ON THE EXISTENCE OF ALMOST PERIODIC MOTIONS

Lawrence G. Deysach and George R. Sell

In the first part of this paper we investigate the question of necessary and suffi-
cient conditions for the existence of (Bohr) almost periodic motions in dynamical
systems. The results are applied, in the second part, to give an existence criterion
for almost periodic solutions of ordinary differential equations.

PART 1. DYNAMICAL SYSTEMS

V. V. Nemyckil and V. V. Stepanov [7] investigated conditions under which the
w-limit set of a positively Lagrange-stable motion is a minimal set of almost peri-
odic motions. They proved that a sufficient condition for this to hold is that 1) the
motion approximates the w-limit set uniformly and 2) the motion is uniformly posi-
tively Lyapunov-stable with respect to the positive semitrajectory. They remarked
that the question of necessary conditions is still open.

In this part of the paper we present another sufficient condition (Theorem 5) that
the w-limit set of a positively Lagrange-stable motion be a minimal set of almost
periodic motions. It will be seen that our condition (which is stronger than that of
Nemyckii and Stepanov) is more readily applicable. The question of a necessary
condition remains open. However, we are able to give a partial solution to this
problem.

Let (X, d) be a metric space with a dynamical system 7: X X R — X, where R
denotes the real numbers. Let Qp denote the w-limit set of the point p € X. Let
vt (p) = {n(p, t): t > 0} denote the positive semitrajectory and y(p) = {#(p, t): t € R}
the trajectory of the motion through p. If I C R, then #n(p, I) will denote the set
{#(p, t): t € I}. If A C X and & > 0, then the ball about A of radius ¢ is given by

B(A;e) = {peX:dp, A) <e}.

A motion 7(p, t) is said to be recurrent if for every € > 0 thereisa T > 0
such that for each ty € R

y(p) € B(a(p, [ty, to + T1); €).

The motion #(p, t) is Lagrange-stable if Cly(p) is compact, and it is positively
Lagrange-stable if Clyt(p) is compact. It is known [7, Theorem 7.09] that a La-
gramnge-stable motion #(p, t) is recurrent if and only if for every & > 0 the set

{7 € R: d(p, 7(p, 7)) < 8} is relatively dense in R. A motion 7(p, t) is said to be
(Bohr) almost periodic if for every ¢ > 0 the set

{7 € R: d(z(p, t), n(p, t+ 7)) < € for all t in R}
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is relatively dense in R. It is known [7, Theorem 8.02] that every almost periodic
motion is recurrent.

G. D. Birkhoff [2] showed that, in a complete metric space, a nonempty, compact
set E is the closure of a recurrent motion if and only if E is a minimal set; that is,
if and only if E is a nonempty, closed, invariant set containing no proper subset with
these three properties. (The completeness of the space is needed only in the proof
that recurrence of 7(p, t) implies that Cly(p) is minimal.) Now, if a dynamical sys-
tem contains a positively Lagrange-stable motion #(p, t), then Qp is a nonempty,
compact, invariant set. Consequently, ©Qp contains a minimal set and there is a re-
current motion in the dynamical system. This can be summarized in the following
existence theorem.

THEOREM 1. Given a dynamical system on a complete meltric space (X, d), the
following statements ave equivalent:

(A) There is a vecurvent motion in the dynamical system.
(B) There is a positively Lagvange-stable motion in the dynamical system.

Thus, the existence of a positively Lagrange-stable motion always implies the
existence of a recurrent motion. One may therefore ask what further assumptions
are needed to insure the existence of an almost periodic motion. An answer to this
is given in the following theorem of Nemyckif and Stepanov ['7, Theorem 9.06].

THEOREM 2. Assume that w(p, t) is positively Lagrange-stable. If (i) n(p, t)
approximates ., uniformly and (ii) w(p, t) is uniformly positively Lyapunov-stable
with vespect to 'y+(p), then Qp is a minimal setl of almost peviodic motions.

(We recall that n(p, t) approximates Qp uniformly provided that to each £ > 0
there corresponds a T > 0 such that Qp € 8(L; ¢) for each arc L of v H(p) whose
(time) length is greater than T. Further, recall that a motion #(p, t) is uniformly
positively Lyapunov-stable with vespect to a set D C X provided that for every
g€ > 0 there is a 6 > 0 such that d(n(q, t), 7(g, t)) < € for all t > 0, whenever
qa € y*(p), § € D, and d(q, §) < 5.

Before stating the main results, we recall some known theorems. The proofs of
these statements can be found in Nemyckii and Stepanov [7].

