AN IMPLICIT FUNCTION THEOREM WITH AN APPLICATION TO CONTROL THEORY

Richard Datko

Filippov [1] and Roxin [2] have proved the existence of time optimal controls for systems of the form $\dot{x}=f(x,t,u)$, where f is assumed to satisfy a convexity condition with respect to u for fixed (x,t) and u is constrained to lie in some compact set in R^m . Both results depend on the establishment of the following type of theorem: Suppose $f: R^1 \times R^m \to R^n$ is a continuous mapping and $\{\phi_n(t)\} = \{f(t,u_n(t))\}$ is an infinite sequence of measurable mappings from $R^1 \to R^n$, where for each n, u_n is a measurable mapping from R^1 into some compact set A in R^m , and suppose there exists a measurable map $\phi: R^1 \to R^n$ such that on some bounded interval $\lim_{n\to\infty}\phi_n(t)=\phi(t)$ (a.e.). Then there exists a measurable mapping u: $R^1\to A$ such that $\phi(t)=f(t,u(t))$ (a.e.).

In this paper we prove an analogous result in which we dispense to some extent with the demand that u(t) lie in a compact set in R^m. The method of proof can be used to obtain both Filippov's and Roxin's results. As an application we prove a general existence theorem for nonlinear time optimal controls.

THEOREM 1. Let $f: I \times R^m \to R^n$ be a continuous mapping, where I is the interval [0, 1) in R^+ , let $\Phi: I \to R^n$ be a measurable mapping, and suppose $(K_t)_{t \in I}$ is an expanding family of compact sets in R^m such that $\Phi(t)$ is in the set $f(\{t\} \times K_t)$ for each $t \in I$. Then there exists a measurable mapping $u: I \to R^m$ such that u(t) is in K_t for each t in I and $f(t, u(t)) = \Phi(t)$ a.e. in I.

Remark. Filippov, in his lemma in [1], assumes I to be compact in \mathbf{R}^+ and \mathbf{K}_t to be compact in \mathbf{R}^m and upper-semicontinuous with respect to t in I. By this he means that to each $\epsilon>0$ there corresponds a $\delta(t_0\,,\,\epsilon)>0$ such that \mathbf{K}_t lies in $S(K_{t_0}\,,\,\epsilon)$ (that is, K_t lies in an ϵ -neighborhood of K_{t_0}) for every t in I with $|t-t_0|<\delta$.

Proof of the theorem. We can find a mapping $c: I \to R^m$, which is not necessarily measurable, such that c(t) is in K_t and $f(t, c(t)) = \Phi(t)$ a.e. in I. To see this we define, for each t in I,

$$L_t = \{c \in K_t | f(t, c) = \Phi(t)\}.$$

Since f is continuous in $I \times R^m$, L_t is closed and hence compact for t in I. Let

$$c_1(t) = \inf \{c_1 \mid (c_1, \dots, c_m) \in L_t\},$$

and define successively, for $1 \le i \le m$ - 1,

$$c_{i+1}(t) = \inf \{c_{i+1} | (c_1(t), \dots, c_i(t), c_{i+1}, \dots, c_m) \in L_t \}.$$

Received February 24, 1964.

This research was supported by the U.S. Army Research Office (Durham) under Contract DA-36-034-AMC-0221X.

Then $(c_1(t), \dots, c_m(t))$ is a unique point in L_t , and hence $t \to c(t)$ is a mapping of I into R^m for which c(t) is in K_t and $f(t, c(t)) = \Phi(t)$ in I.

Let $0 < \epsilon < 1$, put $T = 1 - \epsilon$, and let J = [0, T]. Note that, by assumption, $\{t\} \times K_t$ is in $J \times K_T$ for every t in J; hence

$$\Phi(t) \in f(\{t\} \times K_t) \in f(J \times K_T)$$

for each t in J. Therefore $t\to \|\Phi(t)\|$ (where $\|\ \|$ is any convenient norm) is bounded in J. This implies, by Luşin's theorem (see [3] for example), that there exists a closed set A in J such that the measure of J - A is less than ϵ and that the restriction of Φ to A is continuous. Clearly the measure of I - A is less than 2 ϵ . Since A and K_T are compact sets in R^1 and R^m , respectively, it follows that Φ and f are uniformly continuous in A and A \times K $_T$, respectively. Thus given any h>0, there exists a $\delta(h)>0$ such that, for each t and t^1 in A with $|t-t^1|<\delta$, and for each c in K_T ,

