POWER MAPS IN RINGS

I. N. Herstein

It requires very little technique, and no knowledge of any deep results, to discuss
groups in which, for a fixed integer n > 1, (xy)®= x2y" for all x and y in the group.
One cannot expect the same situation to hold for rings, because certain special cases
involving such an identity provide interesting theorems. For instance, the theorem
of Jacobson which asserts that a ring in which x™ = x for all x is commutative
should be a corollary of any results obtained about a ring in which (xy)? = x2y™.

In this paper we first study rings in which (xy)™ = x™y™"; later we consider rings
in which (x + y)® = x™ + y?. In the last section we assume that both relations hold.
Our theorems then say that while the rings need not be commutative, they are nearly
commutative in the sense that all commutators turn out to be nilpotent. The exist-
ence of nil rings in which x = 0 for all x probably rules out the possibility of any
stronger result.

1. RINGS IN WHICH (xy)™ = xt'y™

In this section we assume that R is a ring in which (xy)™ = x"y™" for all x,y € R
and a fixed integer n > 1. We prove

THEOREM 1. Let R be a ving in which (xy)? = x"y™ for all X,y € R and a
fixed integev n > 1; then every commutator ab - ba in R is nilpotent. Moveover,
the nilpotent elements of R form an ideal.

Pyroof. Using the Jacobson structure theory and settling the theorem first for
division rings, we shall ascend to general rings.

So suppose that R is a division ring. Since (xy)™ = x"y?, cancelling an x on the
left and a y on the right in this identity we see that (yx)n-! = xn-lyn-1 for all
X,y € R. Hence

yRx® = (yx)° = (yx)(yx)2-1 = (yx)(xn-lyn-1) = yxoyn-1,

This leads us to y‘“‘1 x? = xny?-1 for all x, y € R. Let D be the subdivision ring of
R generated by all the x™. D is invariant under all inner automorphisms of R, so
that by the Brauer-Cartan-Hua theorem [2] either D = R or D is contained in Z,
the center of R. If D C Z, then, since x? € D C Z for all x € R, it follows from a
theorem of Kaplansky [5] that R is a commutative field. On the other hand, if

D = R, then since y2-1xn = xnyn-1 for all x, y € R, y?-! commutes with the gen-
erators of D, hence with every element of D, and therefore with every element of R.
Thus y»-! € Z for all y € R; again by Kaplansky’s theorem we can conclude that R
is commutative. Thus a division ring satisfying (xy)* = xnyn must be a field.

Suppose now that R is a primitive ring; if it should happen that R is not a divi-
sion ring, then the 2-by-2 matrices over some division ring would be a homomorphic
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image of a subring of R and would thus inherit the property that (xy)n = xnyn, This
is manifestly false for x = (8 é) and y = ( (1) 8 ) Thus, if R is a primitive ring,
it must be a division ring, whence by the above discussion it is a field.

Since any ring R semi-simple in the sense of Jacobson is a subdirect sum of
primitive rings Ry each of which is a homomorphic image of R, each Ry is a field,
so that R is commutative.

Now let R be any ring in which (xy)® = x®y?. Pick a, b € R, and let S be the
subring of R generated by a and b; let J(S) be the radical of S. Since S is finitely
generated and satisfies the polynomial identity (xy)? - x®y™ = 0, J(S) is a nil ring
by a result of Amitsur [1]. However, S/J(S), being semi-simple, must be commuta-
tive. Thus all commutators in S, and in particular ab - ba, are in J(S), which is a
nil ring. The conclusion that ab - ba is nilpotent then follows.

We still have to prove that the nilpotent elements of R form an ideal. If ak =0

and x € R, then (ax)nk = ank xnk = 0, so that aR is a nil right ideal. Thus at any
rate a belongs to J(R), the radical of R. We must show that if a and b in R are
nilpotent then a + b is also nilpotent. Let T be the subring of R generated by a
and b, and let J(T) be the radical of T. As before, J(T) is a nil ring. We claim
that both a and b are in J(T) for, as before, the right ideals aT, bT of T are nil.
Thus a + b belongs to J(T) and so is nilpotent. We have established that the nil-
potent elements of R form an ideal of R. This completes the proof of the theorem.

An immediate consequence of the theorem, and itself of independent interest, is
the

COROLLARY. If R is as in Theorem 1 and has no nontrivial nil ideals, then R
is commutative.

2. RINGS IN WHICH (x+ y)! = x® + y»
We now turn our attention to the second analog, namely, to rings R in which
(x+yP =x0+y® for all X,y € R and some fixed integer n > 1.

THEOREM 2. Lel R be a ving in which for some fixed integer n > 1,
(x+y)2=x"+ y? for all x,y € R. Then every commutator in R is nilpotent, and
the nilpotent elements of R form an ideal,

Proof. The procedure will be as in the proof of Theorem 1, although each stage
of the procedure requires an argument different from the one used before.

