AN IMPLICIT FUNCTION THEOREM
WITH AN APPLICATION TO CONTROL THEORY

Richard Datko

Filippov [1] and Roxin [2] have proved the existence of time optimal controls for
systems of the form Xk = f(x, t, u), where f is assumed to satisfy a convexity condi-
tion with respect to u for fixed (x, t) and u is constrained to lie in some compact
set in R™. Both results depend on the establishment of the following type of theo-
rem: Suppose f: R! X R™ — R™ is a continuous mapping and {¢(t)} = {£(t, u,(t)}
is an infinite sequence of measurable mappings from R! —» R2, where for each n,
u, is a measurable mapping from R! into some compact set A in R™, and suppose
there exists a measurable map ¢: R! — R™ such that on some bounded interval
lim,,_, . ¢,(t) = (t) (a.e.). Then there exists a measurable mapping u: R — A
such that ¢(t) = £(t, u(t)) (a.e.).

In this paper we prove an analogous result in which we dispense to some extent
with the demand that u(t) lie in a compact set in R™. The method of proof can be
used to obtain both Filippov’s and Roxin’s results. As an application we prove a
general existence theorem for nonlinear time optimal controls.

THEOREM 1. Let f: IX R™ — R" pe a continuous mapping, wheve I is the in-
tevval [0, 1) in RT, let ®: I — R™ be a measurable mapping, and suppase (Ky)ie1 s
an expanding family of compact sets in R™ such that &(t) is in the set f({t} X K.)
for each t € 1. Then theve exists a measurable mapping u: 1 — R™ such that u(t)
is in K for each t in I and {(t, u(t)) = &(t) a.e. in L.

Remavk. Filippov, in his lemma in [1], assumes I to be compact in Rt and K,
to be compact in R™ and upper-semicontinuous with respect to t in I. By this he
means that to each £ > 0 there corresponds a §(ty, €) > 0 such that K, lies in
S(Kto, ) (that is, K, lies in an g-neighborhood of Kto) for every t in I with

|t - ty] < 6.

Proof of the theorem. We can find a mapping c: I — R™, which is not neces-
sarily measurable, such that c(t) is in K; and f(t, c(t)) = &(t) a.e. in I. To see
this we define, for each t in I,

L, = {cek]itc)=a®)}.
Since f is continuous in I X R™, L, is closed and hence compact for t in I. Let
¢y (t) = inf {eq]| (g, ---, ¢ ) € L.},
and define successively, for 1 <i<m - 1,

ci+1(t) = inf {Ci+1| (cl(t), ° Ci(t), Civr1s °°% cm) € Lt}-
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Then (cq(t), =+, ¢ (t)) is a unique point in L, and hence t — c(t) is a mapping of I
into R™ for which c(t) is in K; and f(t, c(t)) = &(t) in L

Let 0<e <1, put T=1-¢, and let J=[0, T]. Note that, by assumption,
{t} XK, is in J X Kt for every t in J; hence

a(t) € £({t} X K,) € £(J X Kp)

for each t in J. Therefore t — ||®(t)| (where || | is any convenient norm) is
bounded in J. This implies, by Lusin’s theorem (see [3] for example), that there
exists a closed set A in J such that the measure of J - A is less than £ and that
the restriction of & to A is continuous. Clearly the measure of I - A is less than
2e. Since A and Kt are compact sets in R! and R™ respectively, it follows
that & and f are uniformly continuous in A and A XK, respectlvely. Thus given
any h > 0, there exists a 6(h) > 0 such that, for each t and t! in A with

|t - t!] < 6, and for each c in K,

(1.1) le® - aHll <2, [, o) - 1, o)l < 3.

