TRANSFORMATION GROUPS WITH ORBITS
OF UNIFORM DIMENSION

Glen E. Bredon

1. INTRODUCTION

The purpose of this paper is to prove a local analogue of a result of Borel and
Conner. The present theorem states that if G is a compact Lie group acting on an
n-dimensional cohomology manifold (n-cm) M over the integers in such a way that
all the non-fixed orbits are of the same dimension k, then either G is of rank one
and all isotropy subgroups are finite, or the dimension of the fixed set F(G, M) is
n - k - 1. In the latter case we also know from Chapter XV of [1] that F(G, M) is an
(n - k - 1)-cm, the orbit space M/G is an (n - k)-cm with boundary F(G, M), there
exist local cross-sections for the orbits of G near F(G, M), and the non-fixed orbits
are k-spheres (see [2]).

The importance of this result lies in the fact that the set of those points x in B,
the singular set, for which the hypotheses of the theorem are true for the action of
Gx on a slice at x, is a dense open subset of B. The proof of the theorem is quite
different from that of Borel’s and Conner’s result, the difficulty lying in the fact
that, in order to obtain a result which is hereditary with respect to taking slices, we
cannot make any hypotheses of simple connectivity, whereas the proofs of Borel and
Conner make strong use of such a hypothesis.

We use the notation of [1], throughout. B denotes the set of points on singular
orbits, that is, orbits of less than the highest dimension. E denotes the set of points
on exceptional orbits of highest dimension, so that M - (B UE) is the set of points on
principal orbits. Unless otherwise specified, H denotes a principal isotropy group,
T, is a maximal torus of G, and T c T, a maximal torus of H. N(K) and Z(K) de-
note, respectively, the normalizer and the centralizer of K in G, and K° denotes
the identity component of K.

We assume that the reader is familiar with the theory of transformation groups,
or more specifically with the material in Chapters I, V, VIII, IX, and XIII of [1]. It
is also desirable, but not essential, that the reader be familiar with the author’s
Chapter XV of [1], particularly because it is the main result of that chapter that
gives the present work its force. One of the main tools used in the present paper
is the remarkable formula of Borel [1, XIII] relating the dimension of the fixed point
set of a torus acting on an n-cm to the dimensions of the fixed point sets of the sub-
tori of codimension one.

2. THE MAIN THEOREM

Our main result is the following:

THEOREM. Let G be a compact Lie group acting effectively on an n-cm M
over Z such that every point of F(G, M) has a countable system of neighborhoods
in M. Assume that ¥(G, M) # P, and that for x € M - F(G, M) we have dim G(x) = k,
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wheve k is some fixed positive integer. Then either rank (G) = 1 and Gy is finite
for x e M - F(G, M), or dimz, F(G, M) =n - k - 1.

Remark. Note that in the second case of the conclusion of the theorem, our
transformation group satisfies the hypotheses of Theorem 1.4 of Chapter XV of [1],
provided M is separable and of finite covering dimension, which yields some strong
restrictions on the transformation group. In this connection also see [2].

We now proceed with the proof of the theorem. Note that it suffices to prove the
theorem for G connected, since under the assumptions, F(G, M) = F(G°, M). Let H
denote a principal isotropy group of G. By hypothesis, Gg is conjugate to H° for
any x € M - F(G, M). Note that if rank (H) < rank (G) - 2, then

F(S, M) = F(T,, M) = F(G, M)
for any torus S of codimension one in T,, where T, is a maximal torus of G. This
is impossible by [1, XIII, 4.3]. Thus rank (H) > rank (G) - 1.

We wish to reduce the proof of the theorem to the case in which rank (H) = 1. To
do this, let T be a maximal torus of H, and let S C T be a torus of codimension one
in T such that dimgz F(S, M) > dimy F(T, M). S exists by [1, XIII, 4.3].

