INNER AUTOMORPHISMS OF GROUPS IN
TOPOLOGICAL ALGEBRAS

Bertram Yood

1. INTRODUCTION. Let B be a complex Banach algebra with an identity e, and
let G be the multiplicative group of all regular elements of B. This group plays an
important role in the theory of Banach algebras; for expositions and further refer-
ences see [3] and [5]. Here we investigate the group § of all inner automorphisms
of G. The group  can equally well be considered as the group of all inner auto-
morphisms of the algebra B inasmuch as, given u, v € G, the equality uxu-! = vxv~?
holds for all x € G if and only if it holds for all x € B. The group J is, of course,
isomorphic to the group G/Z, where Z is the center of G, and is trivial if B is
commutative; we are concerned only with algebras which are not commutative.

The quotient group formed by a group modulo its center can, as is well known,
readily have a nontrivial center. However, we show in Theorem 2.3 that, for all
semi-simple Banach algebras B (or, more generally, for any normed Q-algebra B
whose center is semi-simple), the group G/Z has only the identity in its center.
(In the special case where B is the algebra of all matrices of degree n over the
complex field K, G is the general linear group GL(n, K), Z is the set of nonzero
scalar multiples of the identity, and G/Z is isomorphic to the projective group in
n - 1 dimensions over K; see, for example, {1, p. 297]. In this case Theorem 2.3
states that the projective group has a trivial center.) That G/Z has only the iden-
tity in its center is true in spite of the fact that, for all such B which are not com-
mutative, the power of G/Z is at least that of the continuum. The latter property
holds in a more general setting (Theorem 2.6), but there are incomplete real normed
algebras that are not commutative and for which G/Z is trivial.

The author is greatly indebted to Dr. John A. Lindberg, Jr. for his suggestions
and assistance. In particular he supplied Lemma 2.2 and pointed out that it could be
used in conjunction with the author’s arguments to show that G/Z has a trivial cen-
ter (Theorem 2.3). This provided a substantial improvement over the original ver-
sion which required the additional hypothesis that every ideal not equal to (0) of the
center should contain a minimal ideal of the center.

2. ON THE GROUP G/Z. As in [4], we call a topological ring A a Q-ring if
the set of quasi-regular elements of A is open; A is a Q-ring if and only if there is
a neighborhood of zero consisting entirely of quasi-regular elements [4, p. 154]. By
[3, p. 695], any modular maximal right (left) ideal of A is closed. Any Banach alge-
bra is a Q-algebra {4, p. 155]. Suppose that A is a Q-algebra over the reals with
identity e. Then to each x € A there corresponds a real number b # 0 such that
e + bx € G, It follows that Z = C N G, where C is the center of A.

For an element x in an algebra A over the real or complex numbers, we denote
its spectrum by Sp(x). If x lies in a subalgebra A, and we wish to consider its
spectrum when x is considered as an element of A,, we denote this set by Sp(x)|A1).

Normed Q-algebras have been investigated in [6].
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LEMMA 2.1. Let B be a normed Q-algebra with centey C. Then the radical
of C is the intevsection of C with the radical of B.

In view of [5, Theorem 1.6.14] C is also a normed Q-algebra. As shown in [6,
Lemma 2.1], the spectral radius of an element x in a normed Q-algebra is given by
the expression v(x) = lim ”xn”l/n. Now v(xy) < v(x)v(y) if xy = yx [5, p. 10]. Let
X be in the radical of C. Then v(x) = 0, and xB consists entirely of quasi-regular
elements so that x lies in the radical of B. Conversely if x € C and x is in the
radical of B, then xXC is made up entirely of elements quasi-regular in C, and x is
in the radical of C.

LEMMA 2.2 (Lindberg). Let B be a complex Banach algebra with u, y € G.
Suppose that a = uyu~*y~* € Z. Then Sp(a) is contained in the set of complex num-
bers of modulus one.

Note that ayu = uy = y~*(yu)y. Thus the relation a®yu = y ™ (yu)y™ is valid for
n =0, 1. We establish the relation by induction for all positive integers. Suppose it
is valid for n. Then

antlyy = a(yRyuy®) = y~® (aywy® = y~? (uy)y® = y~(2+1) (yu)yntl,

Therefore Sp(yu) = Sp(a®yu) (n=1, 2, ---). Since a~! € Z, we also see that
yu = y™ @ (a ™ yu)y® for each positive integer n so that Sp(yu) = Sp(a®yu) for nega-
tive integers also.

Now let B, be a maximal commutative subalgebra containing yu. Clearly B,
contains C so that a € B,. Observe that, by [5, p. 35], Sp(x) = Sp(xl B,) for all
x € B, and that x™! € B, if x is regular in B.

Now let 9% be the space of maximal ideals of B,, and let M € M. Clearly
(yu)(M) # 0, and a(M) # 0. Suppose that |a(M)|> 1. Then
|an(yu)(M)| —00 as n-—oow,
Since Sp(yu| By = Sp(a”yul| By), this is impossible. Likewise it is impossible that
la(M)| < 1. Thus |a(M)|= 1.
If the center of a group is the identity, we say that the group has a trivial center.

