LIE DERIVATIONS OF PRIMITIVE RINGS

Wallace S. Martindale, 3rd

1. INTRODUCTION

Let R be a subring of a ring S. Then a $Lie\ derivation$ of R into S is a mapping of R into S such that

$$L(x + y) = L(x) + L(y),$$

(2)
$$L([xy]) = [L(x), y] + [x, L(y)]$$

for all $x, y \in R$, where [xy] = xy - yx. In this paper we study Lie derivations of a primitive ring R into itself, where we assume that the characteristic of R is unequal to 2 and that R contains a nontrivial idempotent. Such mappings will be shown to be of the form D+T, where D is an ordinary derivation of R into a primitive ring \overline{R} containing R and T is an additive mapping of R into the center of \overline{R} which maps commutators into zero. Our result falls far short of providing a general solution to a conjecture of Herstein mentioned in [1; p. 529], but it generalizes an unpublished result of Kaplansky.

2. PRELIMINARIES

Throughout this paper we shall suppose that R is a primitive ring of characteristic not 2 and containing an idempotent e (e \neq 0, e \neq 1). (R need not have an identity.) Furthermore we shall assume that there is a Lie derivation L of R into itself. The ring R will be viewed as a dense subring of the ring \overline{R} of all linear transformations of a vector space over a division ring. Setting e_1 = e and e_2 = 1 - e, we let R_{ij} = $e_i\,Re_j$, \overline{R}_{ij} = $e_i\,\overline{R}e_j$, and we note that

$$R = \sum \bigoplus R_{ij}$$
 and $\overline{R} = \sum \bigoplus \overline{R}_{ij}$ (i, j = 1, 2).

Z will denote the center of R, Z' the center of \overline{R} , and it is clear that $Z \subset Z'$. (The symbol \subset denotes inclusion in the wide sense.) We now state three lemmas which we shall need later on:

LEMMA 1. If $a \in \overline{R}_{ij}$ and ax = 0 for all $x \in R_{jk}$, then a = 0.

LEMMA 2. If a \in R_{ii} and [ax] = 0 for all x \in R_{ii}, then a is an element of the center of \overline{R}_{ii} .

LEMMA 3. The center of \overline{R}_{ii} is $e_i \, Z^{\scriptscriptstyle \text{I}}.$

The proofs rest on well-known properties of primitive rings and will be omitted.

Received August 15, 1963.

3. THE IDEMPOTENT e UNDER LIE DERIVATION

LEMMA 4. For all $x \in R$,

$$x\{e L(e) + L(e)e + e L(e)e - L(e)\} - \{e L(e) + L(e)e + e L(e)e - L(e)\}x$$

$$= 3ex\{e L(e) + L(e)e - L(e)\} - 3\{e L(e) + L(e)e - L(e)\}xe.$$

Proof. The verification that

(4)
$$[[[xe]e]e] = [xe]$$

for all $x \in R$ is straightforward. Repeated application of L to (4) results in

(5)
$$[[[L(x), e] + [x, L(e)], e] + [[[xe], L(e)], e] + [[[xe]e], L(e)]$$

$$= [L(x), e] + [x, L(e)].$$

Expansion and simplification of (5) then yields the desired conclusion.

LEMMA 5. L(e) = [es] + z, for some $s \in R$ and $z \in Z$.

Proof. Setting $L(e) = \sum f_{ij}$, $f_{ij} \in R_{ij}$ and substituting in (3), we obtain the relation

(6)
$$x(2f_{11} - f_{22}) - (2f_{11} - f_{22})x = 3ex(f_{11} - f_{22}) - 3(f_{11} - f_{22})xe$$

for all $x \in R$. If $x \in R_{12}$, (6) reduces to $f_{11}x = xf_{22}$, whence we conclude

$$(f_{11} + f_{22})x = x(f_{11} + f_{22})$$
 $(x \in R_{12})$.

Similarly,

$$(f_{11} + f_{22})x = x(f_{11} + f_{22})$$
 $(x \in R_{21})$.

Now let $x \in R_{11}$ and $y \in R_{12}$. Then

$$\{ (f_{11} + f_{22})x - x(f_{11} + f_{22}) \} y = (f_{11} + f_{22})xy - xy(f_{11} + f_{22})$$

$$= (f_{11} + f_{22})xy - (f_{11} + f_{22})xy$$

$$= 0,$$

since y, $xy \in R_{12}$. It follows from Lemma 1 that

$$(f_{11} + f_{22})x - x(f_{11} + f_{22}) = 0$$
 $(x \in R_{11})$.

