LIE DERIVATIONS OF PRIMITIVE RINGS
Wallace S. Martindale, 3rd

1. INTRODUCTION

Let R be a subring of a ring S. Then a Lie devivation of R into S is a mapping
of R into S such that

(1) Lx +y) = L(x) + L(y),
(2) L([xy]) = [L&), y] + [x, L(y)]

for all x, y € R, where [xy] = xy - yx. In this paper we study Lie derivations of a
primitive ring R into itself, where we assume that the characteristic of R is un-
equal to 2 and that R contains a nontrivial idempotent. Such mappings will be shown
to be of the form D + T, where D is an ordinary derivation of R into a primitive
ring R containing R and T is an additive mapping of R into the center of R which
maps commutators into zero. Our result falls far short of providing a general solu-
tion to a conjecture of Herstein mentioned in [1; p. 529], but it generalizes an unpub-
lished result of Kaplansky.

2. PRELIMINARIES

Throughout this paper we shall suppose that R is a primitive ring of character-
istic not 2 and containing an idempotent e (e # 0, e # 1). (R need not have an
identity.) Furthermore we shall assume that there is a Lie derivation L. of R into
itself. The ring R will be viewed as a dense subring of the ring R of all linear
transformations of a vector space over a division ring. Setting e; = e and
e, =1 -e, we let R;; = e; Re; R1J = € Re , and we note that

R=2®R;; and R=20R; G,j=1,2).

7 will denote the center of R, Z' the center of R, and it is clear that Z c Z'. (The
symbol C denotes inclusion in the wide sense.) We now state three lemmas which
we shall need later on:

LEMMA 1. If a € Rij and ax = 0 for all x € Rjx, then a = 0.

LEMMA 2. If a € R;; and [ax] =0 for all x € Ri;, then a is an element of the
center of R11

LEMMA 3. The cenfer of R;; is e; Z'.

The proofs rest on well-known properties of primitive rings and will be omitted.
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3. THE IDEMPOTENT e UNDER LIE DERIVATION
LEMMA 4. For all x € R,
x{eL(e) + L(e)e + eL(e)e - L(e)} - {eL(e) + L(e)e + eL(e)e - L(e) } x
® = 3ex{eL(e) + L(e)e - L(e)} - 3{eL(e) + L(e)e - L(e)}xe.
Proof. The verification that
(4) [[[xelele] = [xe]
for all x € R is straightforward. Repeated application of L to (4) results in

[[[L), e] + [x, L(e)], e] + [[[xel, L(e)], e] + [[[xelel, L(e)]

= [L(x), e] + [x, L(e)].

(5)

Expansion and simplification of (5) then yields the desired conclusion.
LEMMA 5. L(e) = [es] + z, for some s € R and z € Z.

Proof. Setting L(e) = Z fi;, f3; € Ry; and substituting in (3), we obtain the rela-
tion

(6) x(2f1; - £55) - (2fy; - £2)x = 3ex(fy; - £,5) - 3(f;; - f,,)xe
for all x € R. If x € Ry,, (6) reduces to f;;x = xf,,, whence we conclude
£y + £5)x = x(f1; + £,,) (x €Ry,).
Similarly,
(f11+ f22)x = x(f11+ £22) (x €Ryy).
Now let x €e R;; and y € Ry,. Then

(£11 + £22)xy - xy(fy; + £3))

{(f11 + f50)x - x(f5 + fzz)}y

L

(f11 + f22)xy - (f11 + £22)xV
=0,
since y, Xy € Ry,. It follows from Lemma 1 that!
(17 + £22)x - x(f;,+£,5)=0 (x€R;q).
Similarly,
£y + £2)x = x(f;; + £,,) (x €R,)),

and so f;; + f,, = z € Z. Hence, L(e) = (f;, + f57) + z; and, setting s =1, - f,3,
one easily verifies that L(e) = (es - se) + z.
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4. DEFINITION OF D AND T

Throughout this section and the next we impose the additional assumption that
L(e) is an element of Z.

LEMMA 6. L(Rij) - Rij , @ #13).
Proof. Let x € Ry, , and set L(x) = ZVij> Yij € Ryj. Then
22yij = Lx) = L([ex]) = [L(e), x] + [e, L(x)] =[e, Lx)] =y, - y21-

It follows that y11 = y21 = y22 = 0, and thus L(x) € Rj,. A similar argument holds
if x e Rpy.

LEMMA 7. L(R;;) C Rj; + Z°'.
Proof. Let x € Ry, and set L(x) = 2y;;, yij € Ryj. Then
0= L( [eX]) = [L(e)’ X] + [e’ L(X)] = [e: L(X)] =Yi2-Y21>
whence y12 =y21 =0 and L(x) € Ry + Rz . Similarly, if X € Ry, then
L(x) € Rj;+ R;,. Nowlet x € R;; and y € Ry, with L(x) =a;; + a5, and
0 = L([xy]) = [Lx), y]+ [x, L{y)] = [az,¥] + [xby;] =0,

and so in particular [a,,y] = 0. In view of Lemma 2, [a,,y] =0 for all y € R,,;
and thus, by Lemma 3, a,, = (1 - e)z for some z € Z'. Therefore

L(x) =a;;+ (1 -e)z=[(a;; - ez) + 2] €eR; + Z'.

