ON A CERTAIN CLASS OF TRANSFORMATION GROUPS

Glen E. Bredon

1. INTRODUCTION

This note is intended as an appendix to the author’s Chapter XV of [1]. The main
result [1, Chapter XV, 1.4] of the latter will be referred to in the present note as the
CDT (complementary dimension theorem), and it is, in fact, precisely the case
m = 1 of the main result of this note.

The prototype of the class of transformation groups that we shall study can be
described as follows. For each i =1, 2, «--, m, let Gj be a closed subgroup of

SO(k; + 1) such that Gj is transitive on the sphere Slfl in the usual action. Let M;
be euclidean space of dimension k; + 1 for i =1, 2, ---; m, and let M, be euclidean
space of some arbitrary dimension. Let M = Mg X Mj X:--X My,, let n be the di-
mension of M, and let G= G| X G, X+**X G,,. Define an action of G on M as fol-
lows. If g = (g, g2, ***, ), Where g; € G;, and if x = (xg, X, ***, X)), Where

X; € Mj, then let g(x) = (xqg, 81(x1), 82(x2), **, 8m(X)). In this note we shall show
that, at least as far as cohomology is concerned, the transformation group (G, M)
described above is essentially characterized by the fact that

dim F(G;, M) =n - k; - 1.

(For the precise statement, see Theorems 1.1 and 4.1 below.)

We shall use the notation of [1]; dim and dimj will denote cohomology dimen-
sion over Z and over Zp, respectively (see [1, Chapter I, Section 1.2]). The nota-
tion n-cm will be used for n-cmy (see [1, I, Section 3]). If X is an n-cm with
boundary B, we shall say that a transformatmn group on X satisfies the hypotheses
of the CDT or of Theorem 1.1 if it does so for the naturally related action on xd
(see {1, XV, Section 1.2]). If G acts on a space X and if Y c X, then we denote by
Y* the image of Y in the orbit space X* = X/G. If K isa subgroup of G, then we
denote the identity component of K by K° and the normalizer of K in G by Ng(K)
(or by N(K) if no confusion can arise).

If G is a compact Lie group acting on a space M, and K is a subgroup of G, we
let Mg = {y € M| Gy ~ K}, which is the set of points with orbits of type (K) (see [1,
VIII, Section 2]). If M is an n-cm, we denote a principal isotropy group by H. If
furthermore G = Gy X Gy XX G, and I {1, 2, -, m}, we let

Hi= Il G,nE)x1I1 G, and UMHj
i€l i¢1 Jc1
We also denote by m(I) the number of elements of {1, 2, ---, m} - L

If G XGyX-+X G, is a compact Lie group acting on the n-cm M, we shall say
that condition (A) is satisfied if each of the following three statements is true:

(i) Each G; is effective on M.
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(ii) There are no indices i and j such that Gj = G; = Z, and such that the
diagonal subgroup acts trivially on M.

(111) There are no indices i and j such that elther G0 G0 ~ SO(2) or
G- = G ~ Sp(1) and such that the action of G X G on M has the diagonal subgroup
as a prmmpal isotropy subgroup.

Remark. The situation that we actually wish to rule out by (ii) and (iii) is the
case in which

Gy/(Gy N H) = (G; X G)/((G; X Gy) NH) ~ G/(G; N H)

and is an integral cohomology sphere. Knowledge of the homogeneous integral co-
homology spheres (see [2] and [4]) shows easily that this can happen only if condi-
tion (A) is violated. We shall assume this fact without proof. If the reader wishes,
he may replace condition (A) by this seemingly stronger restriction. See also Re-
mark (a) below Theorem 1.1.

We can now state the main theorem of this note.

THEOREM 1.1. Let G = Gy X Gy X+++X G, act on the separable n-cm M of
finite covering dimension, and assume that condztzon (A) is satisfied. Let
k; = max { dim G;(y) | y € M} and put k = Zk;. Assume that

dim (F(G;, M), x) =n - k; - 1

fov some x € F(G, M) and all i=1, 2, -, m. Then, locally at x, the following state-
ments hold:

(1) The orbit types of G ave exactly the (Hj).

k. .
(2) H*(G;/(G; N H); Z) ~ H*(S % Z), so that H*(G/Hy; Z) ~ H*(HISkl; Z
i€
(3) M"i is an (n - k - m(I))-cm with boundary U M"} (where < denotes proper
inclusion). Il

(4) Theve exists a cvoss-section f: M/G — M such that f(M;‘{I) c F(H,, M).