We claim that it suffices to consider the action of ZéS) on F(S, M). First we

must show that this action satisfies the hypotheses of the theorem. Let x € M be on
a principal orbit with G = H, and let K be a slice at x. Then G(K) ~ KX G/H in a
natural way. F(S, G(K)) = KX F(S, G/H) is an open subset of F(S, M). But, as

shown in [2, Section 2], F(S, G/H) consists of a finite collection of orbits of Z(S) on

Z(S)gH
H

G/H, and each of these orbits is of the form , where g € N(T,) and g~'Sg c T.

Since K X F(S, G/H) is open in F(S, M), each of these orbits is principal for the ac-
tion of Z(S) on F(S, M). Also

. FS, M) _ - dim. M _ |
dlmz—z—(sr—dlmZK—dlmZG—n-k.

Now, given x € F(S, M) - F(G, M) with G2 = H?, we see by [2] that every orbit of
Z(S) on F(S, G(x)) ~ F(S, G/Gx) is of the form

Z(S) gG, )
—G. ’ & € N(Typ), g~ SgcT.

The isotropy group of this orbit is g-1 Z(S)g N Gx, which is of the same dimension as
g-1 Z(S)g NH, the isotropy group of a principal orbit of Z(S) on F(S, M). Thus we
have seen that the action of Z(S), when made effective, satisfies the hypotheses of
the theorem, and also F(Z(S), F(S, M)) = F(G, M) by the choice of S. Also, a prin-
cipal isotropy group of Z(S) is Z(S)N H, which is effectively of rank at most one,
since S acts trivially on F(S, M) and rank S = rank (Z(S) NH) - 1 by definition.

But also, (Z(S)N H)° D T does not act trivially on F(S, M), since

" dim, F(S, M) > dim,, F(T, M).

Thus the principal isotropy group of the action of Z(S) on F(S, M) is effectively of
rank one.

Moreover, if the theorem is true for the action of Z(S), then
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F(S, M)

——Z—@-—-1=n—k—1,

dim, F(G, M) = dim, F(Z(S), F(S, M)) = dim,

as was to be shown. This completes the reduction to the case in which rank (H) = 1.

Before proceeding with the proof of the theorem, we shall establish the following
lemma. See [1, XV, 1.1] for the notation dimj, (X, x).

LEMMA. Let G be a compact Lie group acting on a locally compact space M.
Let K be a finite group in G. Let x € F(K, M) be such that for each y € F(K, M)
sufficiently close to G(x) we have Gy ~ Gx. Then

dim; ((F(K, M)*, x*) = dim; (F(K, M), x) - dim N(g)(lr{W)Gx

Jor any coefficient domain L.

Pyoof. Let S be a slice at x so small that Gy ~ Gx for each y € G(S)n F(K, M).
Note that F(K, S) = F(Gx, S), since Gy = Gx for y € F(K, S). Say y =g(s), s €S and
y € F(K, M). Then Gy ~ Gx and hence Gs ~ Gx. But Gs C Gx, and hence
Gg = G D K. Thus s € F(X, S). If y = g'(s") also, then g~'g'(s') = s, and hence
g-l g € G, = Ggi. Thus s = s', and we obtain a well-defined projection

F(K, G(S)) — F(K, S).

Note also that if y = g(s) is as above, then K C Gy = gGs gl = gGxg~l= Gg(x). It
follows that we have in a natural way F(K, G(S)) = F(K, S) X F(K, G(x)), and also that
F(K, G(S))* ~ F(K, S).

Since at most a finite number of non-conjugate subgroups of Gx are isomorphic
to K (see [1, VII, 3.3]), we can find a finite number Kj, K3, ---, Ky, of conjugates of
K in G, K; é Gx, such that if K' ~K in G and K' C G, then K' K;j in Gx for

some i. Let g; € G be such that gil Kg; = K;. Now say that g(x) € F(K G(x)). Then
K C Gg(x) = 8Gx & -1, that is, g~ Kgc Gy, Thus for some h € Gy, h- g-lth K;

for some i. Then glh g‘lthg = K, so that ghgi! € N(K); that is, g € N(K)g;G
Thus

F(K, G(x) = UNK)g;x).
This implies that N(K) F(K, S) is open in F(K, G(S)), and also that

N(K) F(K, S) ~ F(K, §) x N—(Ibgﬁ—)(z i

The lemma follows immediately.

