then
0L FM)LI forall M in #. (If T is any operator such that 0 < T <1, it is easy
to produce a projection that dilates T [8, p. 128, Theorem 2|; however, our problem
is to dilate a family of such operators simultaneously and in a coherent manner.)
Let « be the class of all sets A C X suchthat AN M € & for every M in'@®; then
& is an algebra containing &£ as an ideal, and the formula

G(A) = LUB{F(M): MCA, M e#}
defines a finitely additive extension of F to « such that 0 < G(A) <1 for all A in

#. Moreover, if F is continuous, then so is G {2, p. 17, Theorem 8].

Changing notation, we can suppose that # is already an algebra and F(X) <1.
Let Y be the result of adjoining to X a new point w, and let & be the algebra con-

sisting of the sets M and M U {w }, where M varies over %. Extend F to & by
the formula

FMU {w}) = FIM) + (I - F(X)).

(This ingenious idea, the key to the whole proof, is due to J. G. Stampfli; it was com-
municated to me by R. G. Douglas.) The extra feature of the extension is that it is
normalized (F(Y) = I); it therefore possesses a Naimark minimal spectral dilation,
whose restriction to & is the promised set function E.

There is a useful application of Theorem 1 to the theory of integration with re-
spect to operator measures:

COROLLARY. If F is an operator measure defined on a ©-ving 9‘2, and if k is
the least uppey bound of ll F(M) “ as M varies over R, then

ledE

Jor every complex-valued bounded measurable function f.

<kl

Proof. As noted earlier, k is necessarily finite. With notation as in Theorem 1,
we have the relation

F(M)x = kPE(M)x

for all x in & and M in £, and therefore

(Sde)x = kP(Sde)x

for all x in o (see [2, p. 27, Definition 9]). Then, for all x in o, we have the in-

equalities
(S raw )| < |(§ ram)x]| < bl 1l

by an elementary property of projection-valued operator measures [2, p. 35, Theo-
rem 16].
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The proof of the corollary is pleasantly brief, but the proof of Naimark’s dilation
theorem is not; from the point of view of integration theory, it would be nice to have
a straightforward proof of the corollary that does not resort to dilation theory.

2. POSITIVE DEFINITE vs. POSITIVE TYPE

Let G be a group (with multiplicative notation, and with neutral element e). A
complex-valued function p on G is said to be positive definite if

27 plt-1s)c &, > 0

s,t

for every finitely nonzero family (cg) of complex numbers indexed by G. The clas-
sical result, for the case that G is the group of integers, is due to G. Herglotz [12]:
every such function (really a bilateral sequence) may be represented by means of a
suitable measure on the circle group (see [18, p. 116] or [16, p. 411]). More gen-
erally, if G is any locally compact abelian group and X is the character group of G
{13, p. 134], then every continuous positive definite function on G may be repre-
sented by means of a suitable measure on X; this was proved for the group of real
numbers by S. Bochner [3, p. 76, Theorem 23], and for the general case by A, Weil
[25, p. 122] and D. A. Raikov [17]. There is even a theorem of this type that holds
for arbitrary topological groups (see [16, p. 393, Theorem 1]).

This is, so to speak, the one-dimensional case. How should the concept of posi-
tive definiteness be extended to functions whose values are operators in a not neces-
sarily one-dimensional Hilbert space &#? The literature indicates two answers:

Definition 8. A family (Ts) of operators in &, indexed by a group G, is said to
be of positive type if

for every finitely nonzero family (x;) of vectors in o indexed by G.

Définition 9. A family (Tg) of operators in &, indexed by a group G, will be
called positive definite if for each vector x in o¢, the complex-valued function
s — (T4 X, X) is positive definite in the classical sense, that is,

27 (T
-

x,x)c C >0
s S —_
s,t

1

for every finitely nonzero family (cg) of complex numbers indexed by G.

The terminology in the literature varies. The concept in Definition 8 appears in
the work of Naimark [15], who calls it “positive definite”; Nagy calls it “type positif”
[23], and A. Devinatz calls it “strongly positive definite” [6]. The concept in Defini-
tion 9 is mentioned by J. Bram [4, p. 79, part (b) of Theorem B], and it is implicit in
Nagy’s first paper on the dilation of contractions [22]. Definition 8 has proved to be
the better suited for generalization [24], as we shall note in the next section.

