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Let (X, A) be a pair of spaces having two structures each of which induces, in
some way, a neighborhood of A which is a mapping cylinder. We shall show in this
paper that the two neighborhoods are homeomorphic. For example, let S be a dif-
ferential structure on X which induces on A the structure of a differential sub-
manifold. Then any open tubular neighborhood of A (that is, a realization of the
normal bundle of A for some complete Riemannian metric on X by normal disks of
sufficiently small radius) is a mapping cylinder neighborhood. There are many
examples of pairs (X, A) admitting more than one such differential structure. Al-
ternatively, if A is a full subcomplex of some triangulation T of X, then an open
simplical (that is, regular) neighborhood of A in the first barycentric subdivision
of T is a mapping cylinder neighborhood.

We recall that the mapping cylinder M; of a map f of a space X onto a space Y
is the disjoint union X X [0, 1] U Y with each (x, 1) identified to f(x) € Y. By iden-
tifying each x € X with (x, 0) € Mg, we consider X, Y as closed subsets of M;. For
any set A in a space, b(A), i(A), and Cl A will denote its set-theoretical boundary,
interior, and closure, respectively. Let A be a closed subset of a space X. An
open set UD A of X is called an open mapping cylinder neighborhood (MCN) of A
if there exists a map f of b(U) onto b(A) and a homeomorphism h of (Cl U) - i(A)
onto M; such that h! b(U) U b(A) = 1. Our main result can be stated in the following
form.

THEOREM 1. Let U, V be MCN’s for a closed subset A of a space X. If b(U)
and b(V) are paracompact and locally compact, then theve exists a homeomovphism
of V onto U that leaves pointwise fixed a neighborhood of A.

In particular, we obtain the following corollary.

COROLLARY 1. Let U, V be MCN’s for a (not necessarily compact) closed
subset A of a locally compact melric space X. Then therve exists a homeomorvphism
of U onto V that leaves pointwise fixed a neighbovhood of A.

If A is any subcomplex of a locally finite complex X, then by the open regular
neighborhood of A, we shall mean the simplicial neighborhood of A in the second
barycentric subdivision. Here we use the term complex both for the complex itself
and for the underlying topological space.

COROLLARY 2. Let T;, T, be two locally finite tviangulations of a closed pair
(X, A). Let R; denote the open regulav neighbovhoods of A under T;. Then theve
exists a homeomovphism of Ry onto R, that leaves pointwise fixed a neighborhood
of A.

It is known [2] that the tangent spaces of a manifold M corresponding to two dif-
ferentiable structures may not be equivalent as bundles over M. However, there is
the following result in which M is considered as embedded in the tangent space as
the zero cross-section.
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COROLLARY 3. Let X3, X be tangent spaces of a manifold M corresponding
to two diffeventiable structuves on M. Then theve existis a homeomovphism h of
X; onto X, such that h| M = 1.

Proofs. Theorem 2 (see the next section) is a special case of Theorem 1. Con-
versely, Theorem 1 is obtained from Theorem 2 as follows. Shrink A to a point x
and apply Theorem 2 to the resulting space. Since the homeomorphism stated in
Theorem 2 does leave pointwise fixed a neighborhood of x,, we obtain Theorem 1.

Corollaries 1 and 2 are immediate consequences of Theorem 1. Corollary 3 fol-
lows from Theorem 1 and the observation that M can be naturally identified to the
diagonal A of M X M and any tangent space of M can be considered as an open
tubular neighborhood of A in M X M and hence a MCN of A in M X M.

OPEN CONE NEIGHBORHOODS

The cone C(A) over a space A is A X [0, 4] with A X 0 identified to a point v
which we call the vertex of the cone. In connection with cones or open cones (see
below), v will stand for the vertex. The definition of the open cone OC(A) over A
is entirely similar except that [0, 4) replaces [0, 4]. We identify OC(A) as the open
subset of C(A) which leaves out the base A = A X 4. Precisely speaking, there
exists the natural projection 7: A X [0, 4] — C(A). But since A X [0, 4] never ap-
pears in our discussion, we suppress 1 and use (a, t), A X t, AX [t1, t2] while ac-
tually meaning 7(a, t), 7(A X t), and 1(A % [t;, t,]), respectively.

Let x be a point of a space X. By an open cone neighborhood of x, we mean any
open subset U of X for which there exists a space A and a homeomorphism h of
C(A) into X such that h(v) = x, h(OC(A)) = U and h(C(A)) = C1U. Notice that this
definition is stronger than the one given in [1]. However, in case X is locally com-
pact, as was the case in [1], then the two definitions are essentially equivalent.

