THE GROUP ALGEBRAS OF GROUPS OF ORDER p4
OVER A MODULAR FIELD

D. S. Passman

Let ® be a p-group, and let T' = T'(®) be the group algebra of & over
K = GF(p), the field with p elements. If & ~ $, then clearly I'(&) ~ T'($). How-
ever, it is not known whether the converse is true. We present a partial answer.

THEOREM. Let & be a p-group of ordevr at most p%. Then T(®) ~ I(H)
implies & ~ H.

For convenience we say that two groups ® and $ are split if T(&) £ T(H).
Since the order of ® is given by | 8| = dimg I'(®), we see that T(®) ~*I'($) im-
plies that l @5] = | H I . Hence our approach here is to consider the group algebras of
all p-groups of order at most p4 and to show that these are not isomorphic for non-
isomorphic groups.

The purpose of this paper is two-fold, first, to offer nontrivial verification for
“small” p-groups of the conjecture that every two nonisomorphic p-groups are
split, second, to answer a question posed in [2]. In that paper two particular groups
of order 81 = 3% were shown to have isomorphic group algebras over all noncharac-
teristic 3-fields. We show here that their group algebras over GF(3) are not iso-
morphic.

Our techniques are for the most part based on the results of Jennings in [4].

I. NOTATION AND PRELIMINARY RESULTS

In ®, (A, B) = A"l B-1 AB, the commutator of elements A and B,
&' = (&, ©), the commutator subgroup of ®,
8 = 8(®), the center of ®,

<> = the subgroup of ® generated by the elements and subgroups indi-
cated within the brackets.

In T, [x, y] = Xy - yx, the Lie product of elements x and y,
[T, T] = the commutator subspace of T,
N = the radical of T,
Z = the center of T,
J™ = the nth power of the ideal J of T,
S(P) = the set of pth powers of the elements of the subspace S of T,

() = the subspace of I" spanned by the elements and subspaces indi-
cated within the brackets.
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LEMMA 1. (a) The center Z of T' is the linear space spanned by all class sums
of &. (b) The commutator subspace [T, T'] consists of all elements x = EaGG
with EG~H ag =0 forall He 8. Here G ~ H signifies that G is conjugate to H.

Proof, Part (a) is well known. We consider part (b). Clearly, the space [T, T']
is spanned by all Lie products [A, B] with A, B € . Now

[A, B] = AB - BA = (AB) - A-1(AB)A.

Thus, if x = 2JagG € [T, T), then Z;G~H ag =0 for all H € 8. Conversely, let
G ~ H, so that G = T-1HT. Then

G-H=T'89T-H=[1T!, 8T] € [T, T].

Therefore the result follows.
The following two results will be used to simplify certain computations.
LEMMA 2. Let g be an algebra over a field of characteristic p.

(@) If a;, ---,a € B, then
(a1+a2+...+an)p5allj+ aI£+ --'-I-a,fl mod [E, E].

(b) Let a and b be elements of B that commute with their Lie product [a, b).
If p> 2, then

(a+ b)Y = aP +bP.

Proof, Let a, b € E; then [3, page 187]

p-1
(a+b)P = aP +bP + 25 s;(a, b),
i=1
where
p-1
[+« [a, xa+Db]ra+Db] -+ ]ra+b]= 20 is;(a, p)ai-1
L d i=1

p-1
and A is an indeterminate commuting with both a and b. Clearly, s;(a, b) € [H, H],
and thus

(a+b) =aP +bP mod [H, H].

Part (a) now follows easily by induction.

Now [a, Aa + b] = [a, b]. If this term commutes with both a and b, and if
p - 1> 2, then s;(a, b) = 0 for all i. This yields

(a+Db)° = aP +pP,

and part (b) is proved.
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LEMMA 3. The radical N of T is spanned by the elements (P - 1) with P € ©.
Let A and B be elements of 8 with A-1¢e N*, B-1€ NJ,and 1<i<j. Then
(a) (AB-1)=(A - 1)+ (B - 1) mod N*1,
() (A® - 1) = (A - 1) mod N7
(¢) (B-1)A - 1)=(A - 1)(B - 1) + (C - 1) mod NIt
wheve C = (B, A)=B 1Al BA,
Proof. The first part is a restatement of [4, Theorem 1.2]. I A, B € @, then
AB-1)=A-1)B-1)+(A-1)+(B-1).
Since (A - 1}B - 1) € NiH, equation (a) follows. Equation (b) is of course a special
case of (a).