It is obvious that every family of positive type is positive definite; I do not know
if the converse holds in general, but it does when the group is abelian:
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THEOREM 2. Ewery positive definite family of operators indexed by an abelian
group is of positive type.

Proof. Denote the group by G, the Hilbert space by #, and the family of opera-
tors by (Ts). Regard G as a discrete topological group, and let X be the character
group of G, that is, the group of all homomorphisms & of G into the circle group
K={x l)\r =1} (see[13, p. 137]). With the topology of pointwise convergence, X
is compact [13, p. 153]. If s € G, we write § for the function on X defined by
§(a) = a(s); thus § is a continuous character of X.

To each vector x in ‘¢ there corresponds, by the Herglotz-Bochner-Weil-
Raikov theorem, a unique Baire measure [x on X such that

(1) (T x, x) = Sédp,x

for all s in G (see [16, p. 410]).

Let .« be the linear span of the functions §, that is, let .« be the class of all
functions f on X such that

n
(2) £f= 27c;8;
i=1

for suitable complex numbers c¢; , **, ¢, and elements s;, ***, s, of G (such func-
tions are sometimes called trigonometric polynomials). Since

(st)y* =8t, (s!)>=(), and&=1,
it follows that « is a complex *-algebra containing the constant functions; since
obviously separates the points of X, it follows from the Weierstrass-Stone theorem

that « is uniformly dense in the algebra #(X) of all continuous complex-valued
functions on X.

We now establish an operator-valued correspondence f — T(f) (f € ) as fol-
lows. If f € & is written as in (2), we propose to define

(3) T(#) = 2 ¢;Ts;

i=1

since it is clear from (1) and (2) that the relation

( [éi ciTsi]x, x) = Sfdux

holds for all x in &, the operator on the right side of (3) depends only on f and not
on the particular representation (2). Thus T(f) is well-defined by (3), and

(4) (T@)x, x) = Sfdp.x

for all f in .« and x in ‘9.
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The correspondence -f — T(f) is obviously linear, and it is immediate from (4)
that T(f) > 0 whenever f > 0. Also, T(§) = T4 for all s in G, and in particular
T(1) = T.. It follows easily that

Il < 2], |||

for all f in « (where |f ||oo is the least upper bound of |f(a)| as o varies over
X). Thus the correspondence f — T(f) (f € «) is continuous in norm; it can there-
fore be extended by continuity to a correspondence f — T(f) (f € (X)), and it is
Fasy to s]ee that the extension retains the property that T(f) > 0 whenever f > 0 (see
2, p. 718]).

By the operatorial Riesz-Markoff theorem proved in [2, p. 39], there exists a
unique operator measure F on the Baire sets of X such that

() = Sde

for all f in € (X); in particular T(8) = SﬁdF, that is,

(5) T, = §sar

S

for all s in G.

We summarize this result in the form of a genervalized Hevglotz theovem: if G
is a discrete abelian group with character group X, and if (Tg) is a family of oper-
ators indexed by G, then (Tg) is positive definite if and only if there exists an
operator measure F on the Baire sets of X such that (5) holds. (The “if” part is
trivial; see [18, p. 117].) Moreover, since the trigonometric polynomials are uni-
formly dense in #(X), the operator measure F is uniquely determined by (5) (see
[2, p. 27, Theorem 10, and p. 29, Theorem 11]).

Let k = ]I F(X) “ . By Theorem 1, there exists a projection-valued dilation (@, E)
of (o7, k-1 F); thus
F(M)x = kPE(M)x

for all x in 'o¢ and all Baire sets M of X, where P is the projection of @ on .
It follows easily that

(6) (Sde)x = kP(Sde)x

for all x in &¢ and all complex-valued bounded Baire functions f on X [2, p. 27].
For each s in G define

(7) Vs = Sé‘dE.

It is easy to see that Vgt=Vs V¢ for all s and t, Vi = V¥ when t = s™1 , and Ve is

a projection (see [2, p. 27, Theorem 10, and p. 34, Theorem 15]); so to speak,
s — Vg is a “partially unitary” representation of G in @. From (5) to (7) we see
that
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TgX = (SédF)x = kP(SédE)x = kPV_ x

for all x in ¢ and s in G;j it follows that if (xs) is any finitely nonzero family of
vectors in &# indexed by G, then

(T

1 X x) = k(PVyV x_, x) = k(V_x_, V,x),

and therefore

s’
IS

27 (T X xt)=k||EstS||220.
s,t t s

This shows that the family (Ty) is of positive type, and it concludes the proof of
Theorem 2. Note also that ‘

k= 150l = || § 1ar]| = || § sar|| = .1

citing (5) and the corollary of Theorem 1, we conclude that

ITsll <kl8fe =% = [Tl
More generally:

COROLLARY. If (T,) is a positive definite family of operators indexed by an
arbitrary group G, then

(8) Il < Tl

for all s in G.

