AN HOMOLOGY ANALOGUE OF POSTNIKOV SYSTEMS
Edgar H. Brown, Jr. and Arthur H. Copeland, Jr.

INTRODUCTION

In [14], Postnikov presents a process for constructing semi-simplicial complexes
by “adding” homotopy groups to more elementary semi-simplicial complexes. This
process enables him to build a model complex equivalent to the singular complex of
any given topological space. From the point of view of homotopy theory, the model
is indistinguishable from the original space, but has the advantage that its structure
is more conveniently displayed. The present paper studies an analogous process, in
which homology groups are added to CW-complexes. This technique was used by
J. C. Moore in [13], and by B. Eckmann and P. J. Hilton in their duality studies. The
resulting model has the advantage that its elementary parts are complexes with rela-
tively few cells (as compared with Postnikov complexes). On the other hand, much
of the elegant algebraic structure associated with the Postnikov decomposition is
lost. As an application of this homology decomposition, homotopy type classification
theorems for spaces with only two nontrivial homology groups are presented. In
connection with this last topic, a number of the groups [X, Y] of homotopy classes
of maps are described when X and Y are spaces with at most two nontrivial
homology groups.

The process for adding homology groups is dual to the Postnikov construction.
B. Eckmann and P. J. Hilton have made a systematic study of this duality [6], [7],
[8] and [9].

1. PRELIMINARIES

Let G be an abelian group, and let n > 1 be an integer. According to J. C.
Moore a topological space L has homology type (G, n) if it is simply connected, if
HyL) = 0 for q # 0, n, and if H,(L) ~ G. (All homology groups will be taken with
1nteger coefficients. ) It is well known that such spaces exist and that any two CW-

complexes of the same type are homotopically equivalent. L(G, n) will denote the
class of CW-complexes of homology type (G, n). When no confusion is likely to re-
sult, we shall also denote a member of L(G, n) by L(G, n). The following lemma
can be proved by standard CW-complex arguments.

LEMMA 1.1. If X is an (n - 1)-connected space, theve exists a map
f: L = LHLX), n) — X such that f,: H (L) =~ H,(X).

Let X and Y be two spaces, and let f: X — Y be a map. The cone X over X is
formed from XXI by identifying Xx {0} to a point. Y(f)X will denote YU X, with
f(x) and (x, 1) identified for all x € X. Let i: Y — Y(f)X be the inclusion map.

LEMMA 1.2. There is a homomoﬂ;hism « such that the sequence

S H® 2 YOR S H, ) -

ts exact.
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Proof. Let Cg be the mapping cylinder of f, that is, let Cf= YU (XXI) with f(x)
and (%, 1) identified. Y(f)X may be obtained from C¢ by identifying Xx {0} to a
point. Let g: C¢ — Y(f)X be the identification map, and let p be the vertex of X. A
simple excision argument shows that g: (Cs, X) — (Y(f)X, p) induces isomorphisms
in homology. Lemma 1.2 then follows from the exact sequence

b
— H,(X) > H (Y) S H(C,, X 2 H, (%)

if we take a = agZl.

2. STRATIFIED COMPLEXES

Suppose A is a CW-complex such that H (A) =0 for q > n. Let G be an abelian
group, and let g: L(G, n) — A be a map such that g4 Hn(L(G, n)) — Hy(A) is trivial.
Let A' = A(g) L(G, n), and let i: A — A' be the inclusion map. Then A' is a CW-
complex, and Lemma 1.2 yields

iyt Hy(A) = Hy(A') (@#n+1), Hy(A)=G

Given a sequence of abelian groups {H,} (n > 1), we may construct a simply con-
nected CW-complex A such that H,(A) = Hy,, as follows: Let A; be a point. Suppose
we have constructed a CW-complex A, _) such that

Hy(An.1)=Hy (@ <n),
Hq(An—l) =0 (q 2 n).

Choose a map g,: L(H,, n - 1) — A, _; which induces the trivial homomorphism in
homology. Let A,= A,_1(g) L(H,, n - 1). Then A, has the same homology groups
as A, _; except that H,, has been added as its nth homology group. Finally we take
A= U A,. We shall call A a stratified complex and A, its nth stratum,

THEOREM 2.1. If X is a simply connected space, there exists a stratified com-
plex A and amap f: A - X such that f,: H(A) = H(X) for all q.

