THE INTEGRAL REPRESENTATION RING
OF A FINITE GROUP

Irving Reiner

1. INTRODUCTION

We shall be concerned with matrix representations of a finite group G by non-
singular matrices with entries in a ring R, where R is a discrete valuation ring of
characteristic zero. Let T = RG, the group ring of G with coefficients in R. We
may then, equivalently, consider left I'-modules having finite R-bases.

Let us assume that the Krull-Schmidt theorem is valid for such I'-modules, that
is, that every I'-module is uniquely expressible as a direct sum of indecomposable
modules. (Toward the end of this section we shall give some sufficient conditions
for the validity of the Krull-Schmidt theorem.) Then we may define the integral
vepresentation ving A(T), as follows. Denote by {M} the isomorphism class of the
I'-module M. Form the additive abelian group generated by the symbols {M} rang-
ing over the distinet isomorphism classes of I'-modules, with defining relations

{M} = {Mm'} + {Mm"} whenever M & M'@® M*".
On this additive group we impose a ring structure, by defining
{m} {m'} = {M®zM'},
where the action of G on M ®Qr M' is given (as is customary) by
gm ®m') = gm Q gm' (g2e G meM m'e MY).

The ring thus obtained we denote by A(T), and call it the integral representation
ring of T'. Clearly, A(T") is a commutative associative ring. Its unity element is
{R}; here, R denotes the #7ivial T'-module, that is,

ga = o (g€ G, @ € R).

The above representation ring is an analogue of the modular representation
algebra recently introduced by J. A. Green [4]. Let k be a field of characteristic p
(where p > 0), and let @ denote the complex field. Form the Q-algebra Ag(kG)
consisting of the Q-linear combinations of symbols corresponding to the isomorph-
ism classes of kG-modules, with relations and multiplication defined in the manner
above. If p does not divide the order of G, then the group algebra kG is semi-
simple, and Green showed easily that the representation algebra Aqn(kG) is also
semisimple. Indeed, if p = 0, then Aq(kG) is isomorphic to the (commutative) alge-
bra of generalized characters (with coefficients from ). But this latter algebra has
no nonzero nilpotent elements; for if 7 is a generalized character such that n™ = 0
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for some m, then obviously n = 0. If p # 0 and p does not divide the order of G,
the same reasoning applies if we use Brauer characters in place of ordinary char-
acters.

Green also established a much more difficult result: For any cyclic group G,
the modulay vepresentation algebra Aq(kG) is semisimple. Since Aqg(kG) is a
commutative algebra, this is equivalent to the assertion that Aﬂ(kG) does not con-
tain any nonzero nilpotent elements.

Here we investigate the analogous question: Does A(T') contain nonzero nilpotent
elements? Our main result is as follows:

THEOREM. Let G be a cyclic group of order n. Let R be a discrete valuation
ving of charvactervistic zevo, with maximal ideal P. Suppose that the Krull-Schmidt
theovem holds for RG-modules. Assume that n € PZ, and if 2 € P, assume further
that n € 2P. Then the integral representation ving A(RG) contains at least one non-
zevo nilpotent element.

On the other hand, it is possible to choose G and R such that A(RG) contains
no nonzero nilpotent element.

Throughout this paper, we let Zp denote the p-adic valuation ring in the rational
field Q, and Z; the ring of p-adic integers in the p-adic completion of Q.

COROLLARY. The vepresentation ving A(Zp G) contains nonzevo nilpotent ele-
ments if G is a cyclic group of order p€ with e > 1.

A trivial observation should be made at this point. Let G be an arbitrary finite
group whose order is a unit in the discrete valuation ring R. Let K be the quotient
field of R. There is then a one-to-one correspondence between the isomorphism
classes of RG-modules (having finite R-bases) and the isomorphism classes of
KG-modules (see [3, Theorem 76.17]). This correspondence induces an isomorph-
ism A(RG) Z A(KG). But A(KG) is a subring of the commutative semisimple alge-
bra An(KG), hence contains no nonzero nilpotent elements. The same is therefore
true for A(RG).

To conclude this section, we list several conditions, any one of which implies
the Krull-Schmidt theorem for RG-modules.

i) The order of G is a unit in R.
ii) R is a complete discrete valuation ring.

iii) The quotient field of R is an algebraic number field which is a splitting
field for G.

iv) G is an arbitrary p-group, where R = Z.

