FAILURE OF THE KRULL-SCHMIDT THEOREM
FOR INTEGRAL REPRESENTATIONS

Irving Reiner

1. The following notation will be used throughout:
G is a finite group of order g;
K is an algebraic number field;
R is the ring of all algebraic integers in K;
P is a prime ideal in R;
Rp is the P-adic valuation ring in K = {a/B: a, 8 € R, B £ P};
K% is the P-adic completion of K, and R} the ring of P-adic integers in Kp;
R= rI]RP= {a/B: a, B € R, RB + Rg = R}.
Plg

Let RG denote the group ring of G with coefficients from R. By an RG-module
we shall always mean a finitely-generated left RG-module which is R-torsion-free,
and upon which the identity element of G acts as identity operator. Analogous defi-
nitions hold for R pG-modules, KG-modules, and so forth.

THEOREM 1.1 (Krull-Schmidt). In any decomposition of a KG-module M into a
divect sum of indecomposable submodules, the indecomposable summands are
uniquely deteymined by M, up to KG-isomorphism and ovder of occurrence.

The standard proof (see, for example, Curtis and Reiner [2, p. 83]) shows that K
may be replaced by any commutative ring whose ideals satisfy the descending chain
condition.

In the present paper we wish to consider the validity of the Krull-Schmidt theorem
for RG-modules. Let us observe at once that the theorem already fails when
G = {1} if R contains non-principal ideals. Let J;, ---, J,, be ideals of R, and let
+ denote the external direct sum operation. As is well known,
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n?
where n - 1 R’s occur on the right-hand side.

Returning to an arbitrary finite group G, we might reasonably hope that the non-
principal ideals of R are the only source of counterexamples. To avoid the difficul-
ties arising from them, we may work with RG-modules instead of RG-modules,
where R is the principal ideal ring defined above.

To each RG-module M there corresponds an RG-module, denoted by RM and
defined by

RM = R®gz M.
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Clearly, M = N implies RM = BN, but not conversely. On the other hand, RM = RN
if and only if for each P dividing g, Rp M = Rp N.

The usefulness of R stems from the following result.

THEOREM 1.2. An RG-module M is indecomposable if and only if the covre-
sponding RG-module RM is indecomposable.

Proof. If M is decomposable, then obviously RM is decomposable. Con-
versely, let X be an RG-direct summand of RM and define N=MnN X. Itis
easily verified that N is an RG-submodule of M for which RN = X, and such that
M/N is R-torsion-free.

For each P dividing g, R is a subring of Rp. Since X is a direct summand of
RM it follows at once that for each such P, Rp N is an Rp G-direct summand of
RpM This implies (see deLeeuw [3], Reiner [6]) that N is an RG-direct summand
of M, and the theorem is proved.

The preceding result is quite useful in the determination of indecomposable RG-
modules. Furthermore, if Z)@ M; is a direct sum of indecomposable RG-modules,

then E@ RM; is a direct sum of indecomposable RG-modules. If one could establish
a Krull-Schmidt theorem for RG-—modules then the {M } would be unique up to
order of occurrence and RG- isomorphism.

Our principal result, however, is that the Krull-Schmidt theorem does not hold
either for RG- or for RG-modules, whenever G contains a normal subgroup of
prime index and G is not a p-group. Indeed, in this case not even the R-ranks of
the {M } are uniquely determined.

To conclude this introduction, we recall that the Krull-Schmidt theorem holds
for R} G-modules (see Borevich and Fadeev [1], Reiner [7], Swan [8]). It also holds
for RpG-modules (see Heller [4]) whenever K is a splitting field for G, that is,
whenever KG splits into a direct sum of full matrix algebras over K. Still unsettled
is the question as to whether this latter hypothesis may be omitted.

2. In this section we shall show how to construct counterexamples to the Krull-
Schmidt theorem for RG-modules, whenever there exist RG-modules with certain
properties. We shall write Ext 1nstead of ExtRG, for convenience. If M and N are
RG-modules, then to each F € Ext (N, M) there corresponds an RG-module which is
an extension of N by M with extension class F. We denote this module by

(M, N; F) or by
( N)
;

the latter notation is used to remind us of the matrix representation afforded by this
module.

To each RG-module M there corresponds a KG-module denoted by KM, and de-
fined as KQg M.