This theorem is a special case of Proposition 5 in [13, p. 22-13] and of the
Eckmann-Hilton decomposition of maps (unpublished). It might also be deduced from
the following theorem.

THEOREM 2.2, Suppose X and A ave simply connecled spaces, and f: A — X
is a map such that f: Hq(A) ~ Hq(X) for q <n, and Hq(A) =0 for q >n. Then
theve exist maps

g:L=LHX),n-1) —A and f:A'=A(@L-X
such that

1) gt Hy (L) = H_ _,(A) is trivial;

(ii) f'|A = f;

(iii) fi:H ql(A ) ~ Hq(X) for q< n.
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Proof. We prove 2.1 for the case where f is an inclusion map. The general case
then follows by the usual mapping cylinder arguments. Let E; and E, be the spaces
of paths in X starting at a fixed point x, € X and ending in A and in X, respectively.
Let p,: E, — A and p,: E, — X be the maps which assign to each path its endpoint.
From the homology sequence of the pair (X, A) and the hypotheses of Theorem 2.2,
we deduce that

Hg(X, A)=0 (qg<n) and HyX) ~HgX, A) (@ >n).
But 74(X, A) ~ 7y_1(E1). Hence, by the Hurewicz theorem,

=0 (q <n- 1),
'nq(El)
~ H,(X) (g=n-1).

From Lemma 1.1 it follows that there is a map g': L, — E, such that
g,‘,‘: Hn-l(L) = Hn-l(El) .

Let g = p,g'. Note that fp, is inessential and hence f, g,: H,_ (L) — H, _1(X) is
trivial. But f_: H,_;(A) ~ H,_;(X). Therefore g,: H _;(L) — H,,_;(A) is trivial.

The map f': A' — X is defined as follows:
f'@d=a (a€ A),
f'(s, t) = g'(s)(t) (se L, te I).

Note that f'(s, 0) = g'(s)(0) = X, and f'(s, 1) = g'(s)(1) = g(s) = £'(g(s)) when s€ L.
Hence f' is consistent with the identifications made in A'. Clearly f'| A = 1.

Finally we show that f}: Hq(A') = Hy(X) for q< n. For q< n this follows from
the fact that g, is trivial and hence that i,: Hq(A) ~ Hq(A'). Consider the diagram:

kyx Jx . 3
H(A) — H (A, A ~— H (L, L) —H,_;(L)
(2.3) P, % 5, &% o |Ex

2

H (X) —H,(X,A) — H(E ,E) —H, (E))

where g" is given as follows:
gn(s, t)(u) = g'(s)(tu) (t,uel, sel).
We claim that the maps in the horizontal rows are isomorphisms. The two 9’s are
isomorphisms because E, and f. are contractible. As previously observed,
H_ (X, A) = 0 for q <n. Hence
q

Hq(X, A) = ﬂq(X, A) =] ﬂq(Ez, El) ~ Hq(Ez, El)
for q <n. We have also seen above that k,, is an isomorphism. Finally, the fact
that k,, is an isomorphism may be deduced from the homology sequence of the pair

(A', A). Itis easily verified that the diagram is commutative. The homomorphism
g! is an isomorphism by construction, and hence f, is an isomorphism.
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3. THE PROBLEM OF THE UNIQUENESS OF A,

Given a space X, one might hope that the homotopy type of a CW-complex A, is
determined by the conditions

(3.1) Hq(An) =0 (g >n),
(3.2) there exists a map f: A, — X such that f_: Hq(An) ~ Hq(X) for q <n.

Unfortunately this is not in general true. Below we give a counter-example. We
then give a condition on X which insures the uniqueness of the homotopy type of A,,.

In the following paragraphs it is convenient to form the cone 7 over a space Z
by identifying ZX {0} U {z,} XI c ZXI to a point (2, € Z). The definition of Y(f)X
is correspondingly modified. Note that this alteration does not change the homotopy
type of Z or Y(f)X. The suspension S(Z) is 7 with Zx {1} identified to a point.
The points in Z and S(Z) which are images of {xo} X1 will be called the base poinis.