For the proofs that each of these imply the Krull-Schmidt theorem, we cite the
following references: for i), see [3, Theorem "76.17]; for ii), see [2], [10], or [8];
for iii), see [5]. In order to show that iv) is a sufficient condition for the validity of
the Krull-Schmidt theorem, one first uses the Witt-Berman theorem [3, Theorem
42.8} to show that an irreducible QG-module remains irreducible upon extension of
the ground field from Q to its p-adic completion. The desired result now follows
as in [3, Lemma 76.28 and Theorem 76.29].
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2. TENSOR PRODUCTS OF MODULES

Let G be an arbitrary finite group of order n, and let R be a discrete valuation
ring of characteristic zero. Let P = 7R be the maximal ideal of R, and set
R = R/P (R is then a field of characteristic p). Set I' = RG, T = RG, and consider
finitely generated left I'-modules. Since we shall need to work with I'-modules that
do not necessarily have R-bases, I'-modules having R-bases will be called R-free
T'-wmodules.

Assume hereafter that the Krull-Schmidt theorem is valid for R-free I'-modules.
Let X be a fixed R-free I'-module satisfying

(1) Prcxcr.
If Y is an arbitrary R-free I'-module, we shall show how the problem of calculating

the tensor product module Y &g X can be reduced to a calculation involving only T-
modules. Indeed, we shall see that (for fixed X) the isomorphism class of Y Qg X

depends upon Y = Y/PY rather than upon Y.

Set A = T'/X, so that there is an exact sequence of I'-modules:
(2) 0 —-X—-TI — A —0.

From (1) we conclude that PA = 0, and thus that A may be viewed as T-module.

Now let Y be any R-free I'-module, and let m = (Y: R) be the number of ele-
ments in an R-basis for Y. Set Y = Y/PY, so that

0-PY—>Y—-Y—0

is exact. Then

PY R A - YX®RA->YRXRA—-0
is also exact. However, the image of PY ®r A in Y ®R A is zero, since PA = 0.
This shows that Y Qg A=Y ®g A. But both Y and A are R-modules, which
readily implies that Y ®g A=Y ®R A. Thus

Y®rR A=Y ®RA as I'modules.

Since Y is R-free, we obtain from (2) the exact sequence of I'-modules

(3) 0 - YR®RX—>Y®RT —>Y®RA —O0.

Now Y ®R | I"(m), where I‘(m) denotes the direct sum of m copies of T (see
Swan [10, Lemma 5.1]). Thus (3) may be written as

(4) 0-Y®yX-r™ L ¥®za —o.
Let

Y®gA=B, ® - @ B,
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where the B; are indecomposable T-modules. Each B; is expressible as a quo-

tient of a free I'-module, hence also as a quotient of a free I'-module. Thus for
each i (1 <i<t), there is an exact sequence

(n3)

O—*Mi—>1" —->Bi—>0,

for some n; and some R-free I'-module M;. Therefore the sequence

(5) 0—M; @ - ®M, — 1_‘(n1+...+nt) ~ B, @ - @® B, — 0

is exact.
SCHANUEL’S LEMMA (see Swan [11]). If

0>M—>L—>B—0 ad 0— M'— L' - B'> 0

are two exact sequences of I'-modules, where both L and L' ave projective, and
B= B', then

M@AL'=M® L.

Applying this lemma to the sequences (4) and (5), we obtain

(6) Y®RX @ r ces ~ M]_ @ e @ MtC_D I\(m).

Since the Krull-Schmidt theorem is assumed to hold for I'-modules, we may use (6)
to calculate Y ® g X. Note that (for fixed X) the result depends only on m and
B,, ---, B4, that is to say, only on the I'"-module Y.

Later (in Section 5) we shall systematically use this approach to calculate cer-
tain tensor product modules. For the moment, we shall content ourselves with the
following simple consequence of formula (6).

I X and Y are a pair of R-free I'-modules such that
(7) PFCXcr, Prcycr, X=Y,
then the preceding discussion implies that
XQ@rXTXQ Y TYQ®z XTYQ, Y.
Hence in A(T") we have the relation
{x}-{r)?={xex}-{xX®v}-{Yy®x}+{y® Y} =o.

Thus, if X and Y are a pair of nonisomorphic I'-modules satisfying (7), then
{X} - {Y} is a nonzero nilpotent element of the integral representation ring A(T').
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3. CYCLIC GROUPS

We keep the notation of Section 2, and we assume throughout this section that G
is a cyclic group generated by an element g of order n. Embed R in the group ring
T" by theusual map ¢ € R— a -1 € T, where 1 is the identity element of G.