LEMMA 2.1. Let M and N be indecomposable RG-modules such that
Homy (KM, KN) = 0 and  Homyg (KN, KM) =

and let F € Ext(N, M). Then the RG-module (M, N; F) is decomposable if and only
if F=0.
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Proof. See Heller and Reiner [5, II].

Suppose now that A, B, and C are RG-modules satisfying the following condi-
tions:

(I) The modules KA, KB, and KC are irreducible, and no two of them are iso-
morphic.

(II) There exist non-zero elements F € Ext(B, A) and F' € Ext(C, A), such that
the orders of F and F' are relatively prime integers.

THEOREM 2.2. Let A, B, and C be RG-modules satisfying (I) and (O0). Then
the modules A, (A, B; F), (A, C; F') and (A, B+ C; F + ¥') are indecomposable,
and

AY(A,B+C; F+F') = (A, B; F)+ (A, C; F').

Proof. Indecomposability of the above modules follows readily from the pre-
ceding lemma. Now let m be the order of F, let n be the order of F', and choose
an integer k such that kn = 1 (mod m). In matrix notation, the module
A+ (A, B+ C; F+ F') may be written as

_:":_i __________ .
A F !
1
M = H B 0 |.
| _
Let
I knl i
- = - ——— - —
|1
Xl= i I ’
1
i I |

the symbols I denoting identity matrices of appropriate sizes. Then

Al0_knF knF']
iA F F
M, = X,MX;! = E B 0 .
| c |

The entry knF' lies in Ext(C, A), and it lies in the zero class. Thus if we set

P Y ey p— W——
-

then for a suitable choice of T we obtain the relation
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1
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M, =X,MX;!=]| !
:

1

L ]

On the other hand, knF = F in Ext(B, A). Set

- -
X, = - .
I
b I-
Then
" Al0 F o0 |
..._J' __________
'A 0 F'
M, = X, M,X;! = i B o |
1
L C

Since M; = (A, B; F) + (A, C; F'), the theorem is established.

Thus, once we know the existence of RG-modules A, B, and C satisfying (I) and
(1), the Krull-Schmidt theorem cannot possibly hold for RG-modules. Indeed, the
R-ranks of the indecomposable summands in a direct sum are not uniquely deter-
mined by that direct sum.

3. We shall now show the existence of RG-modules for which (I) and (II) hold,
provided that the group G satisfies certain hypotheses. One preliminary result will
be needed. 4

LEMMA 3.1. Let p be a prime divisor of the ovder of G, and let A be the RG-
module R on which G acts trivially, Then theve exists an RG-module B such that

(i) KB is irreducible, KB Z KA, and
(ii) Ext (B, A) contains a non-zevo element of order p.
Proof. Suppose the result false, and let P be a prime ideal of R which divides
p. Then for each RG-module satisfying (i), the p-primary component of Ext (B, A)
is zero, and thus
Rp-* Ext(B, A) = 0.
This in turn implies that

Let M be the quotient module Rp G/RpA. Then there is an exact sequence of
Rp G-modules

(3.2) 0 — RpA - RpG— M — 0.
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We shall show that Ext (M, Rp A) # 0. For otherwise, the above sequence splits. If
we write R = R/P, M = M/PM, and so on, then Rp A = R as RG-modules, where G
acts trivially on R. If the sequence (3.2) splits, then so does

(3.3) 0 —-R—-RG— M- 0.

Let H be a p-Sylow subgroup of G; each RG-module can be viewed as an RH-
module, and then (3.3) also splits as an exact sequence of RH-modules. On the
other hand, RH is an indecomposable RH-module (see Curtis and Reiner [2, Section
54, Exercise 1], for example), and RG is (as RH-module) a direct sum of [G:H]
copies of RH. We have thus obtained a contradiction to the Krull-Schmidt theorem
for RH-modules. Therefore we have proved that Ext (M, Rp A) # 0.

Next we observe that the irreducible module KA cannot occur as a composition
factor of KM, since KA occurs with multiplicity 1 as a composition factor of the
left regular module KG. Suppose for the moment that KM is itself irreducible. We
may write M = Rp M, for some RG-module M,, and then

Ext (M, Rp A) = Rp Ext (M,, A).

This implies that Ext(M,, A) has a non-zero p-primary component and so must
contain a non-zero element of order p. Choosing B = M,, we obtain the desired
module.