Remarks. (a) Condition (A) is not an essential restriction, since if such a pair
(i, j) did occur one could group Gj X Gj together into one factor, and (even after
making this new factor effective) the new decomposition of G into a direct product
would still satisfy the other hypotheses of the theorem.

(b) Note the particular cases I=f and I={1, 2, ---, m} of conclusion (3). The
case I = says that F(G, M) is an (n - k - m)-cm, and the case I1={1, 2, -, m}
says that M/G is an (n - k)-cm with boundary consisting of the singular orbits.

(c) Conclusion (1) implies that G is effective, since each Gj is assumed to be
effective.

(d) Conclusion (2) follows immediately from the CDT, and we include it here
k:
merely for completeness. Also, note that in fact G; /(G; N H) = S !, unless it is of
the form SO(3) modulo the icosahedral subgroup (see [2]).

(e) The condition on the cross-section is precisely what we need if we wish to
reconstruct M and the action of G from M /G and the knowledge of the isotropy

groups of the orbits.
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(f) Note that we do not require G to be connected, so that, in particular, the
theorem is applicable to the case G; = Z, (i=1, 2, ---, m) and dim F(G;, M) =n - 1.
In fact, Lemma 2.2 is essentially Theorem 1.1 for G = Z, X Z,.

2. PRELIMINARY RESULTS

LEMMA 2.1. Suppose that G is a compact Lie group that satisfies the hypothe-
ses of the CDT at x on the n-cm M. Lef A C M be an m-cm which is itnvariant
under G and such that x € A and A ¢ F = F(G, M). Then G satisfies the hypotheses
of the CDT at x on A.

Proof. From the CDT it follows that if H is the principal isotropy group of G
on M, then

G

and hence is an (m - k)-cm, where k = dim G/H. Thus

m-k .
H' (A -F;Z,)#, 0

(see [1, XV, Definition 2.2] for the notation), and by the exact cohomology sequence
of A mod F, we see that

dim(FNA,x)>dimy(FNA, x)>m-k-1,

as was to be shown.

LEMMA 2.2. Let X be a space, and let A C X be a closed set such that X4 is
an n-cm with boundary B'. Let B =X NB'. Then X is an n-cm with boundary
A U B, and both A and B are (n - 1)-cms with boundary A N B.

Proof. Since the boundary points of a c¢cm with boundary are topologically dis-
tinguishable from the nonboundary points (for example, by the local cchomology
groups), we see easily that B' = BA(ANB) and hence B is an (n - 1)-cm with
boundary A N B.

Let A' = AdANB), then, since (X94B)dA' 5 (xdA)dB' 5 an n-cm, we see that A
isan (n - 1)-cm, and hence A is an (n - 1)-cm with boundary A N B.

It also follows from the relation (X4B)dA' o (xdA)dB' that X 9B js an n-cm with
boundary A' = Ad(ANB) Also, since A and B are (n - 1)-cms with common
boundary A N B, it follows that A U B is an (n - 1)-cm (see [6]; the proof of Lemma
2.3 in [1, XV] is also easily seen to yield this result). Thus, by [1, XV, Lemma 2.3],
to show that X is an n-cm with boundary A U B we need only show that H%(X) =7, 0
for x € A UB. Since X - (A N B) is an n-cm with boundary (A U B) - (A n B), it is
sufficient to do this for x € A N B. But if we let X494 =X U X',and X N X' = A, then
in the Mayer-Vietoris sequence

c— HY(X UX') — HL(X) @ Ho(X') — Ho(A) — -

we have H%;(X UX')=1x0 and HiC(A) =1,x 0 since x is in the boundary of both of the
cms X% and A. Thus H (X) =1, 0, as was to be shown.
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LEMMA 2.3. Let X, and X, be n-cms with boundaries B, and B,, respectively,
with X, C X, and B, C B,. Then X, is an open subset of X,.

Proof. Since X, and X, are locally compact, it is easy to see that we may as-
sume X, to be closed in X,. Let x € X, - B,, and let U be a connected open neigh-
borhood of x in X,, with U N B, = f. Then UN X, is an n-cm that is a closed sub-

d(UNBsB
set of the connected n-cm U (respectively, U (UNBy) if x € B,). Since
HE(U n X;) # 0, it follows that U N X, cannot be a proper subset of U [1, I, Theo-
n
rem 4.3] (respectively of Ud(U Bz), whence x ¢ B,). Thus, B, N X, = B,, and
X, - B, isopen in X,. Since B, N X, = B,, we may regard XfBl as a subset of

dB B
X5 2, and as above we see that X‘liBl is open in X(Zi 2. It follows that X, is open in
X,, as claimed.