In the same fashion one sees that that L(R,;) c R, + Z'.

We summarize the results we have obtained thus far:
(7) if x € Ry;, (i#j), then L(x) = x* € Rij;

(8) if x € R;

ii, then L(x) =x* + z, x* €R,., z € Z'.

11 2

__ Relations (7) and (8) enable us to define in a natural way a mapping D of R into
R according to the rule

D(x) = x* if x €R;j; for all i, j.
A mapping T of R into Z' is then defined by the rule

T(x) = L(x) - D(x) (x € R).

5. PROPERTIES OF D AND T

LEMMA 8. T(x+vy)=TX)+ T(y) forall x,y €R.
Proof. It suffices to show that T is additive on Rj;. If x, y € Rj;, then
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T(x+y) - Tx) - T(y) = L(x+ y) - D(x +y) - L(x) + D(x) - L(y) + D(y)
= [Dx) + D(y) - Dx+y)] e Ry; N Z2' = 0.

COROLLARY. D(x +y) = D(x) + D(y) for all x,y € R.

LEMMA 9. D(xyx) = D(X)yx + xD(y)x + xy D(X) for all x € Rij i+3j) andall
y € R.

Proof. Letting x € Ry; (i # j), we may write 2xyx = [[xy]x]. Then

]

L(2xyx) = L([[xy]x]) = [[L(x), y] + [x, L(y) , x] + [[xy], L(x)]
[[D&), y] + [x, D], x] + [[xy], D(x)]

= 2 {Dx)yx + xD(y)x + xy D(x) } ;

2D(xyx)

we make use of the fact that, for i# j, Ri; = 0 and D(R;j) C Rjj. Since the charac-
teristic of R is not 2, the desired conclusion follows.

LEMMA 10. For x € Rj;and y € Ry (j # k), D(xy) = D(x)y + xD(y).
Proof. We may assume that x € R;; and y € R;,. Then

L(xy) = L({[xy]) = [Lx), y] + [x, L)]

[Dx), y] + [x, D(y)] = D)y + xD(y).

D(xy)

LEMMA 11. For x € Ry; and y € Rj;, D(xy) = D(x)y + xD(y).

Proof. We may assume that x, y € Ryj;. Choosing r € R;,, we may write,
using Lemma 10, the relations

D(xy)r = D(xyr) - xy D(r) = D(x)yr + xD(yr) - xy D(r)
= Dx)yr + x {D(y)r + yD(r)} - xyD(r)
= {DEX)y + xD()}r.

Hence { D(xy) - D(x)y - xD(y)}r =0 for all r € R;2. Therefore, by Lemma 1,
D(xy) - D(x)y - xD(y) = 0.
THEOREM 1. D is an ordinary devivation of R into R.

Proof. In order to prove that D(xy) = D(x)y + xD(y) for all x, y € R, we may as-
sume, in view of Lemmas 10 and 11, that x# 0 €e R}, and y € R;. From the rela-
tions

L([xy]) - D([xy]) = [L.(x), y] + [x, L(y)] - D([xy])

[D(x), y] + [x, D(y)] - D(xy) + D(yx)

T([xy])

1l

we obtain

(9) { D)y + xD(y) - D(xy)} + {D(yx) - D(y)x - yDx)} =z € Z' .
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If z=0, [DE)y + xD(y) - D(xy)] € (R11 N Ry2) and hence is equal to 0. Thus suppose
z # 0. Multiplication of (9) on the left by x yields the formula

xD{yx) - xD(y)x - xy D(x) = xz.
Applying Lemma 10, we find that
D(xyx) - D(x)yx - xD(y)x - xy D(x) = xz;

and, by Lemma 9, we see that xz = 0. It follows that x = 0, which is a contradiction.
COROLLARY. T(xy - yx) =0 for all x,y € R.

6. THE MAIN RESULT

We now drop the assumption (used in Sections 4 and 5) that L(e) € Z. However, by
Lemma 5, L(e) = [es] + z where s € R, z € Z. Letting I be the inner derivation de-
termined by s, that is, I(x) = xs - sx for all x € R, we see that L' = L. - I is a Lie
derivation of R into itself such that L'(e) = z € Z. According to Section 4, L.' may
be written in the form L'=D+ T, thatis, L = (I + D) + T. Our main result now fol-
lows from Theorem 1 and its corollary.

THEOREM 2. Let L be a Lie derivation of a primitive ving R into itself, where
R contains a nontvivial idempotent and the chavacteristic of R is not 2. Then L is
of the form D + T, wheve D is an ovdinary devivation of R into a primitive ving R
containing R and T is an additive mapping of R into the center of R that maps com-
mutators into zevo.

We conclude by remarking that if the ring R in Theorem 2 is simple, then D
maps R into itself and T maps R into the center of R. To see this one need only
note that D(Rjj) € R;jj; € R (i # j) and that the subring generated by the Rj; (i#]) is
an ideal and hence is equal to R.
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