(1.1)
$$\|\Phi(t) - \Phi(t^1)\| < \frac{h}{2}, \quad \|f(t, c) - f(t^1, c)\| < \frac{h}{2}.$$

For each $n = 1, 2, \dots, define$

$$J_{i}^{n} = [a_{i-1}^{n}, a_{i}^{n}),$$

where

$$a_0^n = 0$$
, $a_i^n = i2^{-n}$ (i = 1, 2, ..., 2^n),

so that

$$\bigcup_{i=1}^{2^n} J_i^n = I \quad \text{and} \quad J_i^n \cap J_k^n = \emptyset \quad (i \neq k).$$

Let $t_i^n = \inf J_i^n \cap A$, and define $u^n(t) = c(t_i^n)$ for every t in $J_i^n \cap A$. Then each u^n is a measurable mapping of $A \to R^n$. Let $f^n(t) = f(t, u^n(t))$ for each t in A. We claim that

$$\lim_{n\to\infty} f^n(t) = \Phi(t)$$

uniformly in A. Indeed if t is in A, then t is in $J_{i(n)}^n \cap A$ for $n = 1, 2, \dots$, and

by the way we have constructed the values of u^n . Given any h>0, we may therefore choose an $n_0(h)>0$ such that $2^{-n}<\delta(h)$ for every $n\geq n_0$. From (1.1) and (1.2) we deduce that

$$||f^{n}(t) - \phi(t)|| < \delta$$

for $n \ge n_0$ and each t in A.

Define, for t in A,

(1.4)
$$u_1(t) = \lim_{n \to \infty} \sup u_1^n(t),$$

and set $u_1(t) = 0$ for $t \notin I$ - A. By construction, u_1 is a real-valued measurable function in I. We now construct a mapping \bar{u} of $A \to R^m$ such that, for each t in A, $\bar{u}_1(t) = u_1(t)$, $\bar{u}(t)$ is in K_t , and $f(t, \bar{u}(t)) = \Phi(t)$. For each $t \in A$, there is a subsequence of $\{u_1^n(t)\}$, again denoted by $\{u^n(t)\}$, with the properties that

$$\lim_{n\to\infty} u_1^n(t) = u_1(t), \qquad \lim_{n\to\infty} u_k^n(t) = \bar{u}_k(t)$$

for $k = 2, \dots, m$, and

$$(u_1(t), \bar{u}_2(t), \dots, \bar{u}_m(t)) \in K_t$$
.

The continuity of f in $I \times R^m$ and (1.3) imply that $f(t, \bar{u}(t)) = \Phi(t)$ for each t in A.

Since u_1 is a real-valued measurable function on I that is bounded in A, we can again apply Lusin's theorem and find a closed subset A_1 of A such that the measure of A - A_1 is less than ϵ and the restriction of u_1 to A_1 is continuous and hence, by compactness of A_1 , uniformly continuous. Note that the measure of I - A_1 is less than 3ϵ . Therefore, we can repeat the above construction and obtain a new mapping \bar{u} of A_1 into R^m for which \bar{u}_1 coincides with the restriction of u_1 to A_1 , where u_1 is defined by (1.4), \bar{u}_2 is a real-valued measurable function in I, $\bar{u}(t)$ is in K_t , and $f(t, \bar{u}(t)) = \Phi(t)$ for each t in A_1 .

It follows that after m such steps we shall have constructed a measurable mapping u of a closed set A_{m-1} in I into R^m such that the measure of I - A_{m-1} is less than $(m+2)\epsilon,\ u(t)$ is in $K_t,$ and $f(t_l$, u(t)) = $\Phi(t)$ for every t in A_{m-1} .

In the above construction ϵ is arbitrary; therefore, given a null sequence $\{\epsilon_n\}$ of positive constants, we can find a sequence $\{F_n\}$ of closed subsets in I and a sequence $\{u_n\}$ of measurable mappings of $\{F_n\}$ in R^n with the following properties:

- (i) $\mu({\rm I}$ ${\rm F_n}) < \epsilon_{\rm n}$ (μ is Lebesgue measure),
- (ii) $u_n(t) \in K_t$ for each t in F_n ,
- (iii) $f(t, u_n(t)) = \Phi(t)$ for each t in F_n .

