SOME RINGS WITH NIL COMMUTATOR IDEALS

Thomas P. Kezlan

In a previous paper Drazin investigated certain conditions on a ring which would
guarantee that its commutator ideal be nil [1]. In particular, he considered a class
of rings, which he called K-rings, satisfying a certain Engel condition. However, as
has been pointed out, the proof of one of the main theorems contains an error, and
this in turn invalidates the proofs of several of the subsequent results [2], [3], [4].
In the present paper we shall prove one of these results and in addition obtain some
related theorems. It should be mentioned that only a few of the proofs in [1] are in-
valid [2], [3]; indeed, in this paper we shall make use of several key results of [1],
namely, Lemma 4.2 and Theorems 4.2 and 4.3.

We begin by recalling several classes of rings defined by Drazin in [1]. Let x
and y be elements of a ring R. We define

eo(x, Y) X, e}_(xy Y) = [X, Y] = Xy - VX,

ek(x’ Y) = [ek__l(xy Y)’ y] (k = 1, 2, "').

Equivalently (proved easily by induction on k),

k
e (%, y) = .7‘-(/) (-1)’ (1;) y xy .
i

If m is a positive integer, then a ring R is called an m-#»ing if and only if for
every X, y in R, there exist integers k, t, n, and q and an element a in R such that
1<t<m and

1

_— tek(qxt-I-l +xt+ a - Xt, yn) = 0.

R is called a K-7ing if and only if for every x, y in R, there exist integers
k =k(x, y) and n = n(x, y) such that e;(x, y*) = 0. Thus every K-ring is a 1-ring,
and if t < m, then every t-ring is an m-ring. Clearly, the properties of being a
K-ring or an m-ring are preserved under homomorphism.

If R is any ring, the Levitzki vadical of R, that is, the sum of all locally nil-
potent ideals of R, will be denoted L(R) [9]. L(R) contains every locally nilpotent
left (or right) ideal of R [5, p. 27]. The Kdthe vadical of R, that is, the sum of all
nil ideals of R, will be denoted N(R) [8]. If J(R) denotes the Jacobson radical of R,
then L(R) € N(R) < J(R). It can easily be verified that the following assertions are
equivalent for any ring R:

(i) the nilpotent elements of R form an ideal of R;
(ii) N(R) is precisely the set of nilpotent elements of R;
(iii) every nilpotent element of R generates a nil ideal of R;

(iv) R/N(R) has no nonzero nilpotent elements.
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We shall denote by C(R) the commutator ideal of R, that is, the ideal of R
generated by all commutators [x, y], with x, y in R. The following can easily be
proved:

(i) if C(R) is a nil ideal, then the nilpotent elements of R form an ideal;
(ii) C(R) is a nil ideal if and only if R/N(R) is commutative.

We shall say that R is of characteristic 0 if and only if mx # 0 for each non-
zero element x in R and each nonzero integer m. Lemmas 1, 2, and 3 below can
be proved easily by induction on k. The proofs will be omitted.

LEMMA 1. Let R be a ving, and let k and n be positive integevs. Then theve
exist polynomials fy, £1, *--, k-1 n two indeterminates over R such that for each

integer X and all x,y in R,
nk-1
en(y, x+ay)?) = 27 AMy(x, y),
i=0

wheve £, _1(x, y) = -e,(x, y).
LEMMA 2. Let k be a nonnegative integer and n a positive integev. Define a
sequence of integers A] . (j =0, +1, £2, ---) as follows:

0 if j<0or j>k(n-1),

. - . .
'A:l}'l,k-l + Ail,k—]. + oo+ Ai,l((n_l ) otherwise.

If R is any ving and X, y ave elements of R, then

k(n-1)
e (x, y7) = ,Zé Al ye(x, yyRr-1-i
J:
In pavticular, if ex(x, y) = 0, then ex(x, y*) = 0.
LEMMA 3. If k is a nonnegative integer, then fov any X, y, and z in a rving R,

k

If R is a K-ring and x, y are in R, we shall always assume that k(x, y) is the
smallest nonnegative integer for which there exists a positive integer n such that
ek(x,y)(x, y"?) = 0. We then define n(x, y) as the smallest positive integer for which

ek(x’y)(x’ yn(xxY)) = Q.

THEOREM 1. Let R be a K-ving whose nilpotent elements form an ideal and
which has chavacteristic 0. Suppose R satisfies either

(a) k is independent of x, or
(b) k and n are independent of y.
Then C(R) is a nil ideal.
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Proof, We may assume that N(R) = (0); for suppose we have established the
theorem in this case. Then in the general case it is easily seen that R/N(R) has
characteristic 0 and also inherits the other hypotheses of the theorem. Thus, since
N(R/N(R)) = (0), we see that C(R/N(R)) is a nil ideal of R/N(R). But R/N(R) has no
nonzero nil ideals and hence is commutative, which shows that C(R) is nil.