From the identity
(B-1)A-1)=(A-1)B-1)+AB(C -1)

we conclude that C - 1 € Nt Since AB =1 mod N, the above yields equation (c).
The M-series of B (see [4, Section 5]) is defined inductively as follows.

My =6, and M, = <(§mi_1 , ®), E)th’/)P» for i > 1, where (i/p) is the least
integer not less than i/p and EJRAP is the set of pth powers of elements of 2%, . In
[4], Jennings studied the relation between the M-series of & and the radical of

T'(®). He showed that
G=2;2M,DDWM. =1
and that each 2; is normal in ®. Moreover, he proved the following result ({4,

Theorems 3.6 and 5.5]).

PROPOSITION 4. Let & and £ be two p-groups. If T(&) ~ T( ), then for
all 1

m.(s)/ M, (6) ~ m(p)/Mm,,,(98),

where smi(@j) is the ith teym of the Mm-series of .

COROLLARY 5. Let ® and $ be two p-groups with T(6) ~ T(9). Then
8/6"' ~ $/8'. In particular, if & is abelian, then & ~ 9.

Proof. If & is abelian and T(®) ~ I'( $), then § is also abelian. Since the
quotients M;/M;4+; clearly determine the structure of the abelian group @, the
above proposition implies that & ~ $ in this case.

Now let & be an arbitrary p-group. The kernel of the natural map
I'(®) — I'(¢/®") is easily seen [2, Lemma 1.2] to be the ideal generated by [T, I'].
Hence, if T(®) ~ T'($), then T(®/6') ~ T(H/H'). Since &/ @' is abelian, the re-
sult follows.

COROLLARY 6 (Ward [5]). If T(®) ~ T( D), ther 8(®) ~ 8(9).

Proof, We show that I'(®) determines the isomorphism class of 8(®) ina
canonical manner. Let
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ceZ and x= Eki[ai, b;] € [T, T].

Then cx = 2 k;[ca;, b;] € [T, T']. This implies that Z N [T, I'] is an ideal of the
algebra Z. Each class sum of & is a sum of pJ conjugate group elements. If

j > 1, then by Lemma 1(b) it is an elemeént of Z N [T, T']. On the other hand, by
Lemma 1(b) again we see that the elements of 8 are linearly independent
modulo [T', T'|. Thus

z/(z n [T, T]) ~ T(8).

Since 8 is abelian, the result follows by Corollary 5.

II. GROUPS OF ORDER p°

In this section we show that the groups of order p, p2 , and p3 are split by their
group algebras. By Corollary 5, we need only consider the nonabelian groups. Thus
we need only check the nonabelian groups of order p3 .

In the remainder of this paper we use the list of p-groups of order at most p4
found in [1, pages 145-146]. We use the numbering of the groups and the particular
forms for the generators and relations as given. The only notational change here is
the replacing of E by 1 for the identity element of the group.

We first consider p = 2. There are two nonabelian groups: (i) the dihedral group
and (ii) the quaternion group. There is a natural map N/N% — N2/N3, defined by
mapping each element of N to its square. We compute the size of the kernel in both
cases and show that the two values are different (this fruitful technique was suggested
by Professor Richard Brauer). Since the map is well-defined, we can compute it by
choosing any convenient basis for N/N2,

The M-series of the two groups look identical:
2
m, =06, m,={P°), my-=1.

Thus, in the language of {4], (P - 1) and (Q - 1) have weight 1, and (P? - 1) has
weight 2. Hence the elements (P - 1) and (Q - 1) form a basis for N/NZ. In the
remainder of this paper we assume a knowledge of the techniques of [4], and thus we
shall not make further reference to it.

Now, for a, b € K, Lemma 3 implies that

{a(P - D+bQ-1)}% = a%(P - 1)2+1%Q - ¥ +ab{(P- DQ - 1)+ (Q - 1)(P - 1)}

2 3
(a +ab+ ab)(P” - 1) mod N,

where a = 1 for the quaternions and a = 0 for the dihedral group. Since (P?Z - 1)
has weight 2, the result is zero if and only if

at+ab+ab = 0.

Thus the size of the kernel is the number of ordered pairs (a, b) satisfying the above
equation. For « = 0, there are three such pairs, and for @ = 1 only one. Since the
size of the kernel is an invariant of the algebra I, it follows that the two groups are
split. .
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We now consider p > 2. Again there are two nonabelian groups, and we show that
their respective I -series do not have isomorphic quotients. The 2 -series are as
follows:

1l

group (iv): @, = 6, M, = (PP) = My= = My, Mo =1
group (v): M; =6, M, = (P), My = 1.