3. PROOF OF THE MAIN THEOREM
All statements in this section are to be interpreted as holding locally at x, where
X is a given point at which the hypotheses of Theorem 1.1 are satisfied.

We shall prove Theorem 1.1 by induction on m. For m =1 it is precisely the
CDT, and hence is true. For the time being, we shall restrict our attention to the
case m = 2.

Then, by Lemma 2.1 applied to A = F(G,, M), we must have one of the following
possibilities:

Case (a): F(G,;, M) D F(G,, M).
Case (b): dim F(G,, F(G,, M)) =(n-k, - 1) -k, -1=n- (k, + k,) - 2.
First note that if the condition of case (b) holds, then

dim F(G,, F(G,, M)) < dim F(G,, M),

and hence F(G,, M) ¢ F(G,, M). Thus, if the condition of case (b) holds, then it must
also hold with G; and G, in the opposite order. Therefore, in case (a),

F(G,, M) = F(G,, M).

Assuming for the moment that the condition of case (a) holds, we see that the action
of G, on M/G, leaves the boundary F(G,, M) of the (n - k,)-cm M/G, pointwise
stationary. Thus, in fact, G, must leave all of M/G, stationary (see [1, XV, Lemma
2.1]). It follows that M/G, ~ M/G = M/G, (naturally), and hence that

G, /(G, N H) =~ G/H = G,/(G, N H) (naturally).

But this is an integral cohomology sphere, by the CDT, contrary to the assumption
that condition (A) is satisfied. Thus case (a) does not arise.
We now consider case (b). Here

.dimFﬁé-’—M-)= M-k -1) -k =n-(,+k)-1,
2

by Lemma 2.1 and the CDT. Also, F(G,, M)/G, ¢ F(G,, M/G,). Thus we see that
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dim F(G,, F(G,, M)) =n-(k; +k,;) -2<n-(k, +k,) -1

Il

dim (F(G;, M)/G,) < dim F(G,, M/G,).

But this implies that the action of G, on M/G, satisfies the hypotheses of the CDT.
Thus

dF(Gz,M)) N dF(G,;,F(G,,M))

F(Gy, (M/G)) F(Gi1, M/Gp)

isan (n - (k, + k;) - 1)-cm, and hence F(G,, M/G,) is an (n - (k, + k,) - 1)-cm with
boundary F(G, X G,, M). Also, G, satisfies the hypotheses of the CDT on F(G,, M),

so that F(G,, M)/G, is an (n - (k, + k;) - 1)-cm with boundary F(G, X G,, M). Thus,
since

F(G,;, M)/G, C F(G,, M/G,),

it follows from Lemma 2.3 that these sets are identical (near x).

Moreover, comparing the actions of G, on F(G,, M) and on M, and using the
CDT, we see that G, is effective on F(G,, M), since it is effective on M.

LEMMA 3.1. With the hypotheses of Theovem 1.1 (vespectively, and if
ki = kj> 0), it cannot happen that G; and G; (vespectively, G? and G_?) are iso-
miorphic and that G; X Gj (respectively, G?L X G?) possesses the diagonal subgroup
as an isotvopy group.

Proof. In the first case, any point with such an isotropy group would clearly
represent a point of F(G;j, M/G;) that is not in F(G;, M)/Gj, contrary to the equality
(proved above) of these sets. If k;> 0 and kj > 0, then the group G(i) X Gg) still

satisfies the hypotheses of Theorem 1.1. Thus the case in parentheses follows from
the first case.

We now proceed with the proof of Theorem 1.1 in full generality. If I is a subset
of {1,2, -, m},weput I' = {1, 2, -, m} - I,

G;=Ilg, xn=2Xk.
i€l iel

LEMMA 3.2. If 1+ P, then the action of Gy on F(Gypi, M) and the action of Gy on
M/ Gy both satisfy the hypotheses of Theovem 1.1.