Choose integers n, m and p such that m < n - 1 and m,(S™) contains an ele-
ment a which is of order p, but which is not divisible by p. Construct L(ZP, n) by
attaching an (n + 1)-cell EP*! to S™ by a map of degree p. Let h: S® — S™M repre-
sent &, and let h': L(Zy, n) — S™ be an extension of h. Let j: 8® — L(Z,, n) be the
inclusion map, and let k: L(Zp, n - 1) — S® be the map which collapses Sh-1 to a
point. Let

X = (§™(h') L(Zp, n)) V S(L(Zp, n - 1)),

where the wedge is formed by identifying the base points d € S™(h') L(Z,, n) and
d'e S(L(Zy, n - 1)). Let A,=8S™V S(L(Zp, n - 1)) be formed by identifying h'(d)
and d'. Let A = S™(hk) L(Zp, n - 1). Let f: A, — X be the inclusion map, and let
f': A}, — X be defined as follows:

fi(s) = s (se S™),
(e, 2t) 0 <t< 1/2)
frie, t) = - (e € L(Z,, n - 1)).
(jke, 2t - 1) (1/2 <t <1)

One easily verifies that £' is consistent with the identifications made in A} and X.
The spaces X, A, and A are stratified complexes whose homology groups are

Z (q =0, m) P
Hy(X) =< Zyp (@=n,n+1),
Y otherwise,

Z (q = 0, m) )
Hq(An) = Hq(All‘l) = ZP (q = n) R
0 otherwise.

One easily verifies that f and f' satisfy condition (3.2). But A, and A} do not have
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the same homotopy type, for hk is essential (the kernel of
k*: 7, (8™) — [L(Zp, n - 1); 8™]

is the subgroup pn,(S™)). Thus the conclusion follows from Theorem 4.1.
We next show that the above phenomenon does not occur when H,,; (X) = 0.

THEOREM 3.3. Suppose that X, A, and A}, are simply connected, that
H,+1(X) =0, and that f: A, — X and f': A}, —» X ave maps satisfying the conditions
(3.1) and (3.2). Then there is a homolopy equivalence h: A, — A}, such that £'h and
f are homotopic.

Proof. By Theorem 2.1 we may assume that X is a stratified complex. Let Bqg
be the strata of X. By Theorem 2.2 we can construct CW-complexes

Anc An+1 c An+3 (S

and a map u: A = U Aq — X which extends f and is a homotopy equivalence. In con-
structing By and Ay, we may use L(G, q)’s which have cells only in dimensions 0, q
and q + 1. Since Hn+1(X) = 0, we may take B,,; = B,. Then X0+l = B, (Xk is the
k-skeleton of X) and APl ¢ A;. The map u has a homotopy inverse v:X — A
which we may assume to be cellular. Then v(Bn)C Anp. Let k=v I Bn: B, — Ap.
Then fk = uv |Bn. Since uv is homotopic to the identity, fk is homotopic to the inclu-
sion map i: B, — X.

ig: Hq(Bn) ~ Hq(X) and f: Hq(An) ~ Hq(X) for q <nmn.

Therefore k, = f;li*: Hq(Bn) = Hq(An) for all q, and hence k is a homotopy equiva-
lence. We can do the same thing for A], and obtain a homotopy equivalence

k': B, — Aj such that f'k' is homotopic to i. Let k be the homotopy inverse of k,
and let h = k"k. Then f'h = f'k'k ~ ik ~ fkk ~ f, where “~” denotes homotopy equiva-
lence of maps. This completes the proof.

Suppose X, A, _;,and f: A _; — X are spaces and a map such that
Hg(Ay_ 1) = Hq(X) (g <nm and Hq(An_l) =0 (q>n).

Let L, be a member of L(H_(X), n - 1). By Theorem 2.2 there are maps

g0t Lo— A,y and Fo: AQ = A, _;(g9)Lg — X such that Fo,: H (AQ) ~ Hy(X) for
g<n If Hh;1(X) =0, the homotopy type of A0 is determined by X. We next in-
vestigate the extent to which the map g, is determmed by f: A -1 —» X. Let L, be
a member of L(H,(X), n-~ 1), let gj: Ly — A, _; andlet Al = A, _;(g1)L;.