For each n=1, 2, ---, define

Jl’: = [a’l 1> n)

where
ag = 0, a? =i2™ (i=1, 2, -, 27),
so that
zn
n _ n n _ .
-U1Ji =1 and J;NJ =g (i+k).
1:

Let tll“ = inf J? N A, and define u”(t) = c(t3) for every t in J5 N A. Then each
u” is a measurable mapping of A — R". Let f'(t) = f(t, u”(t)) for each t in A, We
claim that

lim f(t) = &(t)

n — o

uniformly in A. Indeed if t is in A, then t is in J?(n) NA for n=1, 2, *+-, and
n

1.2y '@ - 2] < |, et - £t c(t?(n)))” + ||<1>(t;1(n)) - o),
by the way we have constructed the values of u®. Given any h > 0, we may there-
fore choose an ng(h) > 0 such that 27" < 6(h) for every n > n,. From (1.1) and
(1.2) we deduce that
(1.3) €@ - s ]| < 6

for n > n,; and each t in A,

Define, for t in A,
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(1.4) u, (t) = lim sup urll(t),

n —

and set u;(t) =0 for t ¢ I - A. By construction, u; is a real-valued measurable
function in I. We now construct 2 mapping u of A — R™ such that, for each t in A,
uy (t) = u;(t), u(t) is in K., and £(t, u(t)) = &(t). For each t € A, there is a subse-
quence of {uj(t)}, again denoted by {u”(t)}, with the properties that

lim u)(t) = uy(t), lim u (t) = u(t)

n— o n — oo
for k=2, ---, m, and

(1), (), *++, T (D) € K,

The continuity of f in I X R™ and (1.3) imply that £(t, u(t)) = ®(t) for each t in A.

Since uj is a real-valued measurable function on I that is bounded in A, we can
again apply Lusin’s theorem and find a closed subset A; of A such that the measure
of A - A; is less than € and the restriction of u; to A; is continuous and hence, by
compactness of A, uniformly continuous. Note that the measure of I - A, is less
than 3e. Therefore, we can repeat the above construction and cobtain a new mapping
u of Aj into R™ for which 4] coincides with the restriction of u; to A;, where
u; is defined by (1.4), u, is a real-valued measurable function in I, u(t) is in K,
and f(t, u(t)) = ®(t) for each t in A;.

It follows that after m such steps we shall have constructed a measurable map-
ping u of a closed set A,,_; in I into R™ such that the measure of I - A _; is
less than (m + 2)e, u(t) is in K¢, and £(t; , u(t)) = &(t) for every t in A _;.

In the above construction € is arbitrary; therefore, given a null sequence {sn}
of positive constants, we can find a sequence {F,} of closed subsets in I and a
sequence {u,} of measurable mappings of {F_ } in R" with the following proper-
ties:

(i) p(X - F)) <e, (u is Lebesgue measure),
(ii) u,(t) € K; for each t in F,,
(iii) f(t, u,(t)) = &(t) for each t in F,.

Let E = U;Zl F,. We assert that the measure of I - E is equal to zero. Sup-
pose that, to the contrary,

p{I-E)=a>0.
Since F_ isin E and F_ N (I - E) = @, we see that
p(@ > (F)+p(l-E) = p(D) - p(I-F )+ p(l- E)
>u-e,+a
> p(D)

as soon as ¢ < «, which is a contradiction.

Define
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n-1
F]- = Fl’ Fn= Fn-.l-{ FJ (n=2, 3, "')’
J=

[>e] — —
so that E = Un=1 F,. Let U be a mapping of E into R™, whose restriction to F,
coincides with u, and for which U(t) € K{ for each t € I - E. Then U is a measur-
able mapping of I into R™ with all the properties claimed in the theorem.

