FACTORING OF SECOND-ORDER DIFFERENCE EQUATIONS
WITH PERIODIC COEFFICIENTS

E. Dubinsky

We consider the following difference equation:

(1) f(x+ 1) - pXE® - fx-1) =0 (i=V-1)
under the hypothesis that there exists an integer n for which

p(x + ni) = p(x) .
Equation (1) is completely general, for if

a(x)g(x + i) + b(x)g(x) + c(x)gx - 1) = 0,

then, setting

g(®) = r(xi(x),
where

aX)r(x+ i) = -ec(x)rx - i),

we obtain (1) with

_ _bx)r(x)
p(x) = a(x)}i'(lz:c +i)°

A continued fraction solution of (1) is given in [1], but no discussion of converg-
ence is given there, and in practice to prove convergence may be quite difficult. The
periodic coefficient case is discussed by Fort [2], under the restriction that the
values of f are required only at integral multiples of i. He shows the existence of a
second order equation with constant coefficients, some of whose solutions comprise
all the solutions of (1). His result is useful in considering the asymptotic behavior
of solutions.

We shall show that the problem of solving (1) can be reduced to that of solving
certain first order linear difference equations whose coefficients we give explicitly
in terms of p and n. There are two cases. In the first case, we give two homoge-
neous first order linear difference equations with the property that any pair of solu-
tions of these two equations are solutions of (1) and are linearly independent.
(Throughout this paper, linear independence is with respect to the ring of functions
that have period i.) In the second case, these two equations turn out to be identical
and a second, independent, solution is obtained as a solution of a nonhomogeneous,
first order, linear difference equation with periodic coefficients whose right-hand
side is the solution of a homogeneous equation.
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An important example, which arises from scattering by a wedge with impedance
boundary conditions, is the equation

(2) f(x + i) - p(cothax)f(x) - f(x - i) =

where @ = m7n/n and m, n are integers.

We introduce, for convenience, the n functions
Po(x), p1(x), =+, Pn-1(x)
defined by the relations
p, (%) = p(x + vi) v=0,+,n-1).
Similarly, we define
f1(x), Ip(x), ==, 1, (%)
by the conditions
fV(x) = f(x + vi) (v=-1,,n-1).
These notations permit us to omit the symbol x when writing these functions, and we

shall do so when the meaning is clear. For each pair of integers s, t in the range
0, -, n - 1 and such that

s+t<n,
we define a function Pg ; of x, by
Pn-s -1 0 e o
1 “Pn-s-1 -1 0
(3) Po:= . . |
(3 see 0 1 -p;

where the right-hand side is an n - s - t + 1 dimensional determinant. More pre-
cisely, the determinant consists of the main diagonal with entries -p,_g, ***, -p;, the
diagonal directly below the main diagonal with entries all equal to 1, the diagonal
directly above the main diagonal with entries all equal to -1, and all the remaining
entries equal to O.

We now show that Py ; satisfies two recursion relations which are crucial for
our results. If we expand (3) by the minors of the first column, we obtain only two
terms, the first of which is -p,_g¢ P, + and the second of whlch is a determinant
whose first column consists of a 1 in the first row and zeros elsewhere. This
second term is thus immediately reducible again to Pg;; ;. Hence we have shown
that

(4) Ps,t = -Pn-s Ps+1,t+ Ps+2,t'
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In a similar manner, if we expand (3) by the minors of the last column, we obtain the
relation

(5) Pt = P Pg 1 * Pg ez

We define two functions g,, g, to be the two solutions of the quadratic equation
(6) g - (PgPy,1- Pp,1- Py g+ (-1)" =
We shall use the symbol g to refer to either g, or g,. We now prove that
gx+1) = g(x).
This is equivalent to showing that
Po(X + NPy y(x + 1) - Py y(x + 1) = Py p(x + 1) = po(x)Py 4 (%) - P, 4(x) - P, ,(x)
or, by the definitions of p,, and Ps’t, that
PiPoz-Pys-Po3=pPy;-Py;-Pp,.
By (4), with s = 0, t = 1, we obtain the equation
PoPro- Py -Pip=-Pg,- Py
and by (5) with s = 0, t = 1, we obtain the equation
P1Pos - Pip-Pos=-Py,-Py,.