THEOREM 2.3. Let B be a complex normed Q-algebra with identity e whose
center C is semi-simple. Then G/Z has a trivial center.

By Lemma 2.1, the hypothesis on C is fulfilled if B is semi-simple. Suppose
first that B is complete (a Banach algebra).

Let y € G, and suppose that uyu~'y~! € Z for all u € G. Take a fixed u, and set
a=uyu~ly~!, Now uy = ayu = yau. An easy induction shows that u"y = ya™ u™
(n=1, 2, «--). Therefore

un au
(2;1) (e+%+-o-+ﬁ—!.)y=y(e+T_!_+...+(aI':'l!)n).

Passing to the limit as n — «, we obtain from (2.1), in terms of the exponential func-
tion exp(x) [3, p. 172], the relation

(2.2) exp(u) y = y exp(au) .

Now exp(u) € G. Setting b = exp(u)y exp(-u)y~!, we see that
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(2.3) exp(u) y = by exp(u) .
From (2.2) and (2.3) and since b € Z, we obtain the conclusion bexp(u) = exp(au) or
(2.4) b = exp((a - e)u).

If in the above development we replace u by Au for any scalar A # 0 and we let

b()) = exp(Au) y exp(-Au) y~!

we obtain the equality
(2.5) b(A) = exp((a - e)u)

with the same a as in (2.4).

Next let B, be a maximal commutative subalgebra containing u. Then B, 2 C
so that a € B,. Let M be the space of maximal ideals of B,;, and let M € M. It
follows from (2 5) that b(A) € B, and from Lemma 2.2 that rb()\) (M)I = 1. Then
(2.5) shows that

(2.6) 1 = |exp[xu(M) (a(M) - 1]|.

Since u{(M) # 0 and X is arbitrary but not zero, the equation (2.6) requires that
a(M) = 1. Therefore Sp(a|B,) is the one element set {1} so that [5, p. 35]

Sp(a) = {1}.

Next we recall that a € C and observe from [5, Theorem 1.6.12] that
Sp(a|C) = {1}. Then Sp(e - 2| C) = {0} so that v(e - a) = 0.

Now we turn to the case where B is a (possibly incomplete) Q-algebra. Let B,
be its completion, let G, the set of regular elements of B, and let Z, be the center
of G,. We consider B to be embedded in B,. Let x € B, We show first that x is
rlght quasi-regular in B if and only if it is right quasi-regular in B,. For suppose
x is not right quasi-regular in B. Then the set K= {xw w[ w € B} is a proper
modular right ideal of B and is contained in a modular maximal right ideal M of B.
As M is closed, x is at a distance d> 0 from M. Set K, = {xv - v[ v € B,}. The
modular right ideal K, of B, lies in the closure of K so that x £ K,. From this we
see that x is not right quasi-regular in B,.

In the same way, x € B is left quasi-regular in B if and only if it is left quasi-
regular in B, and, consequently, x € B is quasi-regular in B if and only if it is
quasi-regular in B,. In particular, this implies that G, N B = G.

Next let z € Gy, and suppose z = lim x,, where each x, € B. Since G, is open
in B,, we may suppose that each x € G, and therefore that each x, € G. Let v € Z.
Since vx = xv for all x € G, vx = xv for all x € G,. This shows that Z,N B = Z.

Suppose that y € G and that uyu~'y~! € Z for all u € G. Our task is to show that
y € Z. Take z € G,, and suppose z = lim x,, as above. Since x['ll — z-1 and each

x, yx;ly -l € Z,,
(2.7) zyz~ly~! € Z, for each z € G,.

The first part of the proof shows that v(e - zyz™'y~!) = 0 for each z € G,. In partic-
ular, v(e - uyu™'y~1) = 0 for u € G where e - uyu~'y~! € C. The hypothesis on C
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shows that e - uyu™'y~* =0 or uy = yu for each u € G. Therefore G/Z has a trivial
center.

As in [3] or [5], we denote by G, the component of G that contains e. In the
complete case we can obtain a bit more than in Theorem 2.3.

COROLLARY 2.4. Let B be a complex Banach algebva with identity e whose
center is semi-simple. Let Z, be the center of G,. Then G,/Z, has a trivial
center.

To each x € B there corresponds a number b > 0 such that e + ax € G, for all

Ia l < b. Hence each v € Z, lies in C and therefore in Z. Thus the conclusmn
of Lemma 2.2 holds for the commutator a of two elements in G,, if a € Z,. The
arguments of [5, Theorem 1.4.10] show that exp(x) € G, for all x € B, Let y € Gy,
and suppose that uyu~'y~! € Z, for all u € G,. For a given u € G, and any scalar
XA # 0, each b()), in the notation of the proof of Theorem 2.3, must lie in Z,. The
arguments of that proof now show that v{(e - uyu~'y~') = 0 and that uy = yu. There-
fore y € Z,.