Since p > 2, we see that the zmz/ I 3-quotients are not isomorphic, and the result
follows by Proposition 4.

II. GROUPS OF ORDER 2%

In this section we split the groups of order 2% . For the nonabelian groups we
have the following chart.

Group Number 8-type &/ &'-type Kernel size

(1) (4) 4, 2)

(ii) (4) 2, 2, 2)

(iii) (2, 2) (4, 2) 1
(iv) (2, 2) (2, 2, 2) 6

(v) 2, 2) (4, 2) 2
(vi) (2, 2) (2, 2, 2) 2
(vii) (2) (2, 2) 3
(viii) (2) (2, 2) 3

(ix) (2) (2, 2) 3

Here “Kernel size” indicates the number of elements in the kernel of the natural
map N/N2 — N2/N3. The computation is straightforward and will be omitted. By
Corollaries 5 and 6, we need only show that the group algebras of groups (vii), (viii),
and (ix) are nonisomorphic.

To simplify computations, we first work with the dihedral group of order 8 given
by
P*=1, Q%=1 QlpQ=rp-l.
LEMMA 7. Let & be the dihedral group of orvder 8. Then the element P2 can
be found canonically in T(®).

Proof. We show first that T2 N [T, T] = {0, P+ P-1}. The elements (1 + P2),
(P+ P-!), Q1 + P?), and QP(1 + P2) are central and have square zero. Thus, to
compute I'(2) we need only consider x € T' of the form

X =agl+a; P+a,Q+a;QP.
Then
x% = (ag +a, +az)l+a; P + azasz(P+ P+ a;a,Q(P+ ph+ a;az3QP(P + P-l) .
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By Lemma 1(b), since 1 and P? are central elements, x% € [T, T'] if and only if
ag+a,+az; =0=a,.

Hence, in this case x% = ayaz(P+ P-1), and the result follows. This of course im-
plies that (P + P-1) can be found in T'(®).

Now, let x satisfy the condition x(x + P+ P-1) = 1. We show that
x(P+PH+1=p%,
Since the above equation has at least one solution, namely x = P, this will yield the
result. The elements (1 + P2), (P + P-1), Q(1 + P2), and QP(1 + P2) are central,
have square zero, and anhilate (P + P'l). Thus, it suffices to assume that x has the

form

x =ajl+a; P+a,Q+az;QP.
Now
x(x+P+P 1) = (ay+a; +a,+a,)1+(a,+2,2,)(P+P})

-1 -1
+(a1a2+a2)Q(P+P )+(a1a3+a3)QP(P+P ),
and this is equal to 1 if and only if

agt+a) +a,+az; =1 ajg+ayaz; =0, a,(l1+a;) =0, az(1+a;)=0.

The only solution is easily seen to be a;
x(P+P1l)+1=p2,

We now consider the groups ® of order 16. These are as follows.
group (vii): P®=1, Q*=1, Q-lpQ=p1,

group (viii): P2 =1, Q% =1, Q-lpQ="P3,

group (ix): P®=1, Q*=P% Q-lpQ=p-l,

‘1, ag =a, =a3z =0. Thus x=P and

For all u in I, we write u = Ei a; P!+ Ei by QP'.
LEMMA 8. The linear space

T = {u| ag = a4, a, = ag, a; +tazg+ag+a; =0}

can be found canonically in T(&).

Proof. We show first that (N N 7)(2) = {0, P2+ P"2}. The space (N N Z) is
spanned by (1 + P%), Q(1 + P2+ P4+ P%), QP(1+ P2+ P4+ P%), and (P + P-1),
(P2 +P3) or (P+ P3), (P° + P7). In either case, each basis element has square
(P2 + P-2) or zero. Thus we can obtain the element (P2 + P-2),

Let I=(P?+ P %)= (1 + PHTI. Then I/I is the group algebra of the dihedral
group of order 8. By Lemma 7, we can find the element PZ in I'/I. Thus the coset
P% + (1 + PH)T can be found canonically in I'. For each x € P% + (1 + P4)I, set

S, = {ueI'|ux=(x+P*+P %u}.
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We shall show that T = (N N Z) + 27, S,, and this will yield the result.

Clearly, TD N N %. Let x € P>+ (1+ PHT, so that x = P2+ v(1 + P%), and let
ues Since (1 + PY) is central, the relation

x.
u(P?+v(1+PY) = (P 2+ v(1+PH)u

implies that

uP?+ P 2u = (1+ PHuv+vu) € (1+PY[T, 1.