Thus the periodicity of g has been proved.

We now prove that any solution of the first order difference equation
(M Pyofo-(8+ Py, =0

is a solution of (1). From the periodicity of g, it follows that

fl :g_-!-__P_l.iZf

Pl,l 02
P
- 2,0
f_, —-——L——g " Pz,l f,.
Applying (1), we see that
L
g+ Pz 1
(8) _ g+ (P1,z + P2,1)g + Py aPy i - PPy, 18 -Po Py, Py - Ppg Py £
= 0

P, ,(g+ P2,1)
g2 - (P Py 5 - P12'P21)g+P12P21'p0P11P21'onp

1,1
— b 2 3 2 ] 2 2 2 2
= fO'

P, (g + Pyy)
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And from (5) with s = 2, t = 0, we obtain the relations

© P 2Py -0 P11 Pyy - P oPyy = Py Py - P1,1(po P,,+ Pz,o)
= P1,2 P2,1 - P1,1]?2,2 .
On the other hand, it follows from (5) (with s = 1) that

PtP1,t+1 = -P1,t+ Py 142

and (with s = 2) that

PeP2t+1 = Po i~ Pp 42-

Cross multiplying the left and right-hand members of these two equations yields the
result

PePyer1 P2t - P Pyoer1P2,e42 = PeP1,tP2 tr1 - P P2 P e41s

or

Pre+1 P2, - P1,tP2 t+1 = -[P1,t42P2 141 - Pl e+1 P2, 042]-

Note that the right-hand side of the last equation may be obtained from the left-hand
side by everywhere increasing the second subscript by 1. Thus by induction we de-
rive the equation

n-3-t

Py 1Pt~ P ¢Po 41 = (-1) [Pin-2P2n-3-P1 03P 2l

But the right-hand side can now be computed; namely

Pl,n—?. PZ,n-—B - P1,n--3 PZ,n—Z

“Pn-1 -1 “Pn-2 -1 “Pn-1 -1 0
= - Pn-2| 1 -Pn-2 -1 = 1.
1 “Pn-2 1 “Pn-3 0 1 “Pn-3

Therefore we have shown that
n-3-t
PreviPoe - PrePoey1 = (-1) .
Ift=1,
-4
(10) Pi2Pyy-P11P 2 = (D)7 = (D7,

Thus from (8), (9), and (6) we see that

g+Pr12 P20 )f _ g% - (P11 - P12 - Py 1)g + D%
Pl,l 0 g+ PZ,I 0 Pl,l(g'l' PZ,I) o .
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This shows that the solutions of (7) are solutions of (1). Let us denote by u(x)
and v(x) the solutions of (1) which are obtained when g,(x) and g,(x), respectively,
are used in (7). We want to find the conditions under which u, v are linearly inde-
pendent. If we let

8:(x) + P, ,(x)

(11) Ax) = B
and
(12) B(x) = g2(x) + P2,1(X)

Pz,o(x) ’

then u, v satisfy the equations

(13) u(x) = A®u(x - i), ;
(14) v(x) = B(x)v(x - i).
Let us suppose that
(15) : a(x)u(x) + B(x)v(x) = 0,
where
a(x+i) = o), Bx+i = BRX.
Then

axXux - i)+ BEEv(x -1) = 0;

and from (13), (14), and (15), it follows that

a(x)A(x)u(x - i) + B(x)B(x)v(x - i) = 0.
Therefore,
a(X)Au(x - i) - ax)B(x)u(x - i) = 0,
from which it follows that
A(x) = B(x).
But together with (11), (12), this implies that
g1(x) = g,(x).
From (6), it then follows that
(16) (PoPy,1 - Ppy - Py )% = (-D"4.

It is obvious that if (16) is satisfied, then (7) will not give two independent solutions.
Thus, (7) gives two independent solutions if and only if (16) is not satisfied.
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Let us now suppose that (16) is satisfied. As a matter of fact, this assumption
will not be used. The method we are about to use works even if (16) is not satisfied.
However, it is a bit more complicated in this case, so its use should be restricted to
the case where equation (16) holds.

