AN ARCHIMEDEAN PROPERTY OF CARDINAL ALGEBRAS
Peter A. Fillmore

A partially ordered group is called Arvchimedean if na < b for all integers n
implies a = 0, and énfegrally closed if na <b for all n > 1 implies a < 0 [1, pp.
225, 229]. The latter property, expressed in terms of positive elements, reads as
follows:

na <nb-+c for all n>1 implies a<b.

Because of the presence of infinite elements, this property fails in every nontrivial
cardinal algebra. It is the purpose of this note to show that every cardinal algebra
satisfies the following closely related condition:

na <nb+c forall n>1 implies a+c<b+ec.

The study of such properties was undertaken in the hope (as yet unfulfilled) of shed-
ding some light on the simple cardinal algebras.

A cardinal algebra, as defined by Tarski [2], is an algebraic system consisting
of a set A, a binary operation + on A, and an operation 2 of countably infinite rank
on A satisfying axioms which assert closure under the operations, the existence of
a zero element 0, unrestricted commutativity and associativity of the operations,
that + is the restriction of 2 to two nonzero summands, and the validity of the fol-
lowing two principles:

Refinement. If a+ b = Zcj, then there exist a;, b;j € A such that ¢; = a; + b;
for all i< e, a=2a;, and b= Zb;.
Remainder. I a, = b, +a,4) for all n < o, then there exists ¢ € A such that

a, =c+ Z;b,4; for all n <, (Summation indices are to run over the natural num-

bers, and the phrase “all n < «” refers to the set of natural numbers.)

A cardinal algebra can be partially ordered by defining a <b tomean a-+x=b
for some x € A; this is the order referred to above. We begin by listing the results
from [2] that we shall need, the numbering being that of [2]:

1.29. a+ b =D if and only if «a <b.

2.10. f a+nc <b+ (n+ 1)c for some n < «, then a < b + c.

2.21. If ag + a3 +---+a, <b for all n <, then Za; <b.

2.24, Every increasing sequence of elements of A has a least upper bound in A.

2.28. If am < by, for all m, n < «, then there exists ¢ € A with a,,, <c¢ <b, for
all m, n < oo,

2.29. If a < b, +c for all n < <, then there exists d € A with a <d+ c and
d <b, for all n <,

2.33. If na < nb for some n < «, then a < b,
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LEMMA 1. If x< 2a, 2b, then theve exist X1, X3 € A with X=X+ X, and
X1, %x,<a, b,

Proof. Since 2x < 2a + 2b, we get x <a+ b by 2.33. From x < 2a and
x < a+ b follows by 2.29 the existence of c € A with ¢ < a, b and x<a+c. Simi-
larly, there exists d € A with d<a, b and x <b+ d. By 2.28 there is e € A such
that ¢, d< e <a, b,and so x <a+e, b+ e, from which one deduces by 2.29 again
the existence of f <a, b with x < e +f. By the refinement property, x = x; + x,
with x3 <e and x, <f{, so that x;, x, <a, b.

LEMMA 2. If x< 2%a, 2"b for some n < =, theve exists y € A with x < 2%y
and y < a, b.

Proof. We use induction. For n = 1, we can by Lemma 1 write x = x; + x, with
X1, Xz < a, b. By 2.28 there exists y € A with x;, x, <y <a, b, and so x < 2y.

If x<2°tla 2ntlp there is z € A such that x < 2z and z < 2°a, 22b. By the
induction hypothe51s there exists y < a, b with z < 2"y, But then x < 20tly ag
required.

THEOREM. If na <(n+ 1)b for all n < =, then a <b.

Proof. We construct an increasing sequence {y,} with (2° - 1)a < 2%y, and
Vo <a, b. For n=1 we see that a < 2a, 2b, so that by Lemma 2 there exists
y1 € A with a < 2y; and y; <a, b. Assume the elements y; <y, < --- <y, have
been determined. Since

x= (2271 _1)a < gntlg gotly

Lemma 2 implies that there exists y;,4+1 <a, b w1th x < 2ntl Yn+1 An application
of 2.28 guarantees the existence of y,,; with y,, yn11 < Vo1 <a, b. Plainly then
x <2ntly .y and y,<yn4 <a, b.

Now let y be the least upper bound of the y,,, which exists by 2.24. Then
y<a, b,and we let a=y+ z. For all n < «,

(27 - )y + (27 - 1)z = (27 - 1)a < 2%y, < 2%y,

and therefore (2™ - 1)z <y for all n < ©, by 2.10. Hence a=y+z =y <b, by 2.21
and 1.29,

COROLLARY. If na<nb+c forall n <o, then a+c <b+c.
Proof. na+c)=na+nc <nb+(n+1)c <+ 1)b+c) for all n < =,

Remarks. 1) It is known [1, p. 229] that every o -complete lattice-ordered group
is Archimedean. The above reasoning may be used to obtain the following generaliza-
tion: let G be a partially ordered directed abelian group with the properties (i) if
a; <ay < --- <b, then the a, have a least upper bound in G, (ii) if a, b < ¢, d, then
there exists x € G with a, b <x<c, d. Then G is Archimedean.

2) According to [1, p. 229], the completion by nonvoid cuts of an integrally closed
partially ordered group is a complete lattice-ordered group. Is the completion by
cuts of a (simple) cardinal algebra a (simple) cardinal algebra? This question is of
interest inasmuch as a simple cardinal algebra that is a lattice in its natural order
must be either the set of nonnegative real numbers with « adjoined, or the set of
nonnegative integers with e« adjoined.
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