Let $E = \bigcup_{n=1}^{\infty} F_n$. We assert that the measure of I - E is equal to zero. Suppose that, to the contrary,

$$\mu(I - E) = \alpha > 0.$$

Since F_n is in E and $F_n \cap (I - E) = \emptyset$, we see that

$$\mu(\mathbf{I}) \geq \mu(\mathbf{F}_{\mathbf{n}}) + \mu(\mathbf{I} - \mathbf{E}) = \mu(\mathbf{I}) - \mu(\mathbf{I} - \mathbf{F}_{\mathbf{n}}) + \mu(\mathbf{I} - \mathbf{E})$$

$$> \mu(\mathbf{I}) - \varepsilon_{\mathbf{n}} + \alpha$$

$$> \mu(\mathbf{I})$$

as soon as $\varepsilon_n < \alpha$, which is a contradiction.

Define

$$\overline{\mathbf{F}}_1 = \mathbf{F}_1, \quad \overline{\mathbf{F}}_n = \mathbf{F}_n - \bigcup_{j=1}^{n-1} \mathbf{F}_j \quad (n = 2, 3, \dots),$$

so that $E = \bigcup_{n=1}^{\infty} \overline{F}_n$. Let U be a mapping of E into R^n , whose restriction to \overline{F}_n coincides with u_n and for which $U(t) \in K_t$ for each $t \in I$. Then U is a measurable mapping of I into R^n with all the properties claimed in the theorem.

COROLLARY 1.1. Let I = [0, T) be an arbitrary interval in R^1 , let

$$f: I \times R^m \to R^n$$

be a continuous mapping, and let $\Phi\colon I\to R^n$ be a measurable mapping. Suppose there exists a partition (I_k) $(1\le k\le p)$ of I into intervals $I_k=[T_{k-1}\,,\,T_k)$ and a family $\{K_t\}$ $(t\in I)$ of sets in R^m such that, in each open interval $(T_{k-1}\,,\,T_k),\,\{K_t\}$ is an expanding or contracting family of compact sets, and $\Phi(t)$ is in $f(\{t\}\times K_t)$ for every t in $\bigcup_{k=1}^p (T_{k-1}\,,\,T_k)$. Then there exists a measurable mapping $u\colon I\to R^m$ such that u(t) is in K_t for each t in I and $f(t,u(t))=\Phi(t)$ a.e. on I.

Proof. It is clear that the construction of Theorem 1.1 carries over verbatim to the case where the family $\{K_t\}$ is expanding in some interval I_k . If the family is contracting, we may introduce the intervals

$$J_{i}^{n} = (a_{i-1}^{n}, a_{i}^{n}],$$

where $a_0^n = T_{k-1}$, $a_i^n = T_{k-1} + (T_k - T_{k-1})i^{2^{-n}}$ for $i = 1, 2, \dots, 2^n$, and define the constants t_i^n by a supremum rather than an infimum.

Remark. The proof of Theorem 1.1 can readily be simplified to yield the original Filippov lemma, if the family $\{K_t\}$ ($t \in I$) is upper-semicontinuous with respect to t in I. Observe that here I is not required to be compact, as in Filippov's lemma.

We shall apply our result to a problem in control theory. First we state three assumptions.

- 1. There exists a family of sets $\{K_t\}$ ($t \in R^+$) and a partition $\{J_K\}$ of R^+ , with $J_K = [t_{k-1}, t_k)$, such that $\{K_t\}$ is either an expanding or contracting family of compact sets in each open interval (t_{k-1}, t_k) .
- 2. U is the family of all measurable mappings of R^+ into $R^{\rm m}$ with the property that u(t) is in K_t for each t in R^+ .
- 3. f: $R^n \times R^+ \times R^m \to R^n$ is continuous, and for each B>0 there exist positive constants $K_1(B)$ and $K_2(B)$, and $L^1(R)$ -integrable real-valued functions μ_B and h_B such that

$$\begin{split} \|f(\mathbf{x}_{1},\,t,\,\mathbf{u}(t)) - f(\mathbf{x}_{2},\,t,\,\mathbf{u}(t))\| &\leq K_{1}(\mathbf{B})\,\mu_{\,\mathbf{B}}(t)\,\|\mathbf{x}_{1} - \mathbf{x}_{2}\|\,, \\ \|f(\mathbf{x}_{1},\,t,\,\mathbf{u}(t))\| &\leq K_{2}(\mathbf{B})\,h_{\,\mathbf{B}}(t)\,, \end{split}$$

(where $\| \|$ is any norm equivalent to the usual euclidean norm) for any x_1 and x_2 with $\|x_1\| \le B$, $\|x_2\| \le B$, and any u in U and any t in R^+ .