Let us choose X to be the ideal generated by 7 and g - 1 in the commutative
ring I'. Then P c X C T, and X has an R-basis {xl 5 v, xn}, where

x1=g—1,xz=g2-1,---,xn_1=g y Xp = T
We find at once that
(8) gx; = X, -%x; 1<i<n-2), gx 6 ;= -%X,, gxX 6 =X +7X,.

Consequently X = X/PX = U @ Rx,, where U = Z]_ 1 Rx;, with the action of g

on U given by the first n - 1 equations in (8), with the x; replaf'ed by x;. (Indeed,
U is isomorphic to the augmentation ideal of T.) In the matrix representation of G
afforded by the module U, the matrix corresponding to g is

[ 1 -1 -1 e -1 -1
1 0 0 - 0 0

c=| 0 1 0 -

0 0 0 - 1 0

Let us put h(A) = Zﬁ;cl) A, where A is an indeterminate over R. Then C is similar
to the companion matrix of h(r), which shows that

U= ﬁ[h]/(h‘(x)),

where g acts on the right-hand module as multiplication by A.

We shall now show that if n satisfies the hypotheses of the theorem given in Sec-
tion 1, then the trivial I'-module R cannot be a I'-direct summand of U. Thus, we
assume that n € P2, and if 2 € P, we assume in addition that n € 2P. This guaran-

tees that n(n - 1)/2 € P in all cases.

Suppose that R is a T'-direct summand of U. Then there is a direct sum de-
composition:

R . R[] R[]
9) ®oY) S0 @ &

It follows at once that (A - 1)k(x) = h(»), so that

-2 n-3

kKA) = A"+ 2" P+ eee - m - 20+ (n - 1) € R[AL.
But then k(1) =n(n - 1) 2 =0 in R, and thus A - 1 is a factor of k(\). From (9) we
then conclude that k(\) annihilates R[x]/ (h(2)), which is obviously impossible.

Thus, the assumptions about n imply that R is not a I'-direct summand of U.
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Next, define s =1+ g+ - + gn'l , and choose Y as the ideal generated by 7 and
s in the ring T'. Then PI'C Y C I, and Y has an R-basis {y;, *:-, y,f, where

VI =7, Yy=78, *, Yoo =785, yn=s.
Note that
Vi+y,+ety, g+ g™l = ay_.
We see at once that
gy;i = ¥ir1 (1<i<n-2), gyn.1 = 7Yy - Y1+ +Yn_1), &Yn = Vn-

Therefore Y = Y/PY =W @ Ry, , where gy, =y, , and where W = = 1 Ry; . The
action of G on W is given by

gyi = yir1 (1<i<n-2), gy,.3=-(y3+-+yn_1)-
The matrix corresponding to g (acting on W) is
O 0 ¢ -- 0 -1

1 0 0 --- 0 -1

. 0 0 0 -1 -1 ]
which is the transpose of the companion matrix of h(x). Hence C and D are similar
over R, which shows that W = U as I'-modules.

We have thus shown that X2 Y £ U @ R, so that (7) holds Our next task is to

verify that X is not I'-isomorphic to Y. We set U = En i Rx; (this is a I'-sub-

module of X; indeed, U is the augmentation ideal of I‘) Then U is an R-direct
summand of X, and X/U is isomorphic to the trivial I'-module R.

We shall determine a I'-submodule V of Y such that
K®r VEK®gU, Y/VE

with V an R-direct summand of Y. The composition factors of the KG-module KG
are the trivial module K, occurring with multiplicity 1, together with the composi-
tion factors of K®pg U. Hence Homkgg (K ®R U, K) = 0. Therefore any I'-homo-
morphism of X into Y must induce a I'- homomorphlsm of U into V. In particular,
if X= Y as I'-modules, then U= V as I’-modules, and therefore U= V as T-
modules. We shall show that this is impossible when n satisfies the hypotheses of
the theorem in Section 1, since we shall verify that the trivial T-module R is a T-
direct summand of V, We may thus conclude that X is not isomorphic to Y, and
hence that {X} - {Y} is a nonzero nilpotent element of A(T).