THEOREM 3.4. If X is 2-connected and Hy1(X) = 0, then £ can be extended to
a map f: A — X such that £ . q(A ) = q(X) for q _<_n if and only if there is an
homotopy equwalence h: L, — L, such that g, and g,h are homotopic.

Proof. If an homotopy equivalence h exists such that g; and goh are homotopic,
the identity map on A, _; can be extended to a homotopy equivalence u: Arl1 - Ag in
the obvious way. Then f, = fu is the desired map.

Suppose f; exists. By the usual mapping cylinder arguments, we may assume
that f is an inclusion map. Let E,, E,, p, and p, be the path spaces and maps de-
scribed in the proof of Theorem 2.2. Recall that E, is (n - 2)-connected. Let
go: Lo, — E; be defined as follows:
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gh(s)(t) = fo(s, ) ((s, t) € Lp).

Then g, = p, g, and we are in exactly the same situation as described in the proof of
Theorem 2.2. In particular, the diagram (2.3) is applicable. By diagram (2.3),

f04: Hn(Ap) = Hy(X) implies that gf,: H,_3(Lo) ~ H,_1(E}). By the same argument,
there is a map g;: L, — E; such that

g1=p1g] and gi, H, (L)) =~ Hy j(Ey).

We show below that H,(E ;) = 0. If we assume this for the moment, it follows from
Theorem 3.3 that there is a homotopy equivalence h: L, — L, such that g, and gzh
are homotopic. Therefore g, = p,g, and g,h = p,g,h are homotoplc

It remains to show that H(E;) = 0. Let E be the paths in X which start in X
and end in A, _;. Let p: E — X be the map which assigns to each path its initial
point. Then p is a fiber map with fiber E,, and E and A are homotopically equiva-
lent. E, is (n - 2)-connected and X is 2-connected. The Serre-Wang sequence for
a fiber space [15] then yields the exact sequence,

Hn+2(X) - Hn(E 1) - Hn(E) -

But H, . ,(X) = H,(E) = 0, and therefore H_(E;) = 0.

4. SPACES WITH ONLY TWO NONTRIVIAL HOMOLOGY GROUPS

Let H, and H, be abelian groups, and let n and m be integers such that
1<n<m. Let L, = L(H,, n), and let L, = L(H,, m - 1). Let g;: L, = L; (i=0, 1),
and let A; = L;(g;) L,. Note that if n < m - 1, then

=Z (@=0),
= Hy (q=n),
~H, (g=m),
=0 otherwise.

THEOREM 4.1. If 2 <n<m - 1, then A, and A, have the same homotopy type
if and only if theve are homotopy eqmvalences h: L, —» L, and k: L, — L, such that
gk and hg, are homotopic.

Proof. If k and h exist, a homotopy equivalence of A, into A; can be con-
structed in the obvious way.

Suppose G: A, — A, is a homotopy equivalence. Because n< m - 1, we may as-
sume G(L,) C L,. Let h=G|L,: L, —» L,. Clearly h,: Hy(L;) =~ Hy(L;), and hence
h is a homotopy equ1valence Let h' be the homotopy inverse to h. Let
F: L,(hg,)L, — L,(h hg)L, be defined as follows:

F(s) = h'(s) (s e L,),
F(r, t) = (r, t) ((r, t) € L,) .

F induces isomorphisms in homology and is therefore a homotopy equivalence.
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Since g, and h'hg, are homotopic, we can extend the identity map on L; to a homo-
topy equivalence H: L,(n'ngy)L, — L,(g,)L, = A,. Then GHF: L,(g,;h)L, — A, isa
homotopy equivalence, and GHF | L, = ihh', where i: L, — A, is the inclusion map.
The map hh' is homotopic to the identity map, and hence, by the homotopy extension
theorem, GHF is homotopic to a map K: L,(gh)L, — A, such that K| L, = i. The
identity map of A, is also an extension of i. In addition, H,;)(A]) = 0. Therefore,
by Theorem 3.4, there exists a homotopy equivalence k: L, — L, such that g;h and
kg, are homotopic. This completes the proof.