We define the operator E by
(Ef)(x) = f(x+ i).

We shall also interpret an ordinary function to be an operator in the sense of point-
wise multiplication by that function. By the product of two operators, we mean com-
position. We shall use the well-known arithmetic rules of operator calculus such as
associativity, distributivity, etc.

We may now write (1) in the form
(17) (E2 - p,E - 1)_, = 0,

and the problem is to “factor” the operator E2 - p,E - 1. But we already know that
one factor is

g + PZ’I

E -
Pz,o

Keeping in mind that we do not have commutativity, we learn that
2 = - =
(18) B =pE-1= (E+ g+P21)(

In fact, from (6), (10), and (5), it follows that

P + P P + P
(E+_Z_’0_)(E_g—2’1)=EZ+_2:LE_E_g.___Z_-l_1
g+ Py, P30

g+P21)

=E+

P + P
2,0 g 1,.2]}3_1
g+Py1 P11

g2+ (P 1+ Py )g-P1 1P o+ Py Py,

[
B [ (g+P2’1)P1’1 JE—I’
=%

PoPy 18- (-1 - P11 Py o+ P21 P12
2 E-1
Py (g +P, )

£2 _ [Pog - Pao+ Pz,z] E.1- g2 _Pog8+tPoPz;
g+ Py, g+ Py,

E-1,

E°_poE- 1.

I

Let us assume now that f is a function satisfying the equation

g:..féﬁ.) f.=0.

(19) (E -

From (17), (18), and (19), it follows that f is a solution of (1). Suppose f is not zero
and satisfies the equation
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Poo \
E+—2—)f, =0
( g+ Py, ! ’

and suppose f* satisfies the equation,

+ P ~
(20) (E - E-P——z’-i) &, =1,.
2,0

From (53) we see that f* is a solution of (1). Suppose now that af = f*, where
a(x + i) = a(x). Then,

g+P21> ( g‘*'le) * 3
E-——=)af , = (\E-———— )£, =1_,.
( Ps,0 -t Pz 0 ' !

But

g+ P2,1)
(E - P, , af_,

Therefore f_ 1 = 0, which is a contradiction. Hence f and f* are linearly independent
solutions of (1).

+ P
a(E-gT—?ﬁ)f_1 = 0.
2,0

At this point it may be of interest to give an example in which equation (16) is
satisfied. In equation (2) let us take n =4 and m = 2 so that

m

Po(x) = 7ncothzx,
p(x) = ntanhgx,
pe(x) = ncoth%x,
ps(x) = ntanhzzr-x,

and
(21) PoPyy - Pyy - Pro=2+DoPy + PyPz+ P2Ps+ P3Py + PoPy PoPs = 2 + 3% + n*.
Thus, there are seven values of 7 satisfying the relations

7+ 32 +2 =+2.

If we take one of them, say 7 = iV3, then the quadratic equation may be written in
the form

g2 -2g+1 = 0.
Therefore g = 1 and the first order equation, (7) is

(Po + P + poplpz)fo - (g - pyp; - 1)f_1 =0

or
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(22) @ + 17 (coth%x) £, -nf_, = 0,

and (20) becomes

(23) 2+ (coth%x) £ - nf*, = 1,
where
(24) nf, + (2 + n?) (cothg-x) f,=o0.

Equation (22) has the solution

f(x) = exp {-ix log 21:_7”2} sinh-gx

and (24) has the solution

f(x) = exp {—ix log RE-Z—HF } sinh%x.

To proceed one has to solve the first order equation (23) with the given expression
for f.

For any other values of n (in particular for 5 sufficiently large), we may use
the simpler method. From (21) and (6) we obtain two values g,, g, for g, both of
which are constants. Let j=1 or 2. Then the first order equation is

2n + nd (coth%x) fo-(g-1-99f_,=0,

and the two solutions of (1) are given by

3 - - 2
f(x) = exp {—ix log 1(g12n 41_ ngn )} sinhlzrx,

f(x)

i - - mn2
exp {-ix log l(gzzn i n;’ ) } sinhgx.
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