By U = (A, h) we mean that U is an open cone neighborhood and there is a
homeomorphism h: C(A) — Cl1 U as in the definition.

THEOREM 2. Let U= (A, h) and V = (B, k) be two open cone neighborhoods of
a point x in a space X. Suppose A and B ave pavacompact and locally compact.
Then theve exists a homeomorphism of U onto V which leaves a neighbovhood of x
pointwise fixed.

Proof. Theorem 2 is a generalization of Theorem 1 of [1]. In order to use the
method of proof of [1], considerable care must be taken due to the non-compactness
of A and B. Therefore, we show how to place the present situation in a setting so
that the method of [1] can be used.

Let At (or Bt) denote the subset of C(A) (or C(B)) consisting of the points

t
(a, £ (or (b, t1) with t' < t. We first note that if k(B'Y)  h(A”) - h(A X t,), then
k(B X t;) separates h(A X t,) from x. In fact,

X -k(BXt;)=C UD, where
t
C=k(B!'-Bxt)

t
D=X-k(BY.
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As k(Btl) is a closed subset of C1 U and k(Btl - BX t;) is an open subset of U, C
and D are open and disjoint. Furthermore, x € C and A X t; C D.

We divide the proof into two cases.

Case 1. Suppose the homeomorphisms h and k satisfy the following separation
property.

THE SEPARATION PROPERTY. There exist positive numbers p< q<r,
s < t and € such that (see Figure 1)

(1) h(A X p), k(BX (s - €)), k(BX s), h(AX (q - €))
h(A x q), h(A X (q + £)), k(Bx t), k(B X (t + €))
and h(A X r) ave disjoint, and

(2) h(AP) c k(B®"®) c k(B®) c h(A1"®) c h(AY)

c h(AT'®) « k(BY < k(B''®) c hATY).

|<—A
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/\_//__h-lk(BXt)
/—\/\_ h-lk(BX (t . g))

Figure 1
Let gg be a homeomorphism of Cl U onto itself such that
g;| h(A9E) U (C1 U - h(aA(+9/2)) = 1,
gl(h(Aq)) = h(Ar) and g, h(a, q) = h(a, r) (a €A).
Let g, be a homeomorphism of Cl1 U onto itself such that
g,| kB°F) uClU-kB"®) =1,
g,(&(B%) = k(BY and g,k(b, s) =k, t) (be B).

Let g4 be a homeomorphism of Cl U onto itself such that
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g3| h(AP/2) U h(ATE) = 1,
g3(h(AP)) = h(A?) and g4(h(a, p)) = h(a, @) (a € A).

Then g = g3 g5 g; | h(A X [p, q]) is 2 homeomorphism of h(A X [p, q]) onto
h(A % [q, r]3) such that

g(h(a, p)) = h(a, q), ghla, q)) = h(a, r)
and
gk(b, s)) = k(b, t).

As in the proof of Theorem 1 of [1], the existence of such g is enough to guaran-
tee the conclusion of the theorem for Case 1.

Case 2. Suppose h and k do not satisfy the separation property. We will modify
h and k so that they will satisfy the separation property.

Let {Wa} be a locally finite open covering of B such that each set Cl W, is
compact. Such a {Wa} exists as B is paracompact and locally compact. For each
W, , there exists a positive number e(a) < 3 such that

k(Wg % [0, e(@)]) c h(a3 - Ax 3).

Also there exists a family {fy} of continuous maps fy,: B — [0, 1] such that each
fy is zero outside W, and Z, f,(b) = 1 for each b € B,

Define F: B — [0, 3) by

F(b) = max{e(a)f, (D)} .
o

Clearly F(b) is positive-valued. Furthermore, it is continuous. To see this we
note that for each b € B, there exists an open neighborhood U of b such that U

meets at most a finite number of W’s, say Wy 12 Wak. Then

F|U = max {e(y )fal, e(a z)faz, ., e(ak)fak} .

Observe that for each b € B,

k(b % [0, F(b)]) c k(A3 - Ax 3).

Define a homeomorphism k; of C(B) onto C1V by
k(b, w) ift3<w<4,
k,(b, w) = < kb, F(b) + (2w - 5)(3 - F(b)) if 2.5 < w< 3,

k(b, 2wF(b)/5) if 0<w< 2.5.

Then k; =k on BX (3, 4] and

k;Bx[0,t+e])=k;Bx[0,2+0.5]) c h(A> - Ax3).
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In exactly the same way, we modify h to h; such that hy = h on A X [3, 4] and
Ax[0,q+e]l=Ax[0, 2.5] is mapped into k;(B? - BX 2). This process is iterated
until the desired modifications h; and k; are attained.
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