ON MAPS WITH NONNEGATIVE JACOBIAN
Shlomo Sternberg and Richard G. Swan

The purpose of this note is to prove the following theorem.

THEOREM 1. Lef M and N be two oriented n-dimensional differentiable mani-
folds with M compact and N connected. Let £ be a differentiable map of M into N
whose Jacobian J(f) is nonnegative. Then either J(f) = 0, o N is compact, { is onto,
and f has positive degree on each component of M on which J(f) # 0.

Remark. Since the two manifolds are oriented, that is, since we have chosen a
fixed orientation for both, the sign of the Jacobian at any point of M is well defined.
The special case of this theorem where M and N are surfaces is treated in [1].

In the course of the proof of this theorem we shall give a proof in modern termin-
ology, and without the use of triangulations, of some classical results about degrees
of maps. The resulits below can also be stated and proved for relative manifolds
without any serious modification.

We thank Mr. W. Pohl for suggesting this problem to us.

1. ORIENTATION AND DEGREE

Let M be a connected n-manifold (not necessarily differentiable). If x € M and
if Uc M is a cell containing x, then Hy(M, M - x) = H, (U, U - x) by excision, and
H (U, U-x)= Z. A generator of H (M, M - x) is called a local orientation at x. If
X and y are two points contained in the same open n-cell V, there is a canonical
isomorphism ¢x ,y» depending only on V, from H (M, M- x) to H (M, M - y), de-
fined as follows. By excision, the inclusion maps (M, M - V) ¢ (M, M - x) and
(M, M-V)c (M, M - y) induce isomorphisms on the corresponding H,. Taking the
composition of these in the obvious way gives ¢V X,y A manifold M is called orient-

able if we can choose a generator u, for every H o(M, M - x) in a consistent man-
ner; that is, if for any V, x, and y,

(1) qb;’y By =k

LEMMA 1. Let B be a covering of M by open cells. A mnecessary and suffi-
cient condition for M to be orientable is that (1) hold for all V € B .

The necessity of the condition is trivial. As to its sufficiency, it is clear that if
X,y€ V'V, then

@ Py = Py

Thus if (1) holds for V, it holds for V'. In particular, (1) holds for all sufficiently
small V. Now let U be any cell containing x and y. Choose an arc y containing x
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and y and lying in U. Cover y by a finite number of cells V; ¢ U such that (1)
holds. Then, choosing a sequence of points x = xy, X5, **+, X, =y such that x; and
X;4+1 lie in V;, we find by (2) that

¢U = ¢V1 eee Vn_l
X,y X1,Xp Xn-1%n"

Since each of the factors satisfies (1), so does ¢E Ly (In terms of the language of

sheaves, the groups H, (M; M - x) form a sheaf, and M is or1entab1e if and only if
this sheaf is a product sheaf.)

For any compact orientable manifold M, H, (M) = Z, and the inclusion
Mc (M, M - x) induces an iscmorphism Hn(M) ~H (M M - x) for all x € M., Thxs
follows from the Alexander-Lefschetz duality theorem, which says that

H;(M, U) ~ B*"{(M - U);

see [3]. We have only to apply this theorem with U=# and U = M - x to obtain the
diagram

H,(M) —S5H'(M)

| I

H,(M, M - x) >H(x).

In particular, a choice of pyx determines a generator p of H,(M). A manifold M
together with such a u is called an oriented manifold.

Let M and N be two oriented n-manifolds, and let f be a continuous map M—N.
If x is an isolated point of f-(y) (y € N), we choose a neighborhood U of x contain-
ing no other point of £~1(y). Then the map f: (U, U - x) — (N, N - y) is well defined.
We thus get a map f,: H,(U, U - x) — H,(N, N - y). Since H,(M, M - x) is canonic-
ally isomorphic to Hn(U U - x), f, induces a map H,(M, M - x) — Hu(N, N - y),
which we shall denote by £f.*. If pyx and vy denote the local orientations at x and y,
respectively, then £* py = dx(f) vy. The integer dx(f) is called the local degree of f
at x. Furthermore the map f induces a map f,: H,(M) - Hy(N). ¥ M and N are
compact and if p and v are the orientations of Hn(M) and Hp(N), then f(u) = d{f)v.
The integer d(f) is called the degree of f. If M is compact and N -is not, we define
d(f) to be 0.