On the other hand, if KM is reducible, we can find an Rp-pure Rp G-submodule
N of M of lower Rp-rank, and then there exists an exact sequence

0O N—-M-L -0,
say. From this we get an exact sequence
Ext(L, RpA) — Ext(M, Rp A) — Ext(N, Rp A),

and thus at least one of Ext (L, Rp A) and Ext(N, RpA) is non-zero. Continuing in

this manner, after a finite number of steps we arrive at an RpG-module V such that
KV is irreducible and is a composition factor of KM, and such that Ext(V, Rp A) # 0.
The rest of the argument is as in the preceding paragraph. This completes the proof.

We are now ready to prove

THEOREM 3.4. Suppose that the ovder of G has at least two distinct prime
divisors, and that G contains a normal subgroup of prime index. Then therve exist
RG-modules A, B, and C satisfying conditions (I) and (I); in fact, A may be chosen
to be the RG-module R on which G acts trivially.

Proof. Let G, be a normal subgroup of G, of prime index p, and let H be a
cyclic group of order p. Then there is a homomorphism of G onto H with kernel
G,. Let g € G map onto g € H under this homomorphism. Each RH-module M can
be turned into an RG-module, again denoted by M, by defining

g-m = gm (g€G, meM).
Indecomposable RH-modules become indecomposable RG-modules in this process,

and irreducibility (as KH- or KG-modules) is also preserved. Furthermore, for a
pair of RH-modules M and N,
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where on the left-hand side M and N are viewed as RG-modules.

Choose A to be the RG-module on which G acts trivially. Then A is also an
RH-module on which H acts trivially. By the preceding lemma, there exists an
RH-module B satisfying conditions (i) and (ii) of that lemma. On viewing B as an
RG-module, it is clear that KB is irreducible, KB # KA, and Extgg (B, A) contains
a non-zero element of order p.

Now let q be a prime divisor of g distinct from p. By Lemma 3.1, there exists
an RG-module C such that KC is irreducible, KC # KA, and Ext(C, A) contains a
non-zero element of order q. Surely KC and KB are not KG-isomorphic. For if
they were, then C could be viewed as an RH-module, and then the order of
Ext (C, A) would be a power of p. This completes the proof of the theorem.

For any solvable group G which is not a p-group, the hypotheses of the preced-
ing theorem hold automatically, and thus there exist RG-modules satisfying (I) and
(I). We may conjecture that such modules exist for each finite group other than a
p-group, but it is not clear how to prove their existence when G is a simple group,
for example.

4, Since the Krull-Schmidt theorem fails for ﬁG-modules, as well as for RG-
modules, it is desirable to know under what conditions two direct sums of indecom-
posable RG-modules are isomorphic. This can be decided in a fairly trivial man-
ner.

We have already remarked that if M and N are a pair of ﬁG—modules, then
M = N if and only if Rp M =« Rp N for each prime ideal P dividing g. If M is an
indecomposable ﬁG-module, it may very well happen that Rp M is decomposable as
Rp G-module.

For convenience of notation, let b[M] denote the direct sum of b copies of the
module M, where b is a positive integer. Now let M, *-+, My, N1, *--, N5 be inde-
composable RG-modules. We would like to know when there exists an 1somorphlsm

(4.1) a) [Ml] Foeee ¥ ar[Mr] = bl[Nl] F oo 3 bs [Ns]’

where the {a;} and {b;} are positive integers.

For each P dividing g, let Vf', V]Z'D, -+ denote a full set of non-isomorphic in-
decomposable Rp G-modules. Then we may write each RpM; as a finite direct
sum

RpM; = mH[vP1+ mE v+ (<i<y),
where only finitely many non-zero coefficients occur. Likewise, let
RpN; = n [VE]13 n[VE] % o .
Obviously, if
r s
(4.2) 2ia = 22 by n1J for each P and each j,
i=1 i=1

then (4.1) is valid.
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Conversely, if the Krull-Schmidt theorem holds for Rp G-modules for each P
dividing g, then (4.1) implies (4.2). In particular, (4.1) and (4.2) are equivalent
statements whenever K is a splitting field for G.

In the special case where the set {VjP} is finite for each P, the above consider-
ations are especially useful in determining all relations of the form (4.1).
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