Resuming the proof of the theorem, we first take up the case in which
rank (G) = rank (H) =1 and hence G = SO(3) and H = SO(2) (since G/H must be
orientable). Let Z, ~ K c H. Then, since F(K, M) touches principal orbits, we
calculate

dimz2 F(K, M) = dimz2 M* + dim F(K, G/H) =n - 2.

Let Z,® Z, ~ J C G. Then, since the subgroups of J are conjugate to K, we obtain
from Borel’s formula ([1, XIII, 4.3 ])
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n - dimz, F(J, M) = 3(n - 2 -dimgz, F(J, M)),

which yields dimz, F(J, M) = n - 3.

I E + 0, then dimz, E* > dimz, (F(J, M))* = n - 3, by the lemma. But then
dimy E>n -3+ 2=n- 1, contrary to [1, IX, 5.4]. Thus F(J, M) = F(G, M), and
dimz2 F(G, M) =n-3=n-k-1 (from which the same fact for coefficients in Z
follows).

We shall now take up the case in which rank (G) = 2, rank (H) = 1. Here
F(G, M) = F(T,, M). Let t be the number of conjugates of T in G which lie in T,.
The possible situations are listed in Table 1, which can easily be verified by con-
sulting the infinitesimal diagram of G. Locally isomorphic groups are not dis-
tinguished. (The following argument is similar to one used in [3].)

Table 1
G T t
1
D, XA, regular 5
A XA singular 1
X
! ' regular 2
singular 3
A, 3
regular 6
singular 2
B
2 regular 4
singular 3
G
2 regular 6

Note that if T'c T, is a circle group such that dimy F(T', M) > dim, F(T,, M),
then by the hypotheses of the theorem, T' is conjugate to a subgroup of H° and hence
conjugate to T. Letting ry= dimy F(Ty, M) and r = dimy F(T, M), we obtain from
Borel’s formula [1, XIII, 4.3]

1) n-ro=t{r-ry.
But also (see [1, XV, proof of Lemma 2.7])

N(T)

(2) r=n-k+dim T

=n-k+1j,

where j=1 if T is regular and j = 3 if T is singular. Combining (1) and (2), we
obtain
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Kk - tj
t-1°

(3) ro=n-k-s, where s=

(If t =1, then, by (1), n = r, which contradicts the assumption that H is effectively
of rank one.)

By dimensional parity, k + s must be even, and hence s must be odd. Also, by
[1, IX, 2.2, Corollary], s > 1. Each of the cases in Table 1 splits into two parts,
according as dim (H) =1 or 3. The value of s for each case is given in Table 2.

Table 2
G j t k s
3 .
D, X A 1
1o 2 3 1
5 o
3 1 5
o0
A XA, 5 3
1 2 3 L
7 -1
3 3 ; 2
A, 5 7 2
. 5 1
. 7 1/5
5 -1/5
9 3
3 2 . .
B. 9 5/3
1 4 .
13 2
3 3
11 1
G,
1 6 13 7/5
11 1

Only the cases in which s =1 or 3 satisfy our requirements on s, and the cases
in which s = 1 are precisely those for which the theorem is true, since

ro=n-k-s=n-k-1

for these cases. Thus it remains to eliminate the two cases for which s = 3.

We now take up the proof for the two exceptional cases. In the first of these,
G ~ A, X A, locally, and H° = T is some regular circle subgroup. Also, k = 5,
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r=n-4and ro=n- 8. If G were simply connected, then T would pass through a
central element of G, since in this case center (G) consists of exactly the elements
of order two, and hence G would not be effective. Thus G cannot be simply con-
nected, and there must be a subgroup of G isomorphic to SO(3). Let J=Z,® Z, be
in this subgroup. Then by Borel’s formula [1, XII, 4.3]

n - dimz, FJ, M) = 3(dimz2 F(K, M) - dimz , F(J, M),

where Z, ~ KC J. Since dimgz, F(J, M) > dim F(G, M) = n - 8, we see that
dimz2 F(J, M) is either n - 3 or n - 6. Select x € F(J, M) such that Gy ~ Gx for

any y € F(J, M) close to G(x). (For example, take x such that the number of com-
ponents of G, is minimal.) Then, by the lemma,

dimz, (F(J, M))* = dimz_ F(J, M) - dim N(I;(r‘?Gx

near x*. Note that Gg ~ T and that hence J is conjugate to a subgroup of N(T).