We now wish to classify, up to homotopy type, the complexes X with only two non-
trivial homology groups of positive dimension. Let us take these groups to be
H (X) =H; and H_(X) = Hy (n <m). Any such complex is of the homotopy type of a
complex of the form L,(g)L,. If m = n+ 1, then the complex has the homotopy type
of an Afl—polyhedron. Such spaces have been classified by Chang [4]. Thus it suffices
to describe the classification when m> n + 1.

First note that R(H,, n) = [L,; L,] and R(H,, m - 1) = [L,; L,] are rings with iden-
tities, and that [L,; L] is an (R(H,, n), R(H,, m - 1))-bi-module. That is, it is a left
R(H,, n)-module and a right R(H,, m - 1)-module such that (ay)g = a(yg) for all
a€ R(H,, n), vy €[L,; L,] and B8 € R(H,, m - 1). The operations are induced by com-
position of maps. Let U(H,, n) and U(H,, m - 1) denote the groups of units (= homo-
topy equivalences) of R(H,, n) and of R(H,, m - 1). Let V(H,, n, H,, m - 1) denote
the set of equivalence classes in [ L,; L,] under the relation: y = y' if and only if
there exist @ € U(H,, n) and B8 € U(H,, m - 1) such that ay = y'8.

THEOREM 4.2, If L, =L(H,, n) and L,=L(H,, m - 1) and if m >n+ 1, then
V(H,, n, H,, m - 1) is in one-fo-one correspondence with the set of homotopy equiva-
lence classes of spaces of the form L,(g)L,.

This follows at once from Theorem 4.1.

A necessary condition for two spaces to have the same homotopy type is that
their homology groups be isomorphic. On the other hand, given a pair of abelian
groups H,;, H, and a pair of integers n, m (n < m), the complex

X = L(H,, n) V L(H,, m)

has H (X) ~ H; and H _(X) ~ H,. These observations, together with Theorem 4.2,
reduce the problem of classifying CW-complexes with two nontrivial homology groups
to the problems of classifying abelian groups and of computing the sets

V(H,, n, H,, m - 1).

The following theorem is a partial solution of the second problem.

THEOREM 4.3. Let integers n and m (n+ 1 <m) and finitely generated abelian
groups H, and H, be given. If m+ k(n-1)+ 2 (k=1, 2, «=+),0or if H, or H, is
finite, then V(H,, n, H,, m - 1) is finite, and there is an effective procedure for com-
puting V(H,, n, H,, m - 1) in tevms of R(H,, n), R(H,, m - 1) and the bi-module
[L(H,, m - 1); L(H,, n)].

Proof. We shall first show that [L,; L,], where
L,=L(H,, m-1 and L,=L(H,, n),

is finite under these hypotheses. The finiteness of V(H,, n, H,, m - 1) will then fol-
low at once. If H, is finite, then m, = m,(L(H}, n)) is finite [14]. Since [L,; L,] is
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an abelian extension of H™(L,; 7)) by H™ Y(L,; 7 _;) [2], the group [L,; L,] is
finite if either H, or H, is finite. Using only the hypothesis that H, is finitely gen-
erated, we may write H, as the direct sum of a free abelian group H,' and a finite
group H,". If A,= L(H,', m - 1) and if B, = L(H,", m - 1), then L, has the homo-
topy type of A,V B,. Thus [L,; L,] = [A,; L,] + [B,; L,]. The previous argument
shows that [B,; L,] is finite. Since A, is a union of (m - 1)-spheres joined at a
point, [A,; L,] is a direct sum of copies of m,.1(L;). Let L, = A, V B, be a decom-
position similar to that just given for L,. A result of J. Milnor [12] shows that

T -1(L1) is isomorphic to the direct sum 7, _1(A;) + 7, _1(B;) + Z7,,_;Xg),
where each of the groups '”m_l(Xa) is finite, and all but finitely many are zero.
From our previous reasoning it follows that m,,_;(B;) is finite. But A, is a union
of n-spheres joined at a point. P. J. Hilton [11] has shown that

m_ (A~ kza a_ (s<E-DTh

bl
k(n-1)+1 . s s
where each S, is a (k(n - 1) + 1)-sphere, and there are only finitely many
such spheres for each k. Thus all but a finite number of the groups in the sum are
zero, and each of the groups ,”m_l(sg(n-l)ﬂ) is finite unless m - 1 =k'n - 1) + 1
(k'=k or 2k). There remains only the demonstration of the effective procedure.