COROLLARY 1.1. Let I=[0, T) be an arbitvary interval in R1 , let
f: IXR™ - R"

be a continuous mapping, and let &: I — R™ be a measurable mapping. Suppose there
extsts a partition (I) (1 <k <p) of I into intervals Ty = [Ty _y, Tx) and a family
{K.} (t € I) of sets in R™ such that, in each open intevval (Te_1, Ty, 1K,} isan
expanding or contracting family of compact sets, and ®(t) is in £({t} X K.) for
every t in U11:=1 (Tk-l , Tk)- Then theve exists a measurable mapping u: I —» R™
such that u(t) is in K, for each t in I and i(t, u(t)) = ®(t) a.e. on L

Proof. It is clear that the construction of Theorem 1.1 carries over verbatim to
the case where the family {Kt} is expanding in some interval I,.. I the family is
contracting, we may introduce the intervals

n __ n n
Ji - (ai—l, ai]’

where al =Ty _;, al = Ty_; + (Ty - Ty_1)i% " for i=1, 2, ---, 2", and define the

constants tI' by a supremum rather than an infimum.

Remark. The proof of Thqorem 1.1 can readily be simplified to yield the origi-
nal Filippov lemma, if the family {Kt} (t € I) is upper-semicontinuous with re-
spect to t in I. Observe that here I is not required to be compact, as in Filippov’s
lemma,

We shall apply our result to a problem in control theory. First we state three
assumptions.

1. There exists a family of sets {K;} (t € R") and a partition {Jx} of R,
with Jp = [tk_l , tk), such that { Kt} is either an expanding or contracting family of
compact sets in each open interval (t,._;, ty).

2. U is the family of all measurable mappings of Rt into R™ with the property
that u(t) is in K; for each t in Rt.

3. f: R® X RT x R™ — R™ ig continuous, and for each B > 0 there exist positive
constants K;(B) and K,(B), and LI(R)-integrable real-valued functions pp and hg
such that

“f(xly t, ll(t)) - f(Xz, t’ u(t))ll S Kl(B)uB(t) ”x]_ - xz ” >

(2.1)
£, , t, u®)| < K,(B)hy(1),

(where ” || is any norm equivalent to the usual euclidean norm) for any x; and x,
with ||x,|| < B, ||x,| <B, andany u in U and any t in RF.

Observe that for each u in U Condition 3 guarantees the existence of a unique
solution x, of the differential equation
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(2.2) x = f(xg, t, u(t))

that is defined on some interval [0, T), satisfies the initial condition x,(0) = 0, and
has the integral representation

t
x(t) = SO f(x(s), s, u(s))ds (0<t<T).

Definition. For each nonnegative real number B, Ro(B) = {(x4(t), t)} is the set
of points in R™ X R" such that x, is a solution of (2.2) with x,(0) = 0 and
| %,(7)|| <B for each 7 in [0, t].

THEOREM 2. If conditions (1), (2) and (3) ave fulfilled and f({x} x {t} X K)
is convex for each (x, t) in R® X RY, then the set Ro(B) is closed in R"™ X Rt,

Proof. Assume that { (xun(tn), t )} converges to a point (xg, ty) in R® X RT,
where (x, (1), 7) is in Ry(B) for n=1, 2, *- and 0 < 7 <t,; for convenience de-
n
note Xy, by x,. In order to prove that (xg, ty) is in Ry(B), we must show that

there exists a u in U and a solution x, of (2.2), defined in [0, tg] = I, such that
x,(0) = 0, |x,)]| <B on I, and x4(tg) = x¢ .

Let

I

(a) 2,(t)

(b) 2,(t)

f(x,(t), t, u,(t) if 0<t<t,,
(2.3)

f(xn(tn)y tn 2 un(tn)) lf tn S t _<_. to 2

where the sets {Kt } may be assumed to be compact if infinitely many t, are not
n

equal to t;. For if t, #1tg for infinitely many n, we can always find a subsequence
{tni} such that Ktn- is compact for each tni. On the other hand, if t, =ty for in-
1

finitely many n, we may without loss of generality consider only (2.3a).