THEOREM 3. Assume that wn(p, t) is positively Lagrange-stable. A necessary
and sufficient condition that S, be a minimal set is that n(p, t) approximates Qp
uniformly.

THEOREM 4. Let E be the closure of an almost peviodic motion. If the melric
space X is complete, then for every p € E the motion n(p, t) is uniformly (posi-
tively) Lyapunov-stable with respect to E.

We can now prove the following extension of Theorem 2.

THEOREM 5. Assume that 7(p, t) is a positively Lagrange-stable motion. A
sufficient condition that Qp be a minimal set of almost peviodic motions is that
w(p, t) be uniformly positively Lyapunov-stable with vespect to v (p) U Qp.

Proof. In order to show that the condition is sufficient we shall make use of
Theorems 2 and 3 and prove that if #(p, t) is uniformly positively Lyapunov-stable
with respect to yH(p) U Qp, then ©p is a minimal set; that is, 7(p, t) approximates
Qp uniformly. Thus, we want to show that if q, r € Qp, then r € Cly(q). In other
words, we want to show that for every € > 0 there isa 7 in R such that
d(r, w(q, 7)) < 2¢.
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Since q, r € QP, there exist sequences {sn} and {tn} in R with s, — o,
t, — « and such that

a, = 7(p, sp,) — 4q and r, = a(p, t,) — r.

With € > 0 given, choose 6 > 0 by the condition of uniform positive Lyapunov-
stability. Then d{qq., , q) < 6 for sufficiently large m, say m > M, so that by the
Lyapunov-stability d(n(q, t), 7(q,,, t)) <& for all t > 0. Now let m > M be fixed.
Then

rn = W(ps tn) = ﬂ(qm’ tn - Sm)

for all n. Since t, — «, there is an N; suchthat t -s_ > 0 for n > N;. This in
turn implies that

d(n(q, t, - s,,), ) = dla(q, t, - s,), (A, , t, -s,) <€

for n> N;. Now choose N, so that d(r,, r) <& whenever n> N, . Pick some
N > max(N;, N,) and set 7 =ty -s,,. Then

d(ﬂ(q; T), I‘) S d('”(qr tN - Sm)’ rN) + d(rNy I‘) < 28;

and, hence, @ is a minimal set of almost periodic motions. Q. E.D.

We see then that our condition (Theorem 5) is stronger than the condition of
Nemyckil and Stepanov (Theorem 2). One may ask whether either of the conditions
is necessary. The answer to this is not known; however, we are able to give a par-
tial answer.

For this, it is necessary to distinguish between two cases- 1) Qp N yT(p) # D,
that is, 7(p, t) is positively Poisson-stable, and 2) Q, Ny *(p) = @, that is, 7(p, t) is
pos1t1ve1y asymptotic.

If @, is a minimal set of almost periodic motions, then, in the first case, v (p)
lies in the invariant set ©p and the motion w(p, t) is almost periodic. Consequently,
by Theorem 4, n(p, t) is uniformly positively Lyapunov-stable with respect to

Cly(p) = @ =7 PV Qp .

(The hypotheses of Theorem 4 require X to be complete. In our application, let us

restrict ourselves to the compact, invariant set Cly(p). Since this set is compact,

it is complete, and Theorem 4 applies. However, the conclusion of Theorem 4 is a

local condition, so that it remains valid in the original dynamical system.) We have
thus proved the following result.

COROLLARY. Let n(p, t) be positively Lagvange-stable; then the following
statements arve equivalent.

(A) 7(p, t) is an almost periodic motion.

(B) n(p, t) is positively Poisson-stable and uniformly positively Lyapunov-
stable with respect to ClyT(p).

For the second case, where 7(p, t) is positively asymptotic, the following is the
best that we can prove now.
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LEMMA. Let n(p, t) be a positively Lagrange-stable motion. If u(p, t) is posi-
tively asymptotic, then u(p, t) is positively Lyapunov-stable with vespect to

yt(p) U Qp.

(A motion n(p, t) is said to be positively Lyapunov-stable with respect to a set
D C X if for every q € y*(p) and every £ > O there is a 6 > 0 such that

d(ﬂ(q’ t)’ Tf((i, t)) < e

for all t > 0, whenever § € D and d(q, §) < 5.)

Proof. Assume that 7(p, t) is not positively Lyapunov-stable with respect to
YY) U f2p . (There is no loss of generality in assuming this holds at p.) Then
there exist an £ > 0 and sequences {p,} < y¥(p) U Qp and {tn} C R such that

t,>0, p,—p, dnlp, t,), n(p,, t,) > 3¢.