Observe that for each u in U Condition 3 guarantees the existence of a unique solution $\boldsymbol{x}_{\mathbf{u}}$ of the differential equation

(2.2)
$$\dot{x} = f(x_1, t, u(t))$$

that is defined on some interval [0, T), satisfies the initial condition $x_u(0) = 0$, and has the integral representation

$$x_u(t) = \int_0^t f(x_u(s), s, u(s))ds$$
 $(0 \le t \le T)$.

Definition. For each nonnegative real number B, $R_0(B) = \{(x_u(t), t)\}$ is the set of points in $R^n \times R^+$ such that x_u is a solution of (2.2) with $x_u(0) = 0$ and $\|x_u(\tau)\| \le B$ for each τ in [0, t].

THEOREM 2. If conditions (1), (2) and (3) are fulfilled and $f(\{x\} \times \{t\} \times K_t)$ is convex for each (x, t) in $R^n \times R^+$, then the set $R_0(B)$ is closed in $R^n \times R^+$.

Proof. Assume that $\{(x_{u_n}(t_n),\,t_n)\}$ converges to a point $(x_0\,,\,t_0)$ in $R^n\times R^+,$ where $(x_{u_n}(\tau),\,\tau)$ is in $R_0(B)$ for $n=1,\,2,\,\cdots$ and $0\le \tau\le t_n$; for convenience denote x_{u_n} by x_n . In order to prove that $(x_0\,,\,t_0)$ is in $R_0(B),$ we must show that there exists a u in U and a solution x_u of (2.2), defined in $[0,\,t_0]$ = I, such that $x_u(0)=0,\,\,\|x_u(t)\|\le B$ on I, and $x_u(t_0)=x_0$.

Let

(2.3)
$$\begin{array}{lll} \text{(a)} & \Phi_n^{\cdot}(t) = f(x_n(t), \ t, \ u_n(t)) & \text{if } \ 0 \leq t \leq t_n \,, \\ \\ \text{(b)} & \Phi_n(t) = f(x_n(t_n), \ t_n \,, \ u_n(t_n)) & \text{if } \ t_n \leq t \leq t_0 \,, \end{array}$$

where the sets $\{K_{t_n}\}$ may be assumed to be compact if infinitely many t_n are not equal to t_0 . For if $t_n \neq t_0$ for infinitely many n, we can always find a subsequence $\{t_{n_i}\}$ such that $K_{t_{n_i}}$ is compact for each t_{n_i} . On the other hand, if $t_n = t_0$ for infinitely many n, we may without loss of generality consider only (2.3a).

By assumption (3),

(2.4)
$$\|\Phi_n(t)\| < K_2(B) h(t)$$

for all t in I.

Hence there exists a subsequence in $\{\Phi_n\}$ that converges weakly in $L^1[0,t_0]$ to an integrable mapping Φ . For convenience, let this be the original sequence. In particular, if we define the vector functions x and $\{\bar{x}_n\}$ on I by the relations

$$\begin{cases} x(t) = \int_0^t \Phi(s) ds, \\ \\ \bar{x}_n(t) = x_n(t) & \text{if } 0 \le t \le t_n, \\ \\ \bar{x}_n(t) = x_n(t_n) + \int_{t_n}^t \Phi_n(s) ds & \text{if } t_n \le t \le t_0, \end{cases}$$

we see that x is an absolutely continuous vector-valued function on I and $\{\bar{x}_n\}$ converges pointwise to x for every t in I.

Since

(2.6)
$$x(t) = \lim_{n \to \infty} \int_0^t \Phi_n(s) ds = \lim_{n \to \infty} \bar{x}_n(t)$$

for every t in I and since, by (2.4) and (2.6), the $\{\bar{x}_n\}$ form an equi-continuous family on I, we deduce that the convergence is uniform on I.

On I, $\|\mathbf{x}(t)\| \leq B$. Otherwise it would be true that $\|\mathbf{x}(t)\| \leq B$ on some subinterval $[0,\,t_1]$ in I, and $\|\mathbf{x}(t)\| > B$ for some t in every interval $(t_1\,,\,T]$ $(t_1 < T < t_0)$. In this case choose t_2 so that $t_1 < t_2 < t_0$. Then, on $[0,\,t_2]$, $x_n = x_n$ for infinitely many n, by (2.5) and the convergence of $\{t_n\}$ to t_0 . Hence $\{x_n\}$ converges to x uniformly on $[0,\,t_2]$, and since $t_2 < t_1$ for infinitely many n, it follows that $\|\mathbf{x}_n(t)\| \leq B$ on $[0,\,t_2]$ for infinitely many n. Thus $\|\mathbf{x}(t)\| \leq B$ for t in $[0,\,t_2]$, which contradicts the assumption that $[0,\,t_1]$ is the maximal subinterval of I with this property.