The underlying group of the ring R, = R(H,, n) is isomorphic to the direct sum
[A;; Al +[A;; B)] +[B,; Al +[B;; B,l.
Let S, be the image in R, of [A;; A,], and let T, be the image of
[A;; B,]+[B;; A ]+ [B;; BJ.

It is immediate that T, is finite. Note that S, is a subring of R,;. Since A; may be
taken to be the union of k n-spheres (k is the rank of H,'), it follows that S, is ring-
isomorphic to the ring of k-by-k matrices with integer entries. The group V, of
units of S, is carried, by the isomorphism, onto the (muitiplicative) group of ma-
trices of determinant +1. This matrix group is finitely generated by three matrices
with entries from {0, 1} [5]. A similar discussion may be made of the ring

R, = R(H,, m - 1); we shall denote the corresponding quantities by the same letters,
with subscript 2.

Let N be the order of [L,; LI]. Then the quotient rings Ry = R;/NR; and
R,n= R,/NR, have the same action on [L,; L,] as R, and R,. That is, if
$;: R; — Ry (i =1, 2) is the natural projection, then [ L,; L,] is an (R;y, Ray)-bi-
module under the operations (¢ r1)a(p2rp) = vy ary for @ € [Ly; L} and r; € R;
(i=1, 2). Itfollows that V(H,, n, H,, m - 1) is the decomposition of [L,; L, ] under
the following relation: @ and B8 in [L,, Ll] are equivalent if and only if there exist
elements p; in the image groups ¢;[U;] (U; = U(H,, n) and U, = U(H,, m - 1)) such
that p,@ = Bp,. Thus it suffices to construct the groups ¢;[U;].

Each element of R, may be written uniquely in the form s + t with s€ S, and
te T,. In particular, the identity element of R, may be written 1=e+ € (e€ S, and
€€ T,), and e is the identity of the subring S,. Note that the product of an element
of finite (additive) order with an arbitrary element of R, is in T;,. The element
s+ t is a unit of R, if and only if there are elements s'€ S; and t'e T, such that
(s + t)(s'+ t") = 1. This holds if and only if ss' = e (whence s € V, and s' = s™%) and
st'+ ts™! + tt* =¢€. Thus

g + TE ¢1[U1] (G € ¢1[Sl], TE€ d’],[T]_])
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if and only if o € ¢,[V,] and there exists an element 7'€ ¢,[T,] such that
oT'+ 70"+ TT' = $;E.

Let v,, v,, V5 be the generators of V,. Then ¢,v,, ¢,V,, ¢,Vy generate ¢,[V,]. The
order of ¢,[V,] is at most ¢ = N¥ - 1, whence ¢,[V,] may be determined by at most
3¢ calculations. Let d be the order of T,. The group ¢,{U,;] may now be deter-
mined by testing at most cd? triples (o, 7, 7') in the equation o7'+ 70" + 77' = ¢€.
The determination of ¢,[U,] is similar.

5. THE GROUPS [L(H,, m); L(H,, n)], FOR m=n+ 1, n+ 2.

M. G. Barratt [1] and [2] has given a procedure for computing the group [X; Y]
when X = L(H,, m) as an extension of H™(X; 7, (Y)) by H™(X; 7, (Y)). The ex-
tension is determined by a Steenrod square. We present below an alternative pro-
cedure, together with explicit calculations of some of these groups.

We define the following CW-complexes.
M(0, n) = S™(n,)S™+1,
M(s, n) = L(Z,s, n) UM(0, n) with s >0 and with L(Z,s, n)N M(0, n) = S™.

N(0, s', n) = (S®V st + 28'-1¢ . ,)sPt] with s' > 1 and 5, : S°*1 — g0

essential,
N(s, s', n) = N(0, s', n)U L(Z,s, n) with s >0 and N(0, s', n) N L(Z,s, n) = S™.