Since 7(p, t) is positively asymptotic and p, — p, we can choose the {p,} to lie in
y¥(p); that is, there is a sequence {s,} such that p, = 7(p, s,). Since p does not
lie in ©,, the sequence {s,} is bounded. If the sequence {s,} has an accumula-
tion point s > 0, then a subsequence converges to s, say s, — s, and

pn = 7(p, s,) — w(p, s) = p.

That is, w(p, t) is periodic, and this contradicts the assumption that w(p, t) is posi-
tively asymptotic. Consequently, lim s,, = 0.

Using the continuity with respect to initial conditions, one can easily verify that
the sequence {t,} has no finite accumulation point; in other words, t, — « as
n— 00.

We now extract a subsequence of {n(p, t,)} and denote it by {(p, t,)}, so that
m(p, t,) —» q € Q. By continuity, it then follows that =(p, t, +t) — n(q, t) for every
t € R. Moreover, this convergence is uniform if we restrict t to lie in compact in-
tervals in R.

By continuity we can choose 7 > 0 so that d(q, 7{q, t)) < € whenever |t| < 7.
With 7 fixed, choose N; so that d(z(p, t, +t), n(q, t)) <& when n > N; and
|t| < 7, and choose N, sothat |s,| <7 if n>N,. If n> max(N;, N,), we
have the contradiction

3c < d(n(p, t,), n(p, t, +s,))
< d(w(p, t,), a) + d(a, 7(q, s, )+ d(n(q, s,), 7(p, t +5,)) < 3¢.

Hence 7(p, t) is positively Lyapunov-stable with respect to y*(p) U Qp. Q.E.D.

Remarks. 1. It follows that for every point q € " (p) the motion #(q, t) is posi-
tively Lyapunov-stable with respect to v (p) U Qp . The uniformity of the Lyapunov-
stability would follow [7, Theorem 8.04] if we could show that for each point q in Qp
the motion w(q, t) is positively Lyapunov-stable with respect to y1(p) U Qp -

2. If our condition (Theorem 5) is both a necessary and sufficient condition for
Qp to be a minimal set of almost periodic motions, then it is equivalent to the condi-
tion of Nemyckil and Stepanov (Theorem 2).
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3. Even though our condition that Qp be a minimal set of almost periodic mo-
tions is stronger than that of Nemyckii and Stepanov, it is simpler, and, consequent-
ly, it appears to be more readily applicable. We shall illustrate this with an appli-
cation of Theorem 5 in the theory of ordinary differential equations.

PART I. ORDINARY DIFFERENTIAL EQUATIONS
We now consider the ordinary differential equation
(1) x'= £(x, t)

where f: R® X Rl — R™ is continuous and periodic in t, say of period 1. We shall

assume that (1) satisfies some uniqueness condition. If p=(x,,t ) € R*x R! , let
(p, t) denote the unique solution of (1) passing through p. I xg, xl € R", let
Xp-X 1| denote the Euclidean distance between x and x,.

In 1950, J. L. Massera [5] considered the question: under what conditions does
the existence of a bounded solution imply the existence of a periodic solution of
period 1? He showed that the implication holds, with no further assumptions, if the
dimension n is 1. (The proof in this case is a simple application of the Poincaré-
Bendixson theory.) For n = 2, the implication holds under the further assumption
that all of the solutions of (1) are defined for all t > 0. For the case n= 2, an
example is constructed in [5] to show that a stronger hypotheses is needed. How-
ever, the differential equation in this example does have a solution of period 2.

For higher dimensions (n > 2) it seems that the following question is more ap-
propriate: when does the existence of a bounded solution imply the existence of an
almost periodic solution? Using Theorem 5 we can now prove the following result.

THEOREM 6. If theve exists a solution ¢(p, t) of (1) that is bounded for t > ty
and is uniformly stable, then theve exists an almost periodic solution of (1).

(Recall that a solution ¢(p, t) is said to be uniformly stable (in the sense of
Persidskii) if (i) ¢(p, t) can be continued for all t > tp, and (ii) to every € > 0 there
corresponds a 6 > 0 such that for each 7 > t, the 1nequa11ty ]qﬁ(p, t) - ¢(q, t)l <e
holds for all t > 7, whenever |¢(p, 7) - ¢(q, 7)| < 6. Also, a solution ¢(p, t) is
said to be almost pemadzc if ¢(p, t) can be continued for all t in R and, further-
more, if for every ¢ > 0 the set

{7 e R: |¢(p, t+ 7) - o(p, t)| < e forallt in R}

is relatively dense in R.)

