A NOTE ON THE BORDISM ALGEBRA OF INVOLUTIONS

J. C. Su

1. INTRODUCTION

This note presents a structure theorem on the unoriented bordism group of
involutions #«(Z,) defined in [1]. If we regard R, (Z,) as the bordism group of
principal Z,-bundles over closed manifolds, the tensor product of principal Z,-
bundles induces a multiplication in &, (Z,), making it an algebra over the Thom
bordism algebra #4. On the other hand, we can also regard #x(Z,) as the singular
bordism group #x(B(Z,)) of a classifying space B(Z,). The diagonal map
A: B(Z,) — B(Z,) X B(Z,) then induces a comultiplication in #£x (Z, ), making it a co-
algebra over & 4. In summary, #4(Z,) becomes a Hopf algebra over #, . To
study this Hopf algebra, we make use of the Smith homomorphism [1], whose exist-
ence is an additional special feature of &, (Z 2). With all these structures on
R % (ZZ), we proceed to show that the Smith homomorphism helps to give some in-
formation on the comultiplication, which in turn yields some information on the
multiplication. The information turns out to be just enough for a structure theorem.
Our final conclusion states that &, (Z;,) is an exterior algebra over #, with gen-
erators in each dimension 2™ (n=0, 1, 2, ---). As we shall see, this theorem is quite
formal in nature, and it supplements in a modest way the work of P. E. Conner and
E. E. Floyd. There are quite a few places where we are unable to be more explicit.
The author is grateful to Professor Conner for many useful conversations.

2. GENERALITIES

We recall here the definition of the singular bordism group £ (X) of a space X.
We consider pairs (M", f), where M" is a closed n-manifold and f: M™ —» X is a
continuous map. Two such pairs (M7, f;) and (M3, f,) are bordant if there exists
a compact (n+ 1)-manifold B®"! and a map F: B®t! — X such that the boundary of
B™*! jg the disjoint union of M} and Mj and F | M} = f; (i=1, 2). This is an equi-
valence relation, and the equivalence class of (M, f) is denoted by [M, fl. (In [1],
this class is denoted by [M, f], to distinguish it from the oriented case.) The col-
lection of all such classes is denoted by % ,(X), and &« (X) is defined as Z,-q & ,(X).
Disjoint union makes Zx(X) a vector space over Z,. Moreover, #,(X) is a module
over the Thom unoriented bordism algebra &, . The module operation is given by
[M"][N™, f] = [M™ X N™, F], where F is the composition of projection onto N™
followed by f. The module £ _(X) is also augmented. The augmentation
e: R, (X) — 2, is given by ¢ an, f] = [M™]. The augmentation kernel is denoted
by #,(X), and it is called the veduced module.

Corresponding to the diagonal map A: X — X X X we have the induced homo-
morphism

Ay RL(X) = R, (X XX).
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On the other hand, for any two spaces X and Y, we always have the natural homo-
morphism

X: Ry (X) Q@ R (Y) = R (XXY)

(here and in the sequel, tensor products are understood to be taken over 92*), given
by

x [M™, f]® [N™, g] = [M*x N™, fxg].

In case X and Y are CW-complexes, as we shall henceforth assume, it is known
[1, p. 75] that x is an isomorphism. In particular, we may take Y = X and consider

x~! o A_, which we also denote by A.

PROPOSITION 2.1. #_(X) is a co-algebra over R, , with comultiplication A
and co-unit €. /N is associative and commuitalive.

For the definition of co-algebra we refer the reader to [2]. The proof of Proposi-
tion 2.1 is straightforward.

Suppose that X is an H-space. Let m: X X X — X be the multiplication. We may
then consider m, o x, which we shall still denote by m. We also define

i: #, — R,(X) by i[M"] =[M?", constant map].

PROPOSITION 2.2. & _(X) is an algebra over R, with multiplication m and
unit i. The multiplication m is associative (commutative) if X is homotopy asso-
ciative (commutative).