Proof. Let s be any given element of G, and let H be the subgroup of G gener-
ated by s. Then H is abelian, and the family h — Ty (h € H) is also positive defi-
nite; therefore ]I TS“ < "Te“ , by the preceding argument. The related inequality

(9) [(Tx, x)| < (T.x x),

valid for every s in G and every vector x, is elementary [16, p. 391].

Theorem 2 and its corollary make no mention of dilation theory in their state-
ments, but I do not know how to prove them without using dilation theory.

3. COMPLEMENTS TO NAIMARK’S MOMENT THEOREM

If (Ts) is a family of operators indexed by a topological group G, there are ob-
vious definitions of weak and strong continuity for the family, strong continuity im-
plies weak continuity, and the two notions coincide when the T, are unitary [24,

p. 22].

We return to the theme, touched in Section 2, of representing functions on a lo-
cally compact abelian group by means of measures on its character group. For
operator-valued functions, the definitive result is due to Naimark [15] (for the
definition of a regular weakly Borel operator measure, see [2, p. 46]):
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NAIMARK’S MOMENT THEOREM. Lef G be a locally compact abelian group,
with chavacter group X, and let (Tg) be a weakly continuous family of operators in
a Hilbert space o, indexed by G, such that T, = 1. The following conditions on the
Jamily are equivalent:

(a) (Tg) is of positive type.
(b) (’i‘s) is positive definite,

(c) There exists a vegular weakly Borel opevator measure F (necessarily
unique) on X such that

(10) T, = SédF

Jor all s in G.

This theorem is cited by Bram [4, p. 79] as being contained in Naimark’s paper
[15]; strictly speaking, Naimark proves the equivalence of (a) and (c), but (a) and (b)
are equivalent by Theorem 2. The hypothesis T =1 shows up in part (c) as
F(X) = I; this hypothesis can be eliminated:

THEOREM 3. Naimark's moment theorem remains true if the hypothesis T =1
is omitted.

Proof. (a) and (b) are equivalent by Theorem 2.

(c) implies (b): Fix a vector x in &, and let p be the regular weakly Borel
measure on X defined by

p(M) = (F(M)x, x)

(see [2, p. 44, proof of Theorem 20]). Then
(Tsx, ) = 5 Sdp

for all s in G [2, p. 27], and the function s — (Tx, xX) is positive definite by an
elementary argument [18, p. 117].

(b) implies (c): The argument for this is given in [1]; for the sake of complete-
ness, we sketch it here. For each vector x in <#, the function s — (T3x, x) is con-
tinuous and positive definite; by the Herglotz-Bochner-Weil-Raikov theorem, there
exists a unique finite regular weakly Borel measure py, on X such that

(11) (T, x, x) = Ss‘dux
for all s in G. For each pair of vectors x, y in ¢, the formula
_ 1{ . . 1
Mx v 4 “‘x+y—“'x-y+1“‘x+iy_1u'x—iy

defines a regular weakly Borel complex measure (briefly, complex measure) such
that

(12) (Tgx,y) = S Sduy
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for all s in G, If p and v are complex measures on X such that

S §dup = Sédv

for all s in G, then p = v by the uniqueness theorem for Fourier-Stieltjes trans-
forms (see [5, p. 88, Theorem 1] and [25, p. 122]); from this, and (12), it follows
that py y is a sesquilinear function of x and y. Moreover, for any weakly Borel
set M in X we see that

|U'x,x(M)| = U-x(M) < ,(.LX(X) = Séd“’x = (Tex: x) < "Te " "XHZ;

it follows that for fixed M, p.x’y(M) is a bounded sesquilinear form in x and y [10,
p. 33], thus there is a unique operator F(M) such that

(F(M)x, y) = py,y(M)
for all x and y [10, p. 39]. In particular,
(13) (F(M)x, x) = py(M)

for all M and x; it follows at once that F is an operator measure on the weakly
Borel sets of X [2, p. 8, Theorem 1], and that it is regular (see [2, p. 44, proof of
Theorem 20]). From (11) and (13) we see that

(Tsx, x) = Sé‘dux = ([S§dF]x,x),

and the formula (10) is established.