Assuming then that N(R) = (0), in other words, that R has no nonzero nilpotent
elements, we shall suppose that there exist x, y in R with k(x, y) > 1, and arrive at
a contradiction. Let '

k; =k(x,y), n;=nxy),
k, = k(xz, y), ny = n(xz, y).
Using Lemma 3, we see that
(1) ooy 105, ¥ 1) = 0,
and from Lemmas 2 and 3 we obtain

(2) o2y 208, ¥ 172) = (T T) oy o P12

From (1) we conclude that k; < 2k; - 1. Now, for k,; < 2k; - 2, condition (2)
implies that

2k1-2) Nineownw2 _
( K 1) g als IR = 0,

and since R has characteristic 0 and contains no nonzero nilpotent elements, it
would follow that €x, _1(x, y'172) = 0, contrary to the minimality of k; = k(x, y).

Hence k, = 2k; - 1; that is, k(x%, y) = 2k(x, y) - 1. In the same way we obtain the
relation

ZHHJ om
k(X ’ Y) = 2k(X ’ Y) -1 (m = 0’ 1, “.)'

In particular,

m
(3) the set of integers k(x* ,y) (m=0, 1, ---) is unbounded.
If hypothesis (a) holds, there exists k(y) such that k(z, y) < k(y) for every z in R.

But then k(x?‘m, y) <k(y) for m =0, 1, ---, contrary to (3). Thus if (a) holds, the
assumption k(x, y) > 1 leads to a contradiction.

Now suppose (b) holds. There exist k = k(y) and n = n(y) such that e(y, z") =0
for every z in R. Hence for any integer X and z in R, it follows by Lemma 1 that

nk-1
0 = ey, (z+2ay)?) = EO A (z, y),
1:

where f ;. _i(z, y) = -ei(z, y"). Taking successively A =0, 1, ---, nk - 1, we obtain a
linear homogeneous system of nk equations in the nk “unknowns” fg, £y, ---, £ ; 1t
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nk-1
-_Z)O Nz, y)=0 (x=0,1, -, nk-1).

This system has a Vandermonde (and hence nonzero) determinant; therefore it has
no nontrivial solution over R, since R has characteristic 0. In particular,
foi_1(2, ¥) = 0; that is, e, (z, y”) = 0 for every z in R. But then k(z, y) < k = k(y)
for every z in R, and this again contradicts (3).

Therefore we conclude that k(x, y) = 1 for all x, y in R; that is, to each pair
X, v in R there corresponds an integer n = n(x, y) such that xy™ = y"x. But it has
been proved that C(R) is a nil ideal for such a ring R [1], [6]. This completes the
proof of the theorem.

Let F(R) denote the ideal of R consisting of all elements of finite additive order.
The following lemma appears in [1]; however, its proof is included here for refer-
ence.

LEMMA 4 (Amitsur). Let #® be a class of vings, and suppose that for each R in
R there is given a subset Q(R) C R. Suppose further that

(i) for every R in R and every homomovphism 6 of R, RO belongs to #& and
Q(R)6 C Q(RO);

(ii) Q(R) is nil for all R in & whose characteristic is either 0 ov a prime.
Then Q(R) is nil for every R in R.

Proof. Let R be in &, and let ¢ be in Q(R). We shall show that c is nilpotent.
Since R/F(R) has characteristic 0 and is a homomorphic image of R, it follows
from (ii) that Q(R/F(R)) is nil. By (i) we see that QR)/F(R) c Q(R/F(R)), whence
some power c' of c¢ lies in F(R). Thus there exists a positive integer r such that
rct = 0. Let s denote the smallest positive integer annihilating a power of c, say
sc) = 0. We shall show that s = 1. If s # 1, there exists a prime p dividing s, say
s = pt, where 1 <t <s. Since R/(pR) is in # and the characteristic of R/(pR) is
p, it follows from (ii) that Q(R/(pR)) is nil. Thus Q(R)/(pR) C Q(R/(pR)) shows that
some power of c¢ lies in pR, say ck = pd, where d is in R. But then

ted*® = ptedd = sedd = o,

where 1 <t <s, contrary to our choice of s. The result follows from this.

An inspection of the proof of Lemma 4 shows that hypothesis (i) need only be
verified when 6 is the natural homomorphism of R onto either R/F(R) or R/(pR),
where p is a prime. This remark and the next lemma are used in conjunction with
Amitsur’s Lemma, in what follows.

LEMMA 5. If the nilpotent elements of R form an ideal, then so do those of
R/F(R).