Again the proof is easy. Although this is not needed in this note, we remark that
Proposition 2.2 remains valid if one uses a weaker notion of cohomology H-space,
defined in an obvious way, instead of H-space.

The following assertion can be verified without difficulty.

PROPOSITION 2.3. If X is an H-space, then R (X) is a Hopf algebra over R,
with algebra (R, (X), m, i) and co-algebra (R, (X), A, €).

3. THE STRUCTURE OF #,(Z;)

We now specialize to the case where X = B(Z;) is a classifying space for the
group Z,. We take B(Z;) to be the infinite-dimensional real projective space, so
that B(Z,) is a CW-complex and Proposition 2.1 applies. Let c € H'(B(Z;); Z,) be
the fundamental class; then there exists a map m: B(Z;) X B(Z,) — B(Z,), unique up
to homotopy, such that

m*¥(c) = c®1+1Q c € H(B(Z,) X B(Z,); Z,).

This defines an associative and commutative H-space structure on B(Zz). Accord-
ing to Proposition 2.3, #£,(B(Z;)) is a Hopf algebra. It is often convenient to inter-
pret 2 (B(Z;)) as the bordism group of fixed-point-free involutions on manifolds.
We consider pairs (M™, T), where M™ is a closed n-manifold and T a differenti-
able fixed-point-free involution on M®™. Then there exists a map f: M"/T — B(%Z,),
unique up to homotopy, associated with (M™, T). We say that (M}, T;) and

(M3, T,) are bordant if the corresponding bordism classes [M]/T,, ;] and
[M3/T,, f,] are the same. This means there is a compact (n+ 1)-manifold pntl
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and a dlfferentlable fixed-point-free involution T on B™*! such that aB®'! = M} U M3

and T | M =T; (i=1, 2). Interms of involution, the multiplication of [Ml , T;] and
[MZ s TZ] is merely the tensor product of Z,-bundles Ml — Ml/Tl and

M3* — M3* /T, . Explicitly, one considers involutions T} X T, , Ty X1, and 1X T,
on Mn Mm then both T; X1 and 1 X T, induce the same involution T on

MII1 X MIZ1 /T X T, , which 1s differentiable and fixed-point-free. We have then the
relation

M7, T,][M, T,] = [M] XM, /T, XT,, T].

As in [1], we shall denote #,(B(Z,)) by #.(Z)).
Let us summarize here what is known about %*(ZZ). It has been shown in [1,
Theorem 23.2; p. 60) that R4 (Z,) is a free module over &£, . A homogeneous £ -

basis can be taken as [S™, A] (n=0, 1, 2, --), where S™ is the n-sphere and A the
antipodal involution on S™, Then we have the Smith homomorphism

S: R (2,) - R(Z,).

(In [1] it is denoted by A. Here we reserve A for the comultiplication.) This is an
R, -homomorphism of degree -1, and it can be described as follows. Let [M?", f]

be an element of 22 ,(Z,); take an (n - 1)-submanifold Nn-1 M™, dual to the class
*(c) € H(M"™; Z,); and set g = f | N™-1, Then

s[M®?, £] = [N*-!, gl e 2 _,(Z)).

Geometrically, we may assume that f(M™) c PX c B(Z 2) where PX is the real pro-

jective k-space. We may also assume that f: M™ — PX ig differentiable and trans-

verse re% lar [1; p. 21] on P¥-! c PK, Under these cond1t1ons we can take
(P¥-1)., From thls it is clear that S[S™, A] = [s™-!, A] for all n (with

the understanding that [S™!, A] = 0). In particular, Ker S = 1(,% ). Thus the image

under S of the basis [S", A] is fairly simple. However, the basis is not quite con-

venient for algebraic manipulation, because [S™, A] is not in R (ZZ) for even n.
The following proposition is a technical device to take care of th1s

PROPOSITION 3.1. Theve exists a unique R -basis {xn}:=0 in R(Z,) with
the following properties.