The assertion concerning the uniqueness of F follows from the fact, cited earlier
in the proof, that two complex measures on X are identical if they assign the same
integral to the functions §. (We remark that Theorem 3 includes the generalized
Herglotz theorem mentioned in the proof of Theorem 2, but the proof of Theorem 3
lies deeper.)

In Naimark’s paper [15] it is also shown that condition (a) of the moment theorem
(assuming weak continuity and T, =1I) is equivalent to the following condition:

(d) There exists a Hilbert space @ containing o as closed linear subspace, and
a strongly continuous unitary vepresentation s — Ug of G in @ such that

Tgx = PUgx

Jor all x in # and s in G, wheve P is the projection of @ on K.

The nontrivial part of the equivalence is to prove that (a) implies (d). One method
is to take the normalized operator measure F given by part (c), to let (@, E) be the

Naimark minimal spectral dilation of (s, F), and to define Ug = S SdE for all s in
G.

There is a simpler procedure; the statements (a) and (d) do not involve X, and
Nagy showed that their equivalence can be proved directly, without appeal to charac-
ter theory or measure theory [23]. Indeed, Nagy’s proof works for arbitrary
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topological groups (not necessarily abelian or locally compact). The definitive re-
sult in this essentially algebraic direction was also obtained by Nagy [24, Principal
Theorem]; the setting for this beautiful theorem is an arbitrary involutive semigroup.

In view of condition (d), the Naimark moment theorem yields the following strik-
ing result:

If (Tg) is a family of operators indexed by a locally compact abelian group, and
if To =1, then the family is weakly continuous and positive definite if and only if it is
strongly continuous and of positive type.

I do not know whether the preceding statement is true without the normalization
assumption T, =1. A related problem is to prove the statement without making use
of character theory or dilation theory.

4, THE NAGY UNITARY DILATION OF A CONTRACTION

The proof of Theorem 2 is much simpler when G is the group of integers. Then
X is the circle group K, and the classical versions of the Herglotz and Weierstrass
theorems are adequate for the proof. We summarize by restating Theorem 3 for the
group of integers:

THEOREM 4. If (T,) is a bilateral sequence of operators in a Hilbert space #,
the following conditions are equivalent;

(a) 2 (T
m,n
vectors in .

m-nXm s Xn) > 0 for every finitely nonzevo bilaterval sequence (x,) of

(b) 2 (T _nX, X)Cp, €y > 0 for every X in H and every finitely nonzevo bi-
m,n
lateral sequence (c,) of complex numbers.

(c) There exists an opevator measure F (necessarily unique) on the Borel sets of
the unit circle K = {A: !Al = 1} such that

T, = ShndF

for all integers n.

A fundamental theorem of Nagy asserts that if T is any contraction operator
(that is, ||T" < 1), then the bilateral sequence (T(n)) is of positive type [23, p. 106],
where the operators T(n) are defined as follows:

™ for n> 0,
) = {1 for n=0,
(T*)|n| for n < 0.

It follows from Theorem 4 that if T is a contraction, there exists a unique operator
measure F on the Borel sets of K such that

(14) ) = (amaF  (=0,41,22, ).
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Such an operator measure is necessarily normalized (take n = 0 in (14)). Since
A-1 =X for A in K, the condition (14) is equivalent to

(15) ™ = ShndF (n=1,2, 3, )
(see [2, p. 27, Theorem 10]), and (15) implies
n
(16) XxndF = (ShdF) n=2, 3,4, ).

Definition 11. A Nagy operatoy measure is a normalized operator measure F ‘
on the Borel sets of the unit circle K that satisfies the condition (16).

The foregoing remarks constitute a proof of Nagy’s fundamental representation
theorem for contractions, which is a direct generalization of the spectral theorem
for a unitary operator (see [22] and [20, p. 581]):

If T is a contraction, there exists one and only one Nagy opevator measure F
such that T = S AdF.

With notation as in the preceding statement, we call F the Nagy operator meas-
ure associated with the contraction T. In the reverse direction:

THEOREM 5. If F is any operator measure on the Bovrel sets of the unit civcle
K such that F(K) <1, then the opevator T = S A dF is a contraction.