By Lemma 1(b), the Pl-terms in [T, T'] are spanned by (PZ+ P'Z)_ and (P+P-1),
(P3+P-3) or (P+ P3), §P5 + P7). Thus in either case the only Pi-term in
1+ PH[r, 1] is (P + P53+ P+ P7). Hence, for the Pi-terms in uPZ+ P-2y,
(agl+ azP2 + a4P4+ :3.6]?6)(PZ + P'Z) =0,
(a, P+a,P +a,P°+a,P)(P*+P %)= 6(P+P>+P5+P7),
with 6 = 0 or 1. This implies that
ag =ay, a, =ag, aj;tagtagta, =0,
Hence ue T and TD (NN Z)+ 27, S,.
We obtain the reverse inclusion by showing that T= (N N Z) + sz . Now
Sp2 = {u| uP? = P-?u} = {u|ay=2a,, a, =2, a, =ag, a; =a,}.
Thus S, is a maximal subspace of T. Since (N N Z) & S, , the result follows.
We are now in a position to split the three groups. We compute the number of
u € T with u?2 =1 mod [1", I'] and show this is different in the three cases. Lemmas

1(b) and 2(a) are used repeatedly.

cov. 2 2 -2 4
Group (vii): u“ =(ag+a,+ 27 bj)l +(@;+ag)P+(az+tal )P “+(a,+a,)P

(Z)bj)l mod [T, T,

since u € T. Thus u? =1 if and only if

7
a.0=a.4, a.1=a,3+a5+a7, a2=a6, b0= 1+Z>le,

and there are 2!? such u.
Group (viii): u® =(ag+as+bg+by+by+bg)l+(a,+ag+b;+by+bg+ b7)P4
+ (a.l + a.5)P2 + (3.3 + a-—,-)P"Z
=(bg+b,+ by +bl+ (b; +bs+bs+b,)P?* mod [T, T,
since u € T. Thus u? =1 if and only if

ag=a,, a,=ag, ay=aztagtag, byg=1l+b,+b,+b,, b;=by;+bg+b,,

9ll

and there are such u.
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ixe)e 1l = 4 2 ~2
Group (ix): u® =(ag +ay)l +(a, +ag+ Z)bj )PP+ (a; +ag)P°+ (a3 +aq)P

= (Ebj) P* mod [T, T],

since u € T. Hence there are no u € T with u2

split.

Thus all the groups of order 24 are split.

IV. GROUPS OF ORDER p* (p > 2)

= 1. Therefore the three groups are

For the nonabelian groups of order p4 (p > 2) we have the following chart.

Number | 8-t | ©/@'-tyve m%s{psg%— tyi??/(:)m $3) sizlie?gei 3)
(vi) %) (p?, p)
(vii) (%) (p, P, P)
(viii) (p, p) (®*, p) (1)
(ix) (p, p) (p, p, P) (1)
(x) (,p) | ®°,p (p)
(xi) (p) (p, p) (1) 5
(xii) (p) (p, p) 6)) 3
(xiii) (p) (b, p) (1) 1
(xiv) (p, p) (p, p, P) (p)
(xv) p>3 (p) (p, P) (p)
(xv) p=3 (3) (3, 3) 7

Here ‘Kernel sme” denotes the number of elements in the kernel of the map

N/N? — N3/N% that sends each element to its cube. This is obtained only for p = 3.
The computation is straightforward, and we shall omit it. By Proposition 4 and Cor-
ollaries 5 and 6, we need only show that the group algebras of groups (xi), (xii), and
(xiii) for p > 3 are nonisomorphic.

Groups (xi), (xii), and (xiii) are given by the relations

Q° =1, Q'IPQ = P”P, R™!PR = PQ, RIQR = Q, RP = popP

with @ = 0, 1, and any nonresidue modulo p, respectively. They have I -series
=<PP,Q>, §U23=<PP>=---=£IRP,

Thus (P - 1) and (R - 1) have weight 1, (Q - 1) has Welght 2, and (PP - 1) has
weight p > 3. By Lemma 3 and the fact that (PP - 1) € N*

PP =1,
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(P-1)R-1)=(R-1)P-1)+(Q - 1) mod N>,