(1) x, =[s?, A,
(ii) x, € #_(Z,) forall n> 1,
(iii) S(x, ) =x,_; forall n> 1.
Proof. One can show by induction that if such a basis exists, then
n-l

= [S®, Al+ 20 [Pn‘J]x
3=0

Conversely, this relation determines inductively a sequence {xn}::(, that forms an
R -basis with all the properties (i), (ii), and (iii).

We now come to our first important observation.
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PROPOSITION 3.2. For each x € R, (Z,), we have the velation
AS(x) = (SR 1)A(x).
Proof. Define the mapping
S #,(B(Z,) X B(Z,)) — %, (B(Z,) X (B(Z,))

as follows. If [M™, f] € #,(B(Z,) X B(Z,)), we may assume that f(M™) pk x pk
for some large k and that f: M” — PK x PX is differentiable and transverse regular
on PX~! x PX ¢ P x P¥. Let

N2l = s lpR -l xPX)  and g = £|NPL

Then define S{[M?, f] = [N®-! g]. It is not difficult to verify that S; is a well-
defined £, ~homomorphism of degree -1. Now consider the diagram

A,
Ry (Z,) — R,(B(Z,) X B(Z,)) 2 #,(Z,) ® #,(Z;)

|s Is ls®1
A
R (Z,) — R, (B(Z,) X B(Z,)) - & ,(Z,) ® 7,(Z,) .

To see that it is commutative, one needs only observe that A: P* - P x PK is
transverse regular on pk-1x Pk, with A'I(Pk‘1 X Pk) = pP*-1 | This proves
Proposition 3.2,

PROPOSITION 3.3. The comultiplication in R, (Z,) is given by the formula

n

Nx ) = 27 x.® x
i=0

n-i-

Proof. The assertion is trivial for n = 0. Suppose it is true for k < n. Then

n

(S ® DAy = Alxy) = 20 x;®@x,5= S®1) 20 ;@ x4 ;.

i=0 i=1

Since Ker (S® 1) = i(#,) ® #,(Z,), it follows that

n+l
D) = 20 %@ x50 3+ % ® x,
i=1
where x € #,,1(Z,). But x=x,_,,, because £ is a co-unit. Hence

n+l

A(Xn-f-l) = E Xi® Xn+l-i-
i=0

We proceed to study the multiplication in #,(Z,).
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PROPOSITION 3.4. If x € #,(Z,), then x* = 0.

Proof. Tt suffices to show that [S™, Al% = 0 mod R, . Let d € H'(P"; Z,) be the
generator; then the characteristic class of [Sn A]2 i

d® 1+1®d e H'(P" xP"; Z,).

Let W= Eizfo W, be the Whitney class of P" x P". For any partition k1, kp, -, kp)
of 2n, consider the involution number [1; p. 60]

(1) <A@® 1+1®d)k1wkz Wi P x P,

According to [1, Theorem 23.1, p. 60], our assertion is true if all the involution num-
bers of the form (1) with k; > 0 vanish. If n iseven, then d® 1+1 QR d=W;.
Hence (1) reduces to a Whitney number of P" x P" involving W;. But these numbers
vanish, because P" X P" is bordant to the complex projective n-space, which is
orientable. If n is odd and k; is odd, then k; is odd for some i. In this case (1)
vanishes because Wki = 0. Finally, if n is odd and all k; are even, then (1) is a

linear combination of products of the form

{£@%), P> <gld?), P*>,

where f and g are polynomials. But obviously they all vanish.

There is also a geometrical proof of Proposition 3.4, suggested by P. E. Conner.
We outline it briefly. Take [M™, T] € % (Z,). Let M™ be imbedded in M™x M" by

the diagonal map. Let o be the diagonal involution o(x, y) = (Tx, Ty) on M" x M",
and T the involution on M® x M" /¢ induced by T X 1. Then

[MP, T]? = [M™x M /0, T].