Similarly,

$$(f_{11} + f_{22})x = x(f_{11} + f_{22})$$
 $(x \in R_{22}),$

and so $f_{11} + f_{22} = z \in Z$. Hence, $L(e) = (f_{12} + f_{21}) + z$; and, setting $s = f_{12} - f_{21}$, one easily verifies that L(e) = (es - se) + z.

4. DEFINITION OF D AND T

Throughout this section and the next we impose the additional assumption that L(e) is an element of Z.

LEMMA 6. $L(R_{ij}) \subset R_{ij}$, $(i \neq j)$.

Proof. Let $x \in R_{12}$, and set $L(x) = \sum y_{ij}$, $y_{ij} \in R_{ij}$. Then

$$\sum y_{ij} = L(x) = L([ex]) = [L(e), x] + [e, L(x)] = [e, L(x)] = y_{12} - y_{21}$$
.

It follows that $y_{11} = y_{21} = y_{22} = 0$, and thus $L(x) \in R_{12}$. A similar argument holds if $x \in R_{21}$.

LEMMA 7. $L(R_{ii}) \subset \overline{R}_{ii} + Z'$.

Proof. Let $x \in R_{11}$, and set $L(x) = \sum y_{ij}$, $y_{ij} \in R_{ij}$. Then

$$0 = L([ex]) = [L(e), x] + [e, L(x)] = [e, L(x)] = y_{12} - y_{21}$$

whence $y_{12}=y_{21}=0$ and $L(x)\in R_{11}+R_{22}$. Similarly, if $x\in R_{22}$, then $L(x)\in R_{11}+R_{22}$. Now let $x\in R_{11}$ and $y\in R_{22}$ with $L(x)=a_{11}+a_{22}$ and $L(y)=b_{11}+b_{22}$ (a_{ii} , $b_{ii}\in R_{ii}$). Then

$$0 = L([xy]) = [L(x), y] + [x, L(y)] = [a_{22}y] + [xb_{11}] = 0,$$

and so in particular $[a_{22}y]=0$. In view of Lemma 2, $[a_{22}y]=0$ for all $y\in\overline{R}_{22}$; and thus, by Lemma 3, $a_{22}=(1-e)z$ for some $z\in Z'$. Therefore

$$L(x) = a_{11} + (1 - e)z = [(a_{11} - ez) + z] \in \overline{R}_{11} + Z'$$
.

In the same fashion one sees that that $L(R_{22}) \subset \overline{R}_{22} + Z'$.

We summarize the results we have obtained thus far:

(7) if
$$x \in R_{ij}$$
, $(i \neq j)$, then $L(x) = x^* \in R_{ij}$;

(8) if
$$x \in R_{ii}$$
, then $L(x) = x^* + z$, $x^* \in \overline{R}_{ii}$, $z \in Z'$.

Relations (7) and (8) enable us to define in a natural way a mapping D of R into \overline{R} according to the rule

$$D(x) = x^* \text{ if } x \in R_{ij} \text{ for all } i, j.$$

A mapping T of R into Z' is then defined by the rule

$$T(x) = L(x) - D(x) \qquad (x \in R).$$

5. PROPERTIES OF D AND T

LEMMA 8. T(x + y) = T(x) + T(y) for all x, y $\in R$.

Proof. It suffices to show that T is additive on R_{ii} . If x, y $\in R_{ii}$, then

$$T(x + y) - T(x) - T(y) = L(x + y) - D(x + y) - L(x) + D(x) - L(y) + D(y)$$
$$= [D(x) + D(y) - D(x + y)] \in \overline{R}_{ii} \cap Z' = 0.$$

COROLLARY. D(x + y) = D(x) + D(y) for all $x, y \in R$.

LEMMA 9. D(xyx) = D(x)yx + xD(y)x + xyD(x) for all $x \in R_{ij}$ $(i \neq j)$ and all $y \in R$.