By assumption (3),
(2.4) [en(t)] < Ku(B)h(t)

for all t in 1,

Hence there exists a subsequence in {@n } that converges weakly in Ll[O, to] to an
integrable mapping &. For convenience, let this be the original sequence. In par-
ticular, if we define the vector functions x and { x,} on I by the relations

t
t) = \ ®(s)ds,
x(t) SO (s)ds
(2.5) x,(t) = x(t) if 0<t<ty,
t
20 = xt)+ | e (ds it £, <t <t
t

n

we see that x is an absolutely continuous vector-valued function on I and {}_cn}
converges pointwise to x for every t in I.
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Since

t
(2.6) : x(t) = lim S@n(s)ds = lim x,(t)

n—o 0 n— o

for every t in I and since, by (2.4) and (2.6), the {x,} form an equi-continuous
family on I, we deduce that the convergence is uniform on I.

On I, ||x(t)|] < B. Otherwise it would be true that ||x(t)] < B on some subinter-
val [0, t;] in I, and |x(t)|| > B for some t in every interval (t;, T] (t; < T <tp).
In this case choose t, so that t; <t, <ty. Then, on [0, t,], x, = x,, for infinitely
many n, by (2.5) and the convergence of tf‘Etn} to ty. Hence {x,} converges to x
uniformly on [0, t,], and since t, <t; for infinitely many n, it follows that
|2, @] <B on [0, t,] for infinitely many n. Thus [x(t)]| < B for t in [0, t,],
which contradicts the assumption that [0, t;] is the maximal subinterval of I with
this property.

We claim that x(ty) = xg. Suppose the contrary; then

(2.7) %y - xtt)|| = g4 > 0,
and also
(2.8)  |x,- x| < %y - x @)+ Ix,¢) - =t )] + |x(t,) - =ty .

Since {x, (t)} = {x,t,)} — %o, {x,(t)} — x(t) uniformly on I, and {t,} — ¢,
the right-hand side of (4.8) can be made less than £, for n sufficiently large. This
contradicts (2.7).

Since {J, } is a partition of RY, there exists an integer N > 0 such that
N

ic U =1.
k=1

Thus K, is a compact set in R™ for each t in I N (J -{t, }) (1 <k < N), and hence
the set f({x} X {t} X K, is a compact convex set for each such t.

We claim that ®(t) is in f({x(t)} x {t} XK, a.e. on I. The weak convergence
of {®,} to & on I implies that for every y in R™

lim sup (y - ®,(t)) > (yv-&(t)) > lim inf(y -®,(t)) a.e. on I.

This is an immediate consequence of the following inequality [3, p. 114]. Over any
measurable set E in I,

SE lim sup[y- &, (s)] > lim sup [5 y-@n(s)ds] = SEy-@(s)ds
E

= lim inf [S y-@n(s)ds] > jE lim infy - ®,(s)]ds.
E
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Hence if it should happen that y-&(t) > lim inf[y - &,(t)] on a measurable set E with
positive measure, the above inequality would be contradicted. The same argument
holds if lim inf[y-.&,(t)] > y-®(t) on a set of positive measure.

By (2.3), ®u(t) is in f({xn(t)} x{t} XK;) for n=1,2, ---. Since f is continuous
in (x, u) and {%,(t)} converges to x(t) uniformly on I, it follows that

sup[y-f({x(t)} x {t} xK)] > y-&(t)
> inf[y-f({x(t)} x {t} xK,)]

for every y in R™ and almost all t on 1.
Let E be the set of t for which (2.10) is true, and define

(2.10)

®(t) = ®(t) on E, &(t) = £(x(t), t,u) on I - E,

where, for tin I - E, u; is any point in K;. Note that the Lebesgue measure of
I - E is zero. Then

x(t) = ité(s) ds = Sta(s)ds
0

for t € 1.
By the corollary to our theorem, there exists a u in U such that
®(t) = £(x(t), t, u(t)) a.e. on I.

Hence (xg, ty) is in Ry(B), which shows that R,(B) is closed.
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