Thus J cannot be contained in a factor of G, since T is regular. It follows that
N(J) is finite and hence, near x*,

dim,_(F(J, M))*=dim, F(J, M)=n-3 or n- 6.

But dim M* = n - 5, and hence F(J, M)* c E*UB*, But F(J, M) ¢ F(G, M) = B, and
hence

dimy E>dimy, E*+k>n-6+5=n-1,

contrary to [1, IX, 5.4].

Now consider the second exceptional case. Here G ~ B, locally, and hence
G =~ SO(5) or G~Sp(2). H°=T is singular,and r=n -6, r,=n - 12, k=9. We
use the following easily verified fact about B,: there exist two conjugacy classes of
singular circle groups in B,, representatives of which can be viewed in SO(5), re-
spectively, as a circle subgroup of SO(3) c SO(5) and as a circle subgroup of
Sp(1) € SO(4) c SO(5). They can also be represented, respectively, in SO(5) by the
matrices

cosd sin 8 0 0 O cos 0 sin &8 0 0 0
-sinf cos9® 0 0 O -sin 8 cos @ 0 0 0
0 0 1 00 and 0 0 cos 8 sinf6 0O
0 0 010 ) 0 -sin@ cos 8 0
0 0 001 0 0 0 0 1

In case T is of the first type, G ~ SO(5), since if G ~ Sp(2), then H° = T contains the
center of G. Let Z, ~ J C T, that is, let the non-trivial element of J be the matrix

COOOmMm
QOO =O
OCOROO
o= OO0
= o000
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| , N
We see that dim, F(J, M) = dim,  M/G + dim gy »

dimz2 FJ,M=n-k+3=n-6. Let Z,® Z, =~ Kc SO(3) c G. By Borel’s

formula,

by the lemma. Thus

n - dimy F(K, M) = 3(n - 6- dimy  F(K, M),

so that dimZz F(K, M) =n - 9. The lemma may be applied near some point

x € F(K, M) - F(G, M), and since dim N(K) = 1 and dim (N(K)N H) = dim (N(K)N T) = 0,
we obtain

dimzz(F(K,M))*ﬂ:n-9—1=n—k-1

near x*. Thus, near x*, (F(K, M))* c E*, and hence

dimz  E> dimz, E¥+k>n-k-1+k=n-1,

contrary to [1, IX, 5.4].

If T is of the second type, then for either case G =~ SO(5) or G =~ Sp(2),
Tc Qc G with Q =~ Sp(1). Let Z, ~ L ¢ T, so that L is the center of the group
QDO T and may be represented in SO(5) by the matrix

-1 0 0 0 O
0o -1 0 0 O
0 o -1 0 O
0 0 0 -1 o0
0 0 0 0o 1

By the lemma, we obtain

dimz2 F(L, M) = dimyz, M* + dim N(E(ﬁ)H= n-k+5=n-4.

Let Z,~Jc T. As with L, we compute
dimzzF(J, M)=n-k+3=n-6.
Note also that F(J, M) = F(J/L, F(L, M)). Let

Zz@ ZzzKC%zSO(3),

and let K' be the inverse image of K in Q. Then F(K', M) = F(K, F(L, M)); thus,
by Borel’s formula,

n-4- dimZ2 FK',M) = 3n - 6 - dimZz F(K', M),

and hence dimz2 F(K', M) = n - 7. Applying the lemma to some point
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x € FK', M) - F(G, M) with G, D H, we see that near x*

dimzz(F(K',M))*=n-7—3,=n—10=n—k-—1

?

since dim N(K') = 3 and dim (N(K)n Gy) = dim (N(K)NT) = 0.
Thus, near x*, (F(K', M))* c E*, and hence

dimzzEZdimzzE*’Fan—k—1+k=n—1,

contrary to [1, IX, 5.4]. This completes the proof of our theorem.