Since n € P2, we may write n=7-7' for some 7' € P. Now let V be the R-

free P-module with basis {v;, *=-, v _;}, where
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vi=7yit1-y1 = a(g'-1) (1 <i<n-2),
v =7I'Y1"'yn=n-s=-{(g—1)+(g2_1)+...+(gn-1_1)}-

Then V is an R-pure I'-submodule of Y, hence an R-direct summand of Y. We
have the relation

n-1

K®Rv= 2 K(gi"i)y

i=1
so that K®p V is the augmentation ideal of KG, and thus
K®, VEKR®,U.
But then
K® (Y/V) 2 (K® Y)AK ® V) = KG/(K ®p U) = K,
which shows that Y/V = R. We see at once that
gv; = Vi -V (1<i<n-3),
gv, 5, = -(2v; +v, + vyt ety AV 1),

EVh.1 = T V1V, -
Therefore V = V/PV = (2?;12 RV,)®Rv,_;, gv,_; =V,_;, and so the trivial T-
module R is a T'-direct summand of V, as claimed. This completes the proof of the
first part of the theorem. ;

4. EXAMPLES

We shall now give several examples in which A(RG) contains no nonzero nilpo-
tent elements. We have already remarked in Section 1 that this is the case whenever
the order of G is a unit in R.

We obtain a less trivial example by choosing G cyclic of order p, and taking
R= . Here the Krull-Schmidt theorem is valid for RG-modules. Furthermore
(seezf'e{] ), the mapping that assigns to each R-free RG-module M the RG-module
M/pM induces a monomorphism of A(RG) into A(RG). Since Green has shown that
A(RG) contains no nonzero nilpotent elements, the same is true for A(RG).

For another example, take G cyclic of order pn', where (n', p) =1, and let
R = Z¥%. Since R is a complete discrete valuation ring, again the Krull-Schmidt
theorem holds in this case. Let G be a direct product G; X G, of a cyclic group
G, of order p and a cyclic group G, of order n'. From [1] or [6] it follows that
each indecomposable R-free RG-module M is uniquely expressible in the form
M; ®Rr M,, where M; is an indecomposable RG; -module and M, is an irreducible
RG,-module, and where

(gl, gz)-(m1®m2) = g1m1®g2m2 (gie Gij, m; € Mi, i=1, 2).
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This shows that A(RG) is the direct product of the rings A(RG;) and A(RG;). Since
neither of these rings contains a nonzero nilpotent element, A(RG) has the same
property.

5. THE CYCLIC GROUP OF ORDER FOUR

Let G be a cyclic group of order 4, with generator g; let R=7Z,, R = R/2R,
I' = RG, T = RG. The Krull-Schmidt theorem holds for I"-modules, and we shall
now compute the multiplication table of A(T") by using equation (6).

Up to isomorphism, there are precisely 9 indecomposable R-free I-modules,
as has been shown by Troy [12] and Roiter [9]. We list these modules as

R, S, T, R,S), R T), (S,T), X, Y, T.

Here, R is the trivial I'-module, while S and T are given by

S=RB, gB=-f; T=Rt@ORu, gt=u, gu-= -t.
The module (R, S) is the unique nonsplit extension of the submodule R by the factor
module S. The modules (R, T) and (S, T) are defined analogously. We have al-

ready defined the modules X and Y in Section 2.

For convenience, we write & instead of @r or ®fg, since it will be clear from
the context which is intended. If M is any R-free I'-module, and m = (M: R), there
are the obvious relations
TRM = r(m) (direct sum of m copies of I').

(10) R®M= M,

Straightforward simple calculations yield
S®S =R, S® (R, T) = (s, T),

(11) S®E, TV=RT), TOTER, ), TO®R, s)=1?,
(R, S)® (R, S) = (R, 8)(&),

Denote the elements {R}, {S}, e, {r} of A(T") by ¢y, ¢z, ***, Cg, for con-
venience. We shall verify the following multiplication table for A(T):

cil|cy cj3 Cy Cs Ce Co Cg Cq
czlcy
c3lc3 2C 4
cglcy 2c4 2cy
(12) cglcg| €4+ cq c3+cg le]+ 2¢cq
CglCs5| €4+ Co c3+cg |cp+ 2cg|cy + 2¢q
C7|C7|C3 + €4 + Cg[C3 + C4 + CgyCg + 2Cq|Cg + 2Cg|Cq7 + Cg + 2Cy
CglCg|Cs + €4 T CglCy + €y + CqylCy + 2C4|C7 + 2¢4|C, + Cg + 2¢ c7+c8+209
CgiCq 2¢q 2¢cq 3cq 3cg 4cq dcqg 4cg
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We already know that

CiCj = Cjci, C;C) = ¢

1<i,i<9),
and the products c; cg are obtained immediately from the second relation in (10).
Relations (11) give the products cz ¢; (2 <j < 6), c3 , €3€y4, ci

We shall use equation (6) to compute the products that involve c¢c7 and cg. We
need some elementary facts about I'-modules. Set

A; =T/(g-1YT (1<j<4).