These are all Alzl—polyhedra, and they are classified by P. J. Hilton as types 6, 7, 10
and 11, respectively [10, p. 129]. S. C. Chang [4] has shown that these complexes,
together \Eith the complexes L(G, m) (for suitable choices of G and m) form a basis
for the A, -polyhedra. That is, any AE_ has the homotopy type of a V-product of
these complexes.

The elements Ly € 7,(S?), Mn € Tn+1.(S®) and vy € 7,+3(S™) are, as usual, the
generators of these groups. We need to know about them only that n, 7n+1 generates
Tfn+2(sn) and that 12v, = 7, Mn4+] Tnt+2- A complete description of v, may be found
in [17]. The notation for the other elements is according to the following scheme.

The element (2 1;) is in [L(Zpr, n + k); L(Zps,
r =0 (or s=0), then L(Zpr, n) (or L(Z,s, n+ k)) is replaced by S™ (or S™tk), we
have not yet told which element of [L(Zpr, n+ k); L(Zps, n)], .- is intended; this is

specified in the text, following the tables. Nor does our notation distinguish between
an element of [L(Zyr, n + k); L(Z pS n)] and an element of [L(Zgr, n + k); L(Zgs, n)]

where p and g are different primes; these must be distinguished by the context. A
similar scheme is used in case one of the spaces involved is M(s, m) or N(s, s', m).

n)] (p a prime) when r, s> 1. If

If a€e [X; Y] and b e [Y; Z], then ba € [X; Z] is the class of the composite of the
representative maps of a and b. If a€ [X; Y], be[X; Y] and r;: X3V X, — X;
(i =1, 2) are the natural retractions, then a+ b = ar, + br, € [X, V X,; Y]. We per-
mit ourselves the lattitude of using the same symbol for a map as for its homotopy
class, whenever we believe that this will work no hardship on the reader.
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The element (g _:_) is the class of the map which collapses the (n - 1)-skeleton

of L(Z n - 1), thereby forming the sphere S®. The element (IS1 g) is the class of

P’
the inclusion of S™ in L(Z s » ). The element (Isl g) is an extension over

no
L(Zpr, n) of (s 0

Zs‘r(: g) when r < s. The element (Sn* 2) is the inclusion of S™ in M(0, n)
b4

when s = 0, and it is the inclusion of L(Z;,s, n) in M(s, n) when s > 0. The element

) when r > s, and it is an extension over L(Zi,r, n) of

(sns' g ) is the inclusion of S™ in N(0, s', n) when s = 0, and it is the inclusion of
L(Z,s, n) in N(s, s', n) when s> 0. The inclusion of S®*! in N(s, s', n) is denoted

by ( n 1) . We abbreviate

s,s' 0
(n 0)_(n 0)(n0)
s,s'r/  \s,8's sr/°

The entries in the first four columns of Table 1, as well as the entries in the
third row, all are due to M. G. Barratt [3]. The entr1es in the fifth, sixth and seventh
columns, in the first two rows, and in the last row are obtained from obstruction
theory. There remain the two entries corresponding to X = L(Z,y, n) with r > 0 and
Y = N(s, s', n) with s > 0.

Let A= L(Z,s, n) vV 8*"1 and let

0
d= (2 )nn + 25+ an+1€ ﬂn+1(A)

( n 1) be the inclusion

Then Y = N(s, s', 1) = A@S™L. Let j= (1, 2)+ (s
bl bJ

map of A in Y. If X = L(Z,,, n), then the sequence

d
- [X; 2] S [X; Al - [X; Y] =0

is exact, since [X; Y, A] = [X; S®*2] = 0. The subgroup d[X; s®t!] c [X; A] is gen-

erated by
n+1 -1\ /n O n+1 -1 st-1 n+1-—1)
d(O I‘)_(SO)nn(O r)+2 (0 r/°

R ) n 0 n 1)\ /n+1 -1)
Thus [X; Y]~Z2t+ Zztu is generated by (s,s‘ r) and (s, s' 0) ( 0 r/°