This theorem follows immediately from the corollary of Theorem 1. For the
case where F is normalized, it was proved by M. Schreiber [20, p. 581]. (Warning:
even when F(K) =1, the Nagy operator measure associated with T does not coincide
with F, unless F already satisfies the condition (16).) The proof of Theorem 5 is
just as dependent on dilation theory as the corollary of Theorem 1; it would be nice
to have a more direct proof. (Perhaps this is asking for too much; Naimark’s dila-
tion theorem is, after all, a piece of noncommutative integration theory.)

Definition 12, I T is a contraction in the Hilbert space o, a Nagy unitary dila-
tion of T is a pair (9, U), where @ is a Hilbert space containing & as closed
linear subspace, U is a unitary operator in &, the vectors U"x (x € &,
n=0,+1,+2, ---) are total in &, and

(17) Tox = PUx (n=1,2, 3, )

for all x in & (P being the projection of ‘@ on o).

Such a pair exists, and it is uniquely determined up to a unitary equivalence that
leaves the vectors of o¢ fixed (see [24, p. 15, Theorem III]); with this reservation,
(@, U) is called the Nagy unitary dilation of T. Nagy’s original construction of
(@2, U) was essentially as follows [22, p. 88, Theorem I]: let F be the Nagy opera-
tor measure associated with T, let (@, E) be the Naimark minimal spectral dilation

of (s, F), and define U = SAdE. Later Nagy simplified the construction by elimi-

nating operator measures from the argument [23], and I. Halperin reduced the proof
to elementary Hilbert space geometry [11, p. 565].

We remark that (17) implies the more comprehensive condition that
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(18) T™x = PUPx  (n=0, +1,+2, =)

for1 all )fk in o7; this follows easily from the definition of T() and the relation
U~ =U".

The following point is of didactic interest. Suppose T is a contraction. Pursu-
ing an idea of P. R. Halmos [8, p. 126}, J. J. Schiffer [19] gave a simple matricial
construction of a unitary dilation (@, U) satisfying the condition (18) (but not neces-
sarily the minimality condition). From (18) it follows immediately that (T n)) is of
positive type; this argument is simpler than Nagy’s proof, which involves integration
theory (see [23, p. 106] and [24, p. 30]). Schiffer’s construction is also adequate for
the pfoof of von Neumann’s fundamental theorem on spectral sets (see [22] and [24,
p. 17]).

5. CONCLUDING REMARKS

If the correspondence s — Tg in Naimark’s moment theorem is a unitary repre-
sentation of G, then the family (Tg) is obviously of positive type (see the computa-
tion in the proof of Theorem 2), and the operator measure F is necessarily a spec-
tral measure [1, p. 592]; thus Naimark’s result includes as a special case a theorem
proved independently by W. Ambrose [1] and R. Godement [7]:

SPECTRAL THEOREM. If G is a locally compact abelian group with character
group X, and s — Ug is a weakly continuous unitary vepresentation of G, there
exists exactly one vegulay weakly Borel spectral measure E on X such that

Ug = S 8dE for all s in G.

The first theorem of this type is due to M. H. Stone [21], who proved it for the
group of real numbers (see also [18, Section 137]). The key to the extension of
Stone’s theorem to arbitrary locally compact abelian groups is the Weil-Raikov
f:eneralizaf]:ion of the theorems of Herglotz and Bochner (see [18, Section 140] and

13, p. 147]).

Finally, we note an alternate proof of the part “(a) implies (c)” of Naimark’s
moment theorem: to produce the operator measure F, dilate the given family (T,)
to a unitary representation by Nagy’s Principal Theorem, apply the Spectral Theo-
rem to represent the unitary dilation by means of a spectral measure E, then com-
press E back to the original Hilbert space. In effect, the labor is divided into two
parts: the algebra is performed by Nagy’s theorem, the harmonic analysis by the
generalized Stone theorem.

Added in proof. I am indebted to Professor Nagy for informing me that an ele-
mentary direct proof of the corollary of Theorem 1 appears in the work of C. Foiag
[ Décompositions intégrales des familles spectrales et semi-spectvales en opérateurs
qui sortent de l'espace hilbertien, Acta Sci. Math. Szeged 20 (1959), 117-155]; by
uniform approximation it is sufficient to consider the ca,e where f is simple, and
this case is easily deduced from inequality (2.3) on page 122 of Foiag’s article. This
also yields a dilation-free proof of Theorem 5.
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