Then Aj is an indecomposable T-module of R-dimension j, and {A 145 <L 4} is
a full set of indecomposable T-modules. We see that A4 = T, while Al is the trivial
T -module.

Either by an easy direct calculation, or else by referring to Green [4], we obtain
the isomorphisms

(13) A, ®@A;ZA;, A,QAZAY), A,®A;24,04, A;@A;2A @AQ.

Furthermore, we see that

(14) R=2S=4A, @®RS)ZTT=ZA,, @®T =(,T)=As;.

The discussion in Section 2 shows that

(15) X
Now X is the 1dea1 of I" generated by 2 and g - 1, and Y is the ideal generated

by 2 and 1+ g+ g2+g3. Let W be the ideal generated by 2 and (g - 1)%. Then X
and Y are 1ndecomposab1e whereas

14

WE (RS)®DT.
We may write four exact sequences

0-X—->T—>A; — 0, 0O -W-—->T—> A, — 0,
(16)

0—-Y—>T—>A;3—0, 0—-T >T—=A,—0,

where the embedding T — I' in the last sequence is given by y — 2y (y € T').
Now let M be any R-free I'-module of R-rank m, and let

4
M@ A Mz DO,
i=1
Equation (6) then yields the relation

17 MRX @ F(r1+r2+r3+r4) o~ X(rl) ® W(l‘z) @D Y(r3) @ 1_,(1‘4) @ I.,(m)

Let us compute S @ X; since §'5A1, weget ry =1, r, =r; =r, =0, m =1, and so
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SXPr=xer.
This shows that ¢, cq = c4. i_.ikewise, T= A, gives
TRX @ r=w o rid,

so that c3c; = c¢3 + ¢4+ cg. As a last illustration, the isomorphism XS A; @ A,
yields

xR @r¥zxover®,

whence c% =Cq+cg+ 2c9 . In this manner, we evaluate all products involving c;.
In order to compute M ® Y, we set
4

M®A3; I@Ai(Si)'

Equation (6) now becomes

m)

MY @ I‘(51“21‘53’“‘54) ~ x(51) G—)’W(SZ) ® (53 @ r(s4) ® rt
Thus, S = A; implies that S® A; = A3, and so
SRY® LY@ T,
that is, ¢, cg = cg. Similarly,
TQA ZA, @A; Z A, @ Ay,
and this implies that |
Ty darf¥?zwerer®,

Therefore c3 cg = ¢3 + ¢4 + ¢c9 . Continuing in this manner, we easily evaluate all
products-involving cg .

We are left with the problem of computing products such as (S, T) ® (R, T).
Direct calculation of these is a rather tedious process, and a better approach is to
use the ideas of Section 2. There exist exact sequences

(18) 0> (R T)—T—>8S — 0,
(19) 0—>R—>T— (S, T)— O,
(20) 0> (R,S) - T - T — 0,

(we omit the proof of this.) Tensoring the first of these sequences with (R, T), and
using the isomorphism (R, T)® S = (S, T), we obtain an exact sequence

0- R T ®®R, T — 13 (s, T) - 0.
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The application of Schanuel’s lemma to this last sequence and to the sequence in (19)
shows that

R, T) ® (R, T) = R® I'?),
Thus cf-)‘ =¢; +2¢y . Since cg = c; C;, we deduce that
¢z = c2 c.e, =¢,+¢2 =¢,(cy +2¢) = ¢, + 2¢
6 5 5 76 2 5 2 ‘&1 9 2 g -
Similarly, tensoring (18) with T, we obtain an exact sequence
0-RTIT 1?70,

Comparing this with sequence (20), and using Schanuel’s lemma once more, we have
the isomorphism

R, T)®T=(R,S)DT.
Therefore c3 cg = ¢4 + cg . Multiply this last equation by c,, thereby getting
C3 06 = C4 + 09 .

Finally, we may compute c4 cg as follows:
2¢c ¢ = c% c; = c3(cy + c9) = 2¢3 + 2¢g,
whence c4 cg = €3 + €9 . We multiply this last equation by c,, getting
04 C6 = C3 + C9 .

This completes our verification of table (12).
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