Suppose then that R is a division ring in which (x + y)® = x® + y®, Since R
satisfies a polynomial identity, it is finite-dimensional over its center Z, by a
theorem due to Kaplansky [4]. If, in addition, Z is finite, then R is finite, so that
by Wedderburn’s theorem on finite division rings it is commutative. If Z is infinite
for A € Z, then (x+ Ay)? = x® + AR y®; expanding this, we get

Apl(X, Y) + AZ pZ(Xs Y) + -+ An—l pn(X, Y) =0,
where

p; (%, y) = x0-ly 4 xn-2yx 4 oo 4 xyxP-2 4 yxn-l

Since Z is infinite, we can find A3, -, An_1 in Z such that
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2 n-1
7\1 Al .. ?\1
. . . #0.
2 n-1
! )Ln—l >‘n—1 ‘\n—l

Therefore, p,(%x, y) = 0. Computing xp,(x, y) - p,(X, y)x = 0, we see that x%y = yxn
for all x, y € R. Thus x™ € Z for all x € R, so that by the result of Kaplansky’s
used in the proof of Theorem 1, we can conclude that R is a field. The argument
used involving xp,(%, y) - p,(X, y)x is similar to that used by Forsythe and McCoy
[3] in proving that a ring in which xP = x and px = 0, p a prime, is commutative.

Suppose that R is primitive; as before, if R were not a division ring, the 2-by-2
matrices over some division ring would be a homomorphic image of a subring of R

and so would inherit the identity (x + y)® = x® + y?2; this is false for x = ( g (1)) ,

y= ((1) g) . Thus R is a division ring and therefore a field. From this we can see

that if R is semi-simple, then it is commutative.

Therefore all commutators of an arbitrary ring satisfying (x + y)® = x* + y® be-
long to the radical of this ring. As before, taking the subring generated by two ele-
ments leads us to the fact that commutators are nilpotent. To see that the nilpotent
elements form an ideal, we first note that the sum of two nilpotent elements is nil-
potent; for if x = yf = 0, then

x+ y)nk+[ ) Xnk+( . ynk+[

Suppose that ak = 0, r € R. Let S be the subring of R generated by a and r, and
let J(S) be the radical of S. As before, J(S) is a nil ring; also, S/J(S), being semi-
simple, is commutative and therefore has no nilpotent elements. It follows that

a € J(S) and so both ra and ar are in J(S) also, in consequence of which both ar
and ra are nilpotent. This proves the theorem.

3. RINGS IN WHICH x — x" IS A HOMOMORPHISM

We now suppose that R is a ring in which both (xy® = xX* y® and (x + y)? = x? + yn,
In order to sharpen the previous results and to avoid nil rings in which a® = 0, for all
a, we further assume that the mapping is onto. That is, given x € R, x = y? for some
y € R. This is somewhat restrictive.

LEMMA. If a € R is nilpotent, then it is in the center of R.
Proof. We use induction over the degree of nilpotence of a.

Suppose that a®* = 0. Since a2, a3, --- are of lower nilpotence degrees, they are
in the center of R, by our induction hypothesis. If x € R, let

y=(1+a)x(1l-a+a%®-a%+--)=(1+a)x(1+a)"?
= (x + ax) - (x + ax)a® + ---.
Since a2?, a3, --- are in the center,

y=(0+a)x(1 -a)+ (1+a)a®2-a%+...)x=(1+a)x(1l - a)+ a%x.
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A simple verification, from the unsimplified form of y, shows that
yr=(1+a)x®1-a+a2+..)=(1+a)x?(1l -a)+axn,

On the other hand,

y2 = ((1+a)x(l -a)+a%x)"=(x+ ax - xa - axa + a2x)?

xD + (ax)! - (xa) - (axa)n? + (a2x)n

x0 4 gRxh _ xNgh _ gixNgh, g2ngn

Since n > 1, a®™ € Z by induction, so that the right-hand side of this reduces to x=.
Comparing the two expressions for yo, we see that ax® - x®a - axPa + a%x™ = (.
Thus (1 + a)(ax™ - x™a) = 0, and since a is nilpotent, 1 + a is invertible, whence
ax™ - x™a = 0. Since every u € R is some x™, we conclude that a € Z.

THEOREM 3. If R is a ving in which the mapping x — x1 for a fixed integer
n > 1 is a homomorphism onto, then R is commulative.

Proof. By Theorem 1, all ab - ba are nilpotent, so that by the lemma ab - ba
is in the center of R. Now (ab - ba)a is also nilpotent, so it too belongs to the cen-
ter of R. Thus (ab - ba)ab = b(ab - ba)a = (ab - ba)ba, and this leads to
(ab - ba)2 = 0. Since n> 2, (ab - ba)? = 0. However, the mapping x — xn is a
ring homomorphism by assumption, whence

0= (ab - ba)? = anhn - pngn

for all a, be R. If x, y € R then, since the mapping u — u™ is onto, x = a” and
y = b? for some a, b € R. Thus xy - yx=anbn - bnan = 0. This proves the
theorem.
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