THEOREM 2. Let M and N be two oriented n-manifolds with M compact. If
theve is a y € N such that £~Xy) is a finite set of points xj, *-+, Xk, then

(3) af) = 2d_ (f).
k k

Proof. Choose disjoint open sets U; such that x; € Uj;. Consider the diagram
£
Hn(M) Hn(N)

S P
H (M, M- f}y)—H (N, N-y),

where the vertical maps are induced by inclusion. By excision,

Ha(M, M - £-1(y)) = 22H_(U;, U; - x;),
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which is canonically isomorphic to Z; Hn(M, M - x;). Under the composite isomorph-
ism i,, u goes into = e It is then easy to see that f i, p =21, P, = (= dxi(f))Vy.

I N is compact, we are done, because H_ (N) ~ H (N, N - y). If N is not compact,
H_(N) = 0 since by duality, it is isomorphic to the 0-dimensional cohomology with
compact supports. This proves the theorem.

It should be remarked that if d(f) # 0, then f(M) = N. For if there were a y € N,
y ¢ £(M), then f would map M into N - y; and thus f, would factor through H (N - y),
which is 0 since N - y is not compact.

2. ORIENTED DIFFERENTIABLE MANIFOLDS

In this section we discuss orientation of differentiable manifolds, and we con-
clude the proof of Theorem 1. If we choose an orientation for Euclidean n-space,
this gives an orientation for any open subset.

LEMMA 2. Let U and V be open subsets of E™, and let £ be a differentiable
map of U into V. If J(£) > 0 at x, then d.(f) = 1.

We first prove that any affine transformation with positive determinant preserves
local orientation. Compactify E™ by adding a point «. Then E™ U « is the sphere
sn and by excision H (E®, E? - x) = Hy(E® Uw, »). If f is an affine map with
f(x) =y, then the map f,: Hy(E?, EP - x) — Hy(E™, E™ - y) can be factored through
the map f,: Hy(E? U, ©) > H (En e, «), where f is the natural extension of
f to E™ Uoo If f has pos1t1ve determinant, f is homotopic to the identity (keeping
o fixed). Thus f* is the identity, and f preserves orientation.

Now let f be a differentiable map with f(x) = y and having positive Jacobian at x.
Let g denote the affine transformation sending x into y and having the same Jacob-
ian matrix at x as f. For any t, the map tf + (1 - t)g has the same Jacobian at x as
does f. By the compactness of [0, 1], we can find a neighborhood W of x such that
tf + (1 - t)g maps W - x into V -y for all te [0, 1]. Thus

£, =gy Hy(W, W -x) > H,(V,V -y).

Since g, preserves local orientation, so does f,.

LEMMA 3. Let M be a differventiable manifold. M is orientable if and only if

theve is a covering of M by coordinate neighborhoods whose transition functions have
positive Jacobians.

Proof. Each coordinate map induces a local orientation at every point contained
in it. If in the overlap of two neighborhoods the transition functions have positive
Jacobian, the local orientation is the same, by the previous lemma. Thus if we can
cover M by coordinate neighborhoods whose transition functions are all of positive
Jacobian, we can make a consistent choice of local orientation; that is, M is orient-
able. Conversely, suppose M is orientable. Choose an orientation u for M, and
cover M by coordinate neighborhoods, choosing coordinate maps which induce the
same local orientation as that given by u. (This can be done by choosing any co-
ordinate map and then composing with a reflection if necessary.) Then the transition
functions have positive Jacobian.

Proof of Theorvem 1. If J(f) # 0, then f(M) contains some open set. By Sard’s
theorem, the image of those points where J(f) = 0 has measure 0. Thus there is a
point y € £(M) with J(f) # 0 at all points of f-}(y). Since M is compact, this implies
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that f~1(y) is finite, otherwise J(f) would be 0 at any limit point of £~(y). Since
J({) > 0 at x; € f~*(y), d, (f) = 1. By (3), d(f) > 0, which proves Theorem 1.
1
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