Proof. The lemma makes sense, because of the inductive assumption. If I' = 2,
the lemma is trivial. By an easy induction, it suffices to treat the case
I= {1, 2, >, m - 1}. Then the treatment of the case m = 2 of Theorem 1.1 shows
that each Gj is effective on F(Gm, M) for i € I. It also shows that the hypotheses of
Theorem 1.1 are satisfied, with the possible exception of condition (A). But if
G; = Gj (respectively, k; = k; > 0 and G? = Gg’) and Gj X Gj (respectively, G(i) X G_?)
has the diagonal subgroup as a principal isotropy group on (M/Gp,) dF(Gm’M), then
it also does on F(Gy,, M) (for otherwise G; could not be effective on F(Gp,, M)).
But then Gj; X GJ- (respectively, G? X G?) has the diagonal subgroup as an isotropy
group (not necessarily principal) on M, contrary to Lemma 3.1.

COROLLARY 3.3. F(Gy, M/Gp) = F(G;, M)/Gp.
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Proof. Clearly F(G;, M/Gpi) D F(Gy, M)/Gy. Also, the corollary is trivial if I
or I' is empty. Thus suppose I+ . Then, by the inductive assumption, M/ Gy is
an (n - k(I'))-cm with boundary

U r;, my/cy.
J<1

Hence, by Lemma 3.2 and the inductive assumption, we see that F(Gy, M/GII) is an
(n - k - m(I))-cm with boundary F(G;, B).

But also F(Gj, M)/G: is an (n - k - m(I))-cm with boundary

U = G, F(G,, M))/G,, © F(G, B).
J< I!

Thus the corollary follows from Lemma 2.3.

Let m;: G — Gj be the natural projection. Conclusion (1) of Theorem 1.1 follows
from the CDT and the following lemma.

LEMMA 3.4. If K= Gy for some point y near x, then K N G; = = m;(K), so that
K = I(K N G)).

Proof. We may assume that H C K. First suppose that y € F(Gj, M) for some

j, and let Gj= II G;. Then, by Lemma 3.2 applied to the action of Gj on F(G;, M)
i#j
and by the inductive assumption, we see that Lemma 3.4 holds for (G ) But
= (Gjy X Gj, and the result follows.

On the other hand, suppose that y £ F(GJ, M) for any j. Then by Corollary 3.3,
G; (y) ¢ F(G;, M/G;). But the action of G; satisfies the hypotheses of the CDT on M
F(Gi, M), and on M/Gj, by Lemma 3.2. Thus G; N K = G; N H, since this is a prin-
cipal isotropy group for the action of G; on M. Also the 1sotropy group of Gj at
the point Gi(y) € M/Gi is =;(K). But, by the CDT, G; has exactly two types of orbits
on M/ GiD F(Gi, M), and it follows that this isotropy group must be principal and
that it occurs as the principal isotropy group for G; on F(Gi, M) and hence on M.
Thus 74K) = GyN H= G;N K (since K D H). This completes the proof of the lemma.

We shall now prove conclusion (3) of 1.1. Note that
F(Gpr, M)
;‘ ~ ———Ial——— (naturally)

For p+1+ {1, ---, m}, the conclusion follows easily by the inductive assumption. If
I1= g, then

M; = F(G, M) = F(Gy, F(G, %X G, M),

and the conclusion follows from Lemma 3.2 and the inductive assumption. If
I= {1, -« m}, then

* M M/ Gy
G

M; = * G XX G (naturally) ,

and by Lemma 3.2 and the inductive assumption we see that
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(/G ) O (G M) aF(Gy, M)*

)
Gy, XX G, ~ \G

is an (n - k)-cm with boundary

m m dF (G, ,M)*
B = U Fa, am/a) ™M) [U F(G,, M/Gl)*] '
i=2 2

*
] dF(G;,M)

- [l_ZJF(Gi, M) *

(the last equality holds by Corollary 3.3 applied to G; X Gj). Thus by Lemma 2.2,
M/G is an (n - k)-cm with boundary

F(G,, M*u Ur;, m* = U Fe, m* = Um?
2 1

(J running over the proper subsets of {1, see, m}), as was to be shown.

It remains to prove conclusion (4) of 1.1. Let G = Gy X Gyt be any splitting of G
chosen once and for all. Then, by the inductive assumption, there exist cross-
sections (locally at x)

M MG oML,
G Gpn Gy

that satisfy the requirements of (4) for the actions of Gj1 on M/G y and of Gy on M,
respectively.