(P-1)Q-1)=(Q- 1}P - 1) mod N*%,
R-1)Q-1)=Q-1DER-1)
(P - 1) = (PP - 1) mod NP1,

LEMMA 9. The natural map ¢: N/N% — NP/NPHL is given by
{a(P - 1)+ bR - 1)}P = (a + ab)(P? - 1) mod NP*!.
Proof. By the above equations,
[a(P - 1), b(R - 1)] =ab(Q - 1) mod N3,
and a(P - 1) and b(R - 1) commute with ab(Q - 1) modulo N4. 1t is now clear that
in computing {a(P - 1) + b(R - 1) }? we can think of a(P - 1) and b(R - 1) as com-
muting with their Lie product. Since p > 3, Lemma 2(b) yields the relations

{a(P-1)+bR - 1)}P

]

{a@ - D}IP+ {b®R - DIP =a(@P? - 1) + b(P - 1)
= (a + ab)(PP - 1) mod NP*!
LEMMA 10. The subspace S= (@ - 1), @ - 1), -, (@ - 1)®®-1)/2 NP can
be found canonically in T(®). ’
Proof. Let T = (PP -1, NP+1> . Since T is the complete inverse image in NP
of $(N/N?) c NP/NP*! it can be found canonically in I'(®). Set
U={ueN|VxeN, xu-uxe T}.

We show that S = U. This will yield the result.
From the identity

(P-1)Q-1) = (Q-1)(P - 1)+ (PQ - 1)(PP - 1)+ (PP - 1)
and the fact that (PP - 1) € NP we deduce that
(P-1)YQ-1) = (Q - 1)P - 1) + (PP - 1) mod NP*!,
Also, (R - 1)(Q - 1) =(Q - 1)}(R - 1). These commuting relations and the explicit

form of the Jennings basis for N/NP show immediately that U D S.

We assume by way of contradiction that U properly contains S. Choose
u € U - S, and write u in terms of the Jennings basis modulo NP, We can, of
course, assume that no terms of the form (Q - 1)J with 2j < p occur in the repre-
sentation of u. We prove by induction on t that u € Nt for t <bp.

First, u € N is given. Now, let us assume that u € Nt with t < p. We show that
u e N**1 | Now

u = 2ra; (P - DR - 1))(Q - 1)* moa N**!

413
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with i+j+2k=1t and ag o= 0. Since u € U, it follows that [(P-1),u]emT,
[(R-1),u] € T, and

[(P-1),ule T+N"2 [(R-1),u]eT+N"2,

Nt+1

In these equations we need only consider u modulo , and we conclude that,

modulo Nt+2

[(P-1),u]l =- 2 jay ;- 1®R- 1@ - )<,
i>1

[(R - 1): u]

27 da; (P - VMR- 1)I(Q - DR
i>1

If these terms belong to Nt = <Nt+2 PP - 1> then ja; ;=0=1a; ;. But
since 0 <1i, j <t < p, this implies that aj,j = 0, provided not both i and j are zero.
On the other hand, a5 g = 0 by assumption. Hence u = 0 mod Nt*! . By induction,
we obtain the contradlctmn u € NP ¢ S. Therefore S = U, and the result follows.

We are now in a position to split the three groups. Choose an element x € N - N 2

with ¢(x + N%) = 0, and choose y € N with ¢(y + N%) # 0. Since PP - 1 has weight p,
Lemma 9 implies that

It

x=2{a(P-1)-(R-1)} +n,

y=pla®P-1)-R-1)}+p(P-1)+m,

with n, m € N® and A, u # 0. Since

]

[x, y] = xy - yx = pM(Q - 1) modN3,

there exists s € S with [x, y] =s mod N3 . Choose any such s. Then

n
n

pMQ - 1)+ 22 by(Q - 1)* mod NP,
i>2

Since [x, (Q - 1)'] € NP*! for i > 2 and [n, s] € NP™! we see that
[x, s] = pa®[{a(® - 1) - (R - D}, (Q - 1] = pr® (PP - 1) mod NP1,

Thus [x, s] = 0 modulo NP1 jf and only if @ = 0, Therefore the group for o = 0 is
split from the other two.

We assume now that @ # 0. By Lemma 9,
P _[x, s] = (u - pr?a)(PP - 1) mod NP1

and this is congruent to zero if and only if 1 - Ma=0. I a-= 1, there are suitable
choices for x to make this expression zero: we need only take A +1. On the other
hand, if o is a nonresidue, then there are no such choices for x, since 1 - AMa=0
implies that a = (1/A)%, a contradlctmn Thus the group algebras of these three
groups are not isomorphic.

3

This completes the proof of the theorem.
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