3. APPLICATIONS

Our first corollary is an application of the theorem to the action of Gy ona
slice at x. The additional assumptions on M allow us to apply the results of {1, XV].

COROLLARY 1. Let G be a compact Lie group acting on a separable n-cmyz M
of finite covering dimension. Say that x € B is such that Gy ~ Gx for all y € B suf-
Siciently close to x. As usual, let Hc Gy be a principal isotvopy grvoup, and let
k = dim G/H. Then one of the following situations must occur:

(1) H® is a normal subgroup of Gy, Gx/H® is of rank one, and hence dim G(x)
is k-1 or k - 3. ’

(2) M/G is an (n - k)-cmy with boundary B/G near x*, theve exists a local
cvoss-section at x forthe action of G, and G,/H is a sphere.

Proof. Let S be a slice at x. Then, by hypothesis, BN § = F(Gx, S) = F(G2, §) if
S is sufficiently small. Hence the action of Gx on S satisfies the hypotheses of the
theorem. The first case of the conclusion of the theorem implies conclusion (1) of
Corollary 1. The second case of the conclusion of the theorem implies that the hy-
potheses of [1, XV, 1.4] are satisfied, which implies conclusion (2) of Corollary 1 with
the clause “and Gx/H is a sphere” replaced by “and Gx/H is an integral cohomology

SO(3)
I ’

sphere.” By [2], G./H is a sphere unless it is effectively of the form where

I is the icosahedral subgroup of SO(3). But in this latter case, conclusion (1) of
Corollary 1 holds, and this completes the proof of the corollary.

Remark. The importance of Corollary 1 is evident from the fact, easily seen,
that the set of points x € B for which the hypotheses of the corollary hold, is a dense
open subset of B.

It follows from our results that the part of Conner’s paper [4] devoted to the lo-
calization of the main result of that paper is valid for cohomology manifolds over Z
without the homotopy assumption, which is very hard to handle (see the Note Added
in Proof in [4]). In particular, we restate Theorem 3 of [4] as

COROLLARY 2. Let G be ‘a compact Lie group acting on a separable n-cmy M,
and assume that B* consists of isolated points. Then one of the following conclu-
sions holds:

(1)k=n—1;

(2) at each point x € B, theve exists a slice S on which Gy acts effectively as a
group of rank one. '
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Proof. As in the proof of Corollary 1, the action of Gx on a slice S at a point
X € B satisfies the hypotheses of the theorem Thus either (2) holds, or
0 =dimz B* = dimy F(Gx, S) =n - k - 1, from which we conclude that (1) holds.

We can also globalize our theorem and obtain

COROLLARY 3. Say that the compact Lie group G acls effectively on an
n-cmgz M, with ovbits all of the same dimension k. Assume furthevr that
Hi(M, Z) ~ HY(S™, Z). Then either rank (G) = 1 and all isotvopy groups ave finite,
or G is transitlive on M and M = S™,

Proof. We apply the theorem to the action of G on the cone ¢M over M. Thus
if the first part of the conclusion of the corollary is not satisfied, then the theorem
implies that 0 = dimy F(G, ¢cM)=(n+ 1) -k -1=n- k. Thus k = n, and hence G
is transitive. Thus M~ G/Gy is a cohomology sphere, and by [2] it is a sphere un-
less G = SO(3) and Gy is the icosahedral subgroup.

Remark. Note that our assumptions in Corollary 3 are weaker than the assump-
tions in Borel’s and Conner’s theorems [1, XIV, 1.1 and 1. 3] in that we do not as-
sume that 7,(M) = 0, but stronger in that we must assume that M is an n-cm and
that the coefficient ring is the ring of integers.

Remark. It is also possible to use our theorem for extending Yang’s theorem
on singular orbits [5] to the nondifferentiable case. Since the proof parallels that of
Yang closely, we shall not give it here.
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