We claim that $x(t_0) = x_0$. Suppose the contrary; then

(2.7)
$$\|\mathbf{x}_0 - \mathbf{x}(\mathbf{t}_0)\| = \varepsilon_0 > 0$$
,

and also

Since $\{x_n(t_n)\} = \{\bar{x}_n(t_n)\} \to x_0$, $\{\bar{x}_n(t)\} \to x(t)$ uniformly on I, and $\{t_n\} \to t_0$, the right-hand side of (4.8) can be made less than ϵ_0 for n sufficiently large. This contradicts (2.7).

Since $\{J_k\}$ is a partition of R^+ , there exists an integer N>0 such that

$$I \subset \bigcup_{k=1}^{N} J_k = J.$$

Thus K_t is a compact set in R^m for each t in $I \cap (J - \{t_k\})$ $(1 \le k \le N)$, and hence the set $f(\{x\} \times \{t\} \times K_t)$ is a compact convex set for each such t.

We claim that $\Phi(t)$ is in $f(\{x(t)\} \times \{t\} \times K_t)$ a.e. on I. The weak convergence of $\{\Phi_n\}$ to Φ on I implies that for every y in R^n

$$\lim\,\sup\,(y\cdot\Phi_n(t))\,\geq\,(y\cdot\Phi(t))\,\geq\,\lim\,\inf\,(y\cdot\Phi_n(t))\quad\text{a.e. on I.}$$

This is an immediate consequence of the following inequality [3, p. 114]. Over any measurable set E in I,

$$\begin{split} \int_E & \lim \sup [y \cdot \Phi_n(s)] \geq \lim \sup \left[\int_E y \cdot \Phi_n(s) \, ds \, \right] = \int_E y \cdot \Phi(s) \, ds \\ \\ & = \lim \inf \left[\int_E y \cdot \Phi_n(s) \, ds \, \right] \geq \int_E \lim \inf [y \cdot \Phi_n(s)] \, ds \, . \end{split}$$

Hence if it should happen that $y \cdot \Phi(t) > \lim \inf [y \cdot \Phi_n(t)]$ on a measurable set E with positive measure, the above inequality would be contradicted. The same argument holds if $\lim \inf [y \cdot \Phi_n(t)] > y \cdot \Phi(t)$ on a set of positive measure.

By (2.3), $\Phi_n(t)$ is in $f(\{x_n(t)\} \times \{t\} \times K_t)$ for $n=1,2,\cdots$. Since f is continuous in (x,u) and $\{\bar{x}_n(t)\}$ converges to x(t) uniformly on I, it follows that

$$\sup \left[y \cdot f(\{x(t)\} \times \{t\} \times K_t) \right] \ge y \cdot \Phi(t)$$

$$\ge \inf \left[y \cdot f(\{x(t)\} \times \{t\} \times K_t) \right]$$

for every y in \mathbb{R}^n and almost all t on I.

Let E be the set of t for which (2.10) is true, and define

$$\overline{\Phi}(t) = \Phi(t)$$
 on E, $\overline{\Phi}(t) = f(x(t), t, u_t)$ on I - E,

where, for t in I - E, \mathbf{u}_t is any point in \mathbf{K}_t . Note that the Lebesgue measure of I - E is zero. Then

$$x(t) = \int_0^t \Phi(s) ds = \int_0^t \overline{\Phi}(s) ds$$

for $t \in I$.

By the corollary to our theorem, there exists a u in U such that

$$\Phi(t) = f(x(t), t, u(t))$$
 a.e. on I.

Hence (x_0, t_0) is in $R_0(B)$, which shows that $R_0(B)$ is closed.

REFERENCES

- 1. A. F. Filippov, On certain questions in the theory of optimal control, Vestnik Moskov. Univ. Ser. Mat., Mekh., Astr., Fiz., Khim. 2 (1959), 25-32.
- 2. E. Roxin, The existence of optimal controls, Michigan Math. J. 9 (1962), 109-119.
- 3. P. R. Halmos, Measure theory, Van Nostrand and Co., New York, 1950.

RIAS, Baltimore, Maryland