Let A be a real topological algebra with an identity e. We assume A to be a
Hausdorff space and that the set of regular elements G is a topological group under
multiplication. The latter is always the case if A is a normed algebra [5, Theorem
1.4.8], but there are real topological algebras for which the inverse operation is not
continuous on G. We call A almost radially Q if there exists a dense set S in A
such that to each x € S there corresponds a number b > 0 such that ax is quasi-
regular for all real numbers 0 < a@ < b. Trivially, any Q-algebra (over the reals)
is almost radially Q. The converse is false even for normed algebras. As an ex-
ample take for A the algebra of all complex-valued functions defined and continuous
on the closed disc |z|< 1 of the complex plane and holomorphic in |z| < 1, where
A is made into an incomplete normed algebra by setting

(2.8) I£]l = suwp |f(2)].
|=]<1/2

Since A is a Banach algebra in its usual norm, it is clearly almost radially Q. But,
in terms of the norm (2.8), z™ is not quasi-regular in A and z™ — 0 so that A is
not a Q-algebra.

In the sequel we denote the power of the continuum by «¢.

LEMMA 2.5. Suppose that the group G in A is not commutative and the closed
linear manifold genevated by G, contains G. Then the power of G/Z is at least «¢.

Inasmuch as Z is a closed subgroup of G, the quotient group G/Z is a Hausdorff
space and therefore, by the theory of topological groups, is completely regular. We
show first that it is enough to establish that G/Z contains a connected set E which is
not a single point. For then, by complete regularity, there is a continuous function
f(t) from G/Z to [0, 1] taking on the values 0 and 1 on E. Consequently
f(E) = [0, 1], and the cardinality of E is at least .

Consider the natural homomorphism 7 of G onto G/Z. Since #(G,) is connected,
the above shows that we are through unless 7(G,) has one element. But then G, C Z
so that xy = yx for all x € G;, y € G. The hypothesis on G, shows that G is com-
mutative which is impossible.

THEOREM 2.6. Suppose that the veal topological algebra A is almost radially
Q and is not commutative. Then the powey of G/Z is at least «c.
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Let S be the set of elements x € A for which there exists a number b > 0 such
that (e - ax)™! exists for 0 < @ < b. By hypothesis, S is dense in A. If G is com-
mutative, then the elements of S permute pairwise, and A is commutative. There-
fore G is not abelian. It is readily seen that the linear manifold generated by G,
contains S. Lemma 2.5 can now be applied to obtain the desired conclusion.

The hypothesis that A is almost radially Q cannot be dropped. We exhibit a
real normed algebra that is not commutative but for which G consists only of the
nonzero scalar multiples of e so that G/Z is trivial. Let t be a real variable with
range [0, 1]. Consider the set A of all polynomials f(t) on [0, 1] where, for

ft) =ag+a,t+ - +a t"

a, is real and each a; (k> 1) is a quaternion. Under the usual operations for
polynomials, A is a real algebra; it is a normed algebra under the definition

(2.9) I£] = swp |E®)],
OStSI

where ‘f(t)l is the modulus of the quaternion f(t). It is readily verified that A has
the desired properties.

3. ON INVOLUTIONS. By an involution of a complex algebra is meant a con-
jugate-linear anti-automorphism of period two. We apply the ideas of Section 2 to
the theory of involutions.

THEOREM 3.1. Let A be a complex topological algebra that is not commu-
tative and is almost radially Q. Suppose that A has a continuous involution x — x*,
Then the set of involutions on A has power at least «¢.

This is an improvement of {2, Theorem 2.20], which demands the additional hy-
pothesis that A is a Banach algebra and uses a category argument to show that the
set of involutions is not denumerable.

We adopt the notation established in Section 2. Let u € Z, and consider the set S
of Theorem 2.6. For each x € S, there exists a number b > 0 such that

u(e - bx) = (e - bx)u forall ue Z.

Hence ux =xu forall ue Z, xe A,and Z=C N G.

By algebra, G* = G. Since x — x* is a homeomorphism, G¥ = G,. Let
G, = 1yy*|y € G,}. Since G, is a subgroup of G, G, is a connected subset of G,.
We show that 7(G,) cannot be a single element. For suppose otherwise. Then G,
lies in C which is, of course, a closed linear manifold in A. For each x € S there
exists a number b > 0 such that

(e -ax)(e-ax)*e€C forall @ (0<a <bh).

Thus, a?xx* - a(x+ x*) € C. Dividing by o and letting @ — 0, we see that

x+ x* € C for each x € S. Since S is dense and the involution is bicontinuous,
w+ w¥ € C for all w € A, If we replace w by iw, we see that w - w* € C as well
so that A is commutative. It follows (as in the proof of Lemma 2.5) that the set
7(G,) in G/Z has cardinal at least .
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For each y € G let Ay(x) = yxy'1 be the corresponding automorphism of the
algebra A. We then see that the set of Ay (u € G2) has cardinal at least «¢.

For each u € G,, u is self-adjoint. It is thus easy to verify that the mapping
Jyu (u € Gy), defined by J,(x) = ux*u-! (x € A), is an involution on A. If also
w € G,, then J,=J, if and only if A ;= A. Therefore the set of all J, (u € G;)
is a set of involutions with cardinal at least .
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