Proof. Letting $x \in R_{ij}$ ($i \neq j$), we may write 2xyx = [[xy]x]. Then

$$2D(xyx) = L(2xyx) = L([[xy]x]) = [[L(x), y] + [x, L(y), x] + [[xy], L(x)]$$

$$= [[D(x), y] + [x, D(y)], x] + [[xy], D(x)]$$

$$= 2 \{D(x)yx + xD(y)x + xyD(x)\};$$

we make use of the fact that, for $i \neq j$, $\overline{R}_{ij}^2 = 0$ and $D(R_{ij}) \subset R_{ij}$. Since the characteristic of R is not 2, the desired conclusion follows.

LEMMA 10. For $x \in R_{ii}$ and $y \in R_{ik}$ $(j \neq k)$, D(xy) = D(x)y + xD(y).

Proof. We may assume that $x \in R_{11}$ and $y \in R_{12}$. Then

$$D(xy) = L(xy) = L([xy]) = [L(x), y] + [x, L(y)]$$

= $[D(x), y] + [x, D(y)] = D(x)y + x D(y).$

LEMMA 11. For $x \in R_{ii}$ and $y \in R_{ii}$, D(xy) = D(x)y + xD(y).

Proof. We may assume that $x, y \in R_{11}$. Choosing $r \in R_{12}$, we may write, using Lemma 10, the relations

$$D(xy)r = D(xyr) - xy D(r) = D(x)yr + x D(yr) - xy D(r)$$

$$= D(x)yr + x \{D(y)r + y D(r)\} - xy D(r)$$

$$= \{D(x)y + x D(r)\}r.$$

Hence $\{D(xy) - D(x)y - xD(y)\}r = 0$ for all $r \in R_{12}$. Therefore, by Lemma 1, D(xy) - D(x)y - xD(y) = 0.

THEOREM 1. D is an ordinary derivation of R into \overline{R} .

Proof. In order to prove that D(xy) = D(x)y + xD(y) for all $x, y \in R$, we may assume, in view of Lemmas 10 and 11, that $x \neq 0 \in R_{12}$ and $y \in R_{21}$. From the relations

$$T([xy]) = L([xy]) - D([xy]) = [L(x), y] + [x, L(y)] - D([xy])$$

= $[D(x), y] + [x, D(y)] - D(xy) + D(yx)$

we obtain

(9)
$$\{ D(x)y + xD(y) - D(xy) \} + \{ D(yx) - D(y)x - yD(x) \} = z \in Z'.$$

If z = 0, $[D(x)y + xD(y) - D(xy)] \in (R_{11} \cap R_{22})$ and hence is equal to 0. Thus suppose $z \neq 0$. Multiplication of (9) on the left by x yields the formula

$$x D(yx) - x D(y)x - xy D(x) = xz$$
.

Applying Lemma 10, we find that

$$D(xyx) - D(x)yx - xD(y)x - xyD(x) = xz;$$

and, by Lemma 9, we see that xz = 0. It follows that x = 0, which is a contradiction. COROLLARY. T(xy - yx) = 0 for all $x, y \in R$.

6. THE MAIN RESULT

We now drop the assumption (used in Sections 4 and 5) that $L(e) \in Z$. However, by Lemma 5, L(e) = [es] + z where $s \in R$, $z \in Z$. Letting I be the inner derivation determined by s, that is, I(x) = xs - sx for all $x \in R$, we see that L' = L - I is a Lie derivation of R into itself such that $L'(e) = z \in Z$. According to Section 4, L' may be written in the form L' = D + T, that is, L = (I + D) + T. Our main result now follows from Theorem 1 and its corollary.

THEOREM 2. Let L be a Lie derivation of a primitive ring R into itself, where R contains a nontrivial idempotent and the characteristic of R is not 2. Then L is of the form D + T, where D is an ordinary derivation of R into a primitive ring \overline{R} containing R and T is an additive mapping of R into the center of \overline{R} that maps commutators into zero.

We conclude by remarking that if the ring R in Theorem 2 is simple, then D maps R into itself and T maps R into the center of R. To see this one need only note that $D(R_{ij}) \subset R_{ij} \subset R$ ($i \neq j$) and that the subring generated by the R_{ij} ($i \neq j$) is an ideal and hence is equal to R.

REFERENCES

1. I. N. Herstein, *Lie and Jordan structures in simple, associative rings*, Bull. Amer. Math. Soc. 67 (1961), 517-531.

Smith College