Before proving this theorem, we note the related work of L. L.. Helms and C. R.
Putnam [3], [8], [9], who considered the autonomous differential equation

(2) x' = 1(x)

on R"™ with

, of;
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In [9], Putnam showed that if ¢(p, t) is a (future) bounded, stable solution of (2), then
¢o(p, t) itself is almost periodic. Insofar as Putnam’s result is viewed as an existence
criterion (it is actually more than this), we see that the above theorem is more
general.

We now prove Theorem 6. Since the vector field f(x, t) is periodic in t, we can
identify the hyperplanes t =0 and t=1 and in th1s way map the space R™ X R! onto
the open torus (or annulus) T = R™ x s! , where S! is the one-dimensional sphere.
Th1s mapping we shall denote by (x, t) — (x, [t]), where [t] =t (mod 1). If

= (xp, tp) € R™ X Rl let p = (xp, [tp]) denote the image in T. Since the vector
f1eld 1(x, t) is per10d1c of period 1, we know that if p = (xg, tg) and q = (xq, tg + k),
where k is any integer, then ¢(p, t) = ¢(q, t + k) for all t. In other words, if p and
q are both pre-images of some point p in T (that is, p = q), then

o(p, tp +1) = ¢(q, tq +t)

for all t.

A metric can be defined on the sphere s! in several ways. For the sake of
definiteness we shall let p([s], [t]) denote the metric inherited from the plane after
sl is mapped onto the circle of circumference 1.

If p=(xp, [tp]) and q = (xq, [tq]) denote points in T, then

Ay, q) = |xp - xq] +p([tp], [tg])

is a metric on T. Furthermore, the metric topology on T is the same as the
topology T inherits as a subset of R2t1,

Let us now formally define the mapping n(p, t) as
(4) a(y, 1) = (¢(p, tp +1), [tp +t]),

where p- € T and p is any pre-image of p. (We have already observed that the
right side of (4) depends only on p and t.) The mapping 7 is defined only formally,
because we have not yet specified the domain or range. The domain is a subset of
T x R , and the range is in T. We shall now show that there exists a subset X C T
such that 7: XX R! - X and 7 is a flow or dynamical system on X. (It will be evi-
dent that the set X we define below is maximal with respect to the above property.)

Define the three sets

+

LB' = {p e R*xR": ¢(p, t) is defined for all t > t,},

]

LB

{p € R*x R'": ¢(p, t) is defined for all t <t,},
LB=LB NLB .

Let X denote the image of the set LB under the given mapping of R™ X R! onto T.
One can easily verify that if the set X (or LB) is not empty, then (4) defines a flow
on X,

LEMMA. If there is a solution ¢(p, t) of (1) that is bounded for all t > tp, then
the set LB is not empty.

Proof. Let ¢(p, t) be a solution of (1) that is bounded for t > t,. We shall now
define the limit set of p and show that it is nonempty and lies in X,
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Let yT(p) = {#(p, t): t > 0}. Since ¢(p, t) is bounded, the set vH(p) is relatively
compact, that is, Cly"(p) is compact. Also, the set yH@(p, 7)) is relatively com-
pact for 7 > 0. Furthermore, the family of compact sets {Cly *(#(p, 7))} (v > 0)
is decreasing; hence the intersection

(5) L, = (1 ciyt@ie, )
T>0

is nonempty and compact. We call this the limit set of »p.

Now observe that the limit set Ly can be characterized as the collection of all
points q in T such that q = lim #(p, t,) for some sequence {t,} with t, — .
Since Ly is not empty, let q € Ly . We want to show that if t is any element of R,
then #n(q, t) is defined and lies in L.

Choose t, — = so that p, =n(p, t,) —» q. Let p, be the pre-image of p, with

0L tP < 1. Then the sequence {tp } converges to a limit tg, where 0 <ty <1.
n n

Now let g be the pre-image of q with tq = to; then p, —q in R™ x R!. Thus, if I
is any interval on which ¢(q, t) is defined, then for each t in I there is an N such
that ¢(p,, t) is defined for n > N and, moreover, ¢(p,, t) — ¢(q, t) as n — «. (This
is well known. It can be proved in several ways. For example, it is a direct appli-
cation of Corollary 3.1 of [10].) Consequently,

m(p,, t) = a(p, t, +t) — 7w(q, t).