Let y be in the image of f = f, o f,. We know, by (1), that there is a g, € G and
an Ic {1, ---, m} such that

-1
Hi=¢g;, G,g20 =G _ .
I 0 y 50 gol(y)

Let K = Hy and z = g;(y). We shall identify G(y) = G(z) with G/K by the natural

map gK — g(z). Thus y corresponds to the coset g,K. We must show that
y € F(K, M), and hence that

g, K € F(K, G/K) = N(K)/K.

We let Ky = (KN Gy) and Kji= (K NGy, so that K= Kj; X Kj: by (1). By our
identification we have the situation

G Gy G f, Gy Gy f, Gy G

- X = T e X = = X
G GJ GJ| P2 GJ KJI Pi KJ KJ‘I

G
K’

where f,f,(G/G) is the point g,K € G/K, and where p, and p, are the natural projec-
tions. Since the map f, satisfies condition (4), we see that
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GJ N(K j1)
P1 (gO K) = fZ(G/G) X K ’
J J!
Gy N(Kjr)
and hence g K € %5 X x5 Also, since the map f, satisfies (4),
N(Kp) G

Thus

N(K N(K7:
¢ K ¢ (J)>< (J)zN(K)’
0 K3 K1 K

as was to be shown.

4. APPLICATIONS

As in [1, XV, 1.6] the local theorem above yields immediately a corresponding
global theorem:

THEOREM 4.1. Let G = G) X Gz X**X G, act on the separable n-cm M of
finite covering dimension, and assume that conditz’on (A) is satisfied. Assume that
H*(M; Z) =~ H*(S"; Z) and that dim F(G;, M) =n - k; - 1 for all i (notation of
Theovem 1.1). Then the conclusions of Theorem 1 1 hold globally., Moveover, MI
is acyclic for 1+ @, and H*(F(G, M); Z) = H*(S™-K-m; 7),

This may be proved by applying Theorem 1.1 to the action of G on the open cone
over M. The details, along the lines of the proof of [1, XV, Corollary 1.6], are easy
and will be left to the reader.

Theorem 1.1 is applicable to a situation considered by Montgomery and Mostow
in [5], and it strengthens their results somewhat (mainly by showing that the cross-
section obtained in [5, Section 6] can be taken to be a cross-section for all of the
orbits). We shall state and prove the local analogue. It is clear that the globaliza-
tion technique applies to this case.

THEOREM 4.2. Let T be an m-dimensional toral group acting effectively on a
separable n-cm M of finite covering dimension with dim (F(T, M), X) = n - 2m.
Then there exist civcle subgroups Ty, Tz, **+, Trn of T such that T is the divect
product of the T; and dim (F(T;, M), x) =n - 2 forall i=1, 2, -, m. Thus the hy-
potheses of Theorvem 1.1 hold for the action of T on M (near X).

Proof. All statements below should be interpreted as holding locally at x. We
shall use induction on m. Say that T' is a torus of codimension one in T. Then
n - 2(m - 1) > dim F(T', M) by [3, Lemma 2.1}, and if dim F(T', M) > dim F(T, M),
then dim F(T', M) > n - 2m + 2 by dimensional parity [1, V, Theorem 3.2]. Thus,
for such a torus T', we have dim F(T', M) = n - 2m + 2. Therefore, if j is the
number of subtori T' of codimension one with dim F(T', M) > n - 2m, then Borel’s
formula [1, XIII, Theorem 4.3] reads

2m=n- (n - 2m) = j((n - 2m + 2) - (n - 2m)) = 2j,

and hence j=m = dim T.
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By the inductive assumption, we see that if T'# T" are subtori of the above
type, then by Theorem 1.1 we see that there are exactly m - 1 circle subgroups of
T' (respectively, of T") with fixed point sets of dimension n - 2, and that these sub-
groups span T' (respectively, T"). It follows that there are at most m - 2 of these
circle subgroups contained in T' N T" so that T" must contain such a subgroup »o¢
contained in T'. Thus there are (at least) m circle subgroups T, T, -*-, T,
spanning T and with dim F(T;, M) =n - 2.

Let T* be the dirvect product of the T; (i=1, 2, **-, m), and let ¢: T* — T be
the natural homomorphism (with finite kernel). Then Theorem 1.1 applies to the
induced action of T* on M and, in particular, it implies that T* is effective. Thus
¢ is an isomorphism, and the result follows.
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