It suffices to show that S[M™ x M™ /o, T] = 0, since S is a monomorphism on

5?*(22). Choose a closed tubular neighborhood [1; p. 58] N of M™, invariant under
* 0. Let

B, = M"XM"-IntN/o and B, = N/o;

then B; and B, are compact 2n-manifolds in M” x M" /¢ with B; N B, = aN/o.
Since T is free on M", we can take N small enough so that (%, y) € Int N implies
(Tx, y) ¢ N. This means that B, = T(Bl) According to [1, Theorem 26.2, p. 68)],
we have the relation

s[M™ xM" /o, T] = [oN/0, T].
Now 9N/o is precisely the tangent sphere bundle of M™/T, and T is the antlpodal
involution on each fiber. Since [M™/T] = 0, it is obvious that [oN/o, T] =
Next we try to obtain information on multiplication of #,(Z;) in general. Let
i, j) = (1 -IJ_ ]) = (i+j)1/i!j! be the (mod 2)-combinatorial coefficient, where we

agree that (i, j) = 0 if either i <0 or j < 0. For each n> 0, let A, € #,(Z;) be
the #£_-module generated by x,, x;, ***, X, _7, and let
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B, = 2 A;®A;CR(Z,)®R,(Z,).
itji<n

Notice that by Proposition 3.3, for each x € #,(Z;), we have the relation x € A, if
and only if A(x) € B,, where A is given by A(x) = Ax - (x® xg+ xo & x).
PROPOSITION 3.5. The multiplication in R (Z,) satisfies

X X, =(n, m)x, ., modA ;.-

Proof. The assertion is trivial if n+ m = 0. Suppose n+ m = ¢ and the asser-
tion is true for n+ m < ¢. Then

n m
Ax, X)) = 22 2 xixj® Xn-i%¥m-j
i=0 j=0

1l

anm® X, + X, ®xnxm+ 2(1, j)(n - i, m - j)xi+j® Xg i mod By,
ij

that is,
n
A(xnxm) = 27 [Z‘/ (i,k-i)(n-i,m—k+i)i|xk®x£_k mod B, .
o<k<y i=0
Comparing the coefficients of t” in the identity (1 + t)¥(1 +t)¢"% = (1 + t), we ob-
tain the identity

22 (,k-i)(n -i, m-k+i) = (n, m),
i=0

and it follows that
Axp Xy, - (0, m)x,4p) =0  mod Bpyp,.
By the remark just made,
XpXm = (b, m)x, 4, mod A, ..

The congruence cannot be replaced by an actual equation. For example, one can
compute explicitly that

X)X, = X3+ [Pz]xl.
We do not have a general formula to account for the residue terms involved. But

fortunately, we are still able to describe the algebra %*(ZZ).

THEOREM . %*(ZZ) is the exterior algebra over R, genevated by {in}c::() .

Proof. For each integer n > 1, let w(n) = (k;, k,, -, kp)
(ky >k,> - > kp > 0) be the diadic expansion of n; that is, let
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kj

K
n=214252 4 .42,

Let Xy (n) = X2k1 X2k2 -+ x2kp. We have to show that the x,,(n) (n=1, 2, -+*) to-
gether with xo form an 2 -basis. Recall that (n, m) # 0 if and only if the diadic
expansions of n and m have no common part. It follows from Proposition 3.5 that

X (n) =X, mod An.

This means that the x,,(,) (n=1, 2, ---) are related to the x, (n=1, 2, --*) by a tri-
angular matrix with identity on the diagonal. Therefore our description of the alge-
bra #,(Z,) is correct.

To have a complete description of the Hopf algebra .%*(ZZ), we ought to express
the comultiplication in terms of the basis X (n) - From Proposition 3.5, we deduce
easily that

AX(:.)(n) = i§(>) Xw (i) ®xw(n-i) mod B, .

But again we do not know the exact formula for the residue terms. Direct calcula-
tion shows that for n < 7 there is no residue term. But

8 '
Ax g = izjo %o (i) ® K (i) T [PA1 (g ® x5 + 3, ® x4) + [P°]% (x5 %1 ® x; + %) ® x; %),

Another relevant problem is the relation between S and the multiplication.
specifically, is S a derivation? Once more, all we can say is that

S(x,%,,) = S(x )x, , +x,8(x,) mod A _,

with nonvanishing residue terms in general.
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