Proof. Let x,y, and r be in R/F(R), with x and y nilpotent, say x*=y* =0
with n > 1. We shall show that xr, rx, and x - y are nilpotent. Since x™ and y®
are in F(R), mx™ = my™ = 0 for some pos1t1ve integer m. Thus

0 = m"x" = (mx)" and 0 = m"y" = (my)",

whence mx and my (and therefore mx - my) are nilpotent. Since (mx - rr_1y)t =0
(t > 1), we deduce that mt(x - y)t = 0, so that (x - y)t is in F(R), whence (x - y)t =0
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Since mx is nilpotent, mxr is also nilpotent. Hence there exists a positive integer
k such that (mxr)k = 0, in other words, mE(xr)X = 0. Thus (xr)< is in F(R), whence
(xr)X = 0. Similarly, rx is nilpotent.

THEOREM 2. Let R be a K-ring whose nilpotent elements form an ideal. If R
satisfies eithevr

(a) k is independent of x ov
(b) k and n are independent of v,
then C(R) is a nil ideal.

Proof. Let & be the class of all rings satisfying the hypotheses of the theorem,
and for R in # let Q(R) = C(R). That Q(R) is nil whenever R in £ has character-
istic 0 follows from Theorem 1. Also, since Drazin has proved that every K-ring
of prime characteristic has nil commutator ideal [1], it follows that hypothesis (ii)
of Lemma 4 is satisfied. By the remark following Lemma 4, it remains to show that
if R is in & and 6 is the natural homomorphism of R onto either R/F(R) or
R/(pR) (p a prime), then RO is in @, Thus all that really needs verification is that
if 6 is either of these homomorphisms, then the nilpotent elements of R6 form an
ideal. Now if 6 is onto R/F(R), Lemma 5 applies, whereas if 6 is onto R/(pR),
then C(R#) is nil since R# is a K-ring of prime characteristic, and it follows from
this that the nilpotent elements of R6 form an ideal. Hence 2 satisfies all the
hypotheses of Lemma 4, and the theorem is proved.

The next lemma is motivated by the technique used in the proof of the well-known
theorem of Kaplansky, Herstein, and Kleinfeld which states that if R is a ring for
which there exists a fixed positive integer n such that (xy - yx)* = 0 for all x, y in
R, then the nilpotent elements of R form an ideal [7], [5, p. 29].

LEMMA 6. If x in R satisfies x> = 0 and if theve exists a positive integer n(x)
such that (yx)n(X = 0 for every y in R, then the ideal genevated by X in R is lo-
cally nilpotent.

Proof. Let T be the ideal generated by x in R. For every integer r and every
element y in R, the formulas
(rx+ yx)t = ex(yx)d+ (yx)Itt (G=0, 1, )
are easily proved by induction on j. Hence (rx+ yx)n(x)+1 = 0. Thus, by a theorem

of Levitzki, the left ideal generated by x is a locally nilpotent ring {9], [5, p. 28].
Hence, x is in L(R) and therefore T C L(R); that is, T is locally nilpotent.

The following lemma replaces Theorem 2.1 of [1], the proof of which is in error.
LEMMA 7. Let R be an m-ving with kK and n independent of y. If x in R is
2
nilpotent, then x™ is in L(R). ~

Proof., First suppose that an element z in R satisfies zmtl = o, By hypothesis
there exist integers k = k(z) and n = n(z) such that to each y in R there correspond
integers s and t (1 <t <m) and an element a in R with

m-~-t 1

z ek(sthr +ztla -zt (yz™)®) = 0.

But then
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z™" tE (-1y ( ) (yz )™ (5251 4 gt g - gty (yzynlk-d)
j=0

o
It

Zm—t(SZ t+1 + Zt+la _ Zt) (yzm)nk

= -z™ (yz™ )k
Thus for every y in R, (yz™)***! = 0 where the exponent nk + 1 depends only on
z. Also, (z™)2 =0, and so, by Lemma 6, the ideal generated by z™ (and hence z™
itself) is contained in L(R) Hence, if zm+ = 0, then z™ is in L(R).

Now suppose x in R is nilpotent.

2
First assume L(R) = (0). If x™ = 0, then x™ = 0 is in L(R). Now assume that
x™ # 0. There exists an integer r > 1 such that

x™F =0 and x™(-1so,
If m<r, then (xT-lymtl - ymryr-m-1 _ g 354 hence, by what was proved above,
taking z = x*~1, we deduce that (x*- 1)m is in L(R) = (0) a contradiction. Thus
r<m and x™ =0,
Now assume L(R) #(0). Since x is nilpotent in R, x is nilpotent in R/L(R), so
that imz = 0 by the above case. Therefore sz is in L(R).

COROLLARY. If R is a 1-ring (or in particular any K-ving) with kK and n
independent of vy, then the nilpotent elements of R form an ideal and N(R) = L(R).

The next theorem is Theorem 6.2 of [1]; the proof given there is invalid.

THEOREM 3. If R is a K-ring with k and n independent of y, then C(R) is a
nil ideal.

Proof. By the corollary to Lemma 7 the nilpotent elements of R form an ideal.
Hence Theorem 2(b) applies.
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