Furthermore, the point 7(q, t) lies in the compact set Ly, since (t, +t) — < as
n — «, Now let I be the maximal interval of definition of the solution ¢(q, t).
Kamke’s theorem [4] asserts that either I=R! or |¢(q, t)] — < as t — bdry L
Since 7(q, t) lies in a compact set for each t in I, the set {|¢(q, t)|: t € I} is
bounded, and hence I= Rl

Since Ly, C X, both X and LB are nonempty, and this completes the proof of the
lemma.

As we noted above, the function 7 defines a flow on X. Moreover, if p € LB
(or p € X), the set Ly is the w-limit set of p, thatis, L, = Q.

I q € R® xR! is any pre-image of q, then

|o(a, t+ 7) - ¢(a, t)| < d(w(q, t+ 7), 7(q, t)).

Consequently, if 7(q, t) is an almost periodic motion in X, then the corresponding
solution ¢(q, t) is an almost periodic solution of (1). Using a theorem of Besico-
vitch, one can show that the converse is also true.

(We note that 7(q, t) is a periodic motion in X if and only if the corresponding
solution ¢(q, t) is a periodic solution of (1) with integral period. If, for example,
¢(q, t) were a periodic solution of (1) with an irrational period, then the correspond-
ing motion 7#(q, t) in X would be almost periodic, but not periodic.)

Continuing with the proof of the theorem, we let ¢(p, t) be the solution of (1)
satisfying the hypotheses of the theorem. If p € LB, then p € X, and the motion
w(p, t) is positively Lagrange-stable and uniformly positively Lyapunov-stable with
respect to X. Consequently, this motion is uniformly positively Lyapunov-stable
with respect to y (p) U fp . By Theorem 5, every motion in Q) is almost peri-
odic; therefore, if q € Qp , then the solution ¢(q, t) (where g denotes some pre-
image of q) is almost periodic.
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If p does not lie in LB, that is, if ¢(p, t) is not defined for all t < t;, then there
are several ways of mod1fy1ng the argument We shall outlme one method Since
Cl-y (p) is compact, there exists a p > 0 such that Cly (p) c B(p) x sl , where
B(p) is the set of x in R™ with |x| < p. Now consider the equation

(6) ‘ x' = a(]xl)f(x, t),

where a(r) is a real-valued C*-function, defined on 0 < r < « and satisfying the
condition

1 if0<r<p,
alr) =
0 if2<r<ew,

The solutions of (6) are unique, and they are defined for all t. Moreover, they agree
with those of (1) in the region B (p) X Rl . If we now examine the associated dynami-
cal systems, we see that the sets L and the motions in each set are the same.
Also, for equation (6), p € X and Ly =Qp . Consequently, every motion in Lp is
almost periodic, and if q € Ly , then the corresponding solution ¢(q, t) of (1) is al-
most periodic. This completes the proof of the theorem.

Example. One may ask whether the assumption of stability can be dropped. The
answer is negative even in the case of autonomous differential equations. This is
seen in the following example, which was suggested by Lawrence Markus.

In [1] it is shown that there exists a 3-dimensional, compact manifold M and a
cl_vector field f(x) on M such that M itself is a minimal set, in the flow defined
by f(x), and such that there is no almost periodic motion in M.

The manifold M can be imbedded in R7 and the vector field f(x) admits a cl.
extension f(x) to all of R’ Furthermore, since M is compact, this extension can
be chosen so that the solut1ons of the equation x'= f(x) are defined for all t.

Now consider R8, and let y € R8 be written as y = (x, z), where x € R and
z € R1. The manifold M now lies in the hyperplane {(x 0): x € R’}. Consider

(7) y' = F(y)

on R8 where F(y) = (f(x), d(y, M)) and d(y, M) is the distance between y and M.
The functlon F is (L1psch1tz) continuous, and the solutions of (7) are unique. Fur-
thermore, the set M is the only nonempty w-limit set. Consequently (7) has no al-
most periodic motions.

Remarks. 1. R. K. Miller pointed out that, under the hypotheses of Theorem 6,
every almost periodic solution of (1) in the pre-image of L, is uniformly stable.

2. Theorem 6 can be extended to the case in which f(x, t) is defined on W X Rr! ,
where W is an open set in R™. Essentially the same argument can be used. In this
case one would have to assume that the solution ¢(t) lies in a compact subset in W.

3. R. K. Miller [6] has made an application of Theorem 5 to ordinary differential
equations with almost periodic right sides.

4. In a forthcoming paper [11], the second author has continued this analysis to
establish a relationship between periodic solutions and asymptotic stability.
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