The products ab listed below are easily obtained.
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b (n 0) (n 0) (n 0)
ro0 ru ru
a r>u>0 0<r<u
(n+1 -1) 0 pu_r(n+1 -1) (n+1—1)
0 r 0 u 0 u
(nO) (n O) (n 0) pr_u(n 0)
sr s 0 s u s u
0<s<r
n 0 S-r n(}) S_r(n 0) _u(n 0)
(s r) p (SO P s u p® s u
s>r>0
n 0) _ nO) (n+1 -1)
Also note that 2(1 1) = (1 o) M 0 1)

The entries in Table 2 are groups [X; Y] with X = L(G, m) and Y = L(G', nk
(G and G' are cyclic groups, m =n+ 1, n+ 2). The calculation of these entries
uses the fact that [X; P] ~ [X; Y] if P is, roughly speaking, the (m + 3)-skeleton of
the (m - 1)-connective fibre space over Y. More precisely:

LEMMA 5.1. Let X = L(Zyr, m) = S?(p*t,,,)S™, and let p: P — Y be a map
which induces isomovphisms w, (P) = n,,(Y) and 7w (P) = w1, 1(Y). Then
Py [X5 Pl= [X; Y]

Proof. The diagram below is commutative, the functions py and pj are isomor-
phisms, and the horizontal sequences are exact.

r
P L P lmi
T(P) «—2 7 (P) «—— [X; P] «—— 7 1(P) <= 7 .,(P)

um(Y)<—r—L— T (Y) < [X¥Y]<— 7 (V) e T 41 (Y)
P 'm m+l

The proof of the lemma is completed by applying the “five-lemma.”

nl

0 1) : P — Y be an extension over P of

Let Y=S" and P= L(Z,, n+ 1). Let (
n,: S*7!1 — Y. Then

( n 1) : 1rj(P) ~ 1rj(Y)

01 G=n+1,n+ 2).

From the lemma it follows that [L(Zz, n+ 1); Y] = Z, is generated by (g (1)) , and

[L(Z,r, n + D: Y]~ Z,+ Z; (r > 1) is generated by
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Y sn L(Z 5, n) L(Z 4, n) L(Z,s , 1) L(Z, , 1)
X s> 2 s>0
sntl Z, Z, Z, Z, 0
L(Z,, n+ 1) Z, Z, +Z, Z, + Z, z,+ 2, 0
L(Z,.,n+1)| Z,+2Z; Z,+72 Z, + Z, + Z, Z, + Z, + 2, 0
r>1
gnt+2 Z, Zy Z, + Z, Z, + Z, 0
I(Z,, n+ 2) Zy 2,+2, +2, Z4+7Z,+2, Z,+2Z,+7Z, 0
L(Z4,n+ 2) Zy+ 7y Za+ 2y + 7y 2y + 25 +Z; + 27, Z4+ZZ+ZZ+ZZ 0
L(ZZr,n+2) Z, +2, Zy+Zy+%7, Zy+Z,+Zy,+2, Zg+Z,+2Z,+72, 0
r>2
L(Z3r, n+ 2) 0 0 0 0 Z3
r>0
(nl) (n+1 0) and (n 1)(n+1 0) (n+2—1)_ (n+2—1)
01 1 r 01 1 0/Mt1\l 0 /) MM\ o «r/-
Let Y = L(Z,, n), let P = N(1, 2, n+ 1), and let (‘1‘ (2)) € m_,,(Y)~ Z, be a gen-
n2y /no0 n 1 ) . .
erator. Note that 2 (1 0) = (1 0) M Mty Let (1 1,2) P — Y be an extension
over P of
n0\/nl (n 2) . n+2 _,
(10)(01)+ 1) L@z, ne VS Y.
Then

n 1

1 1’2) : 'nj(P) =~ 7rj(Y) G=n+1,n+ 2).

(

Thus [L(Z,, n+ 1); Y] = Z, + Z, is generated by

(n 1 ) (n+1 O) _ (n 0) (n 1) and
11,2 1,21/ " \10 01
n 1 n+1 1 n+2 -1 n 2 n+2 -1

).

(1 12) (32 0) ("0" 1) = (3 6)

while for r > 1 [L(Z,r, n+ 1); Y] = Z,+ Z, is generated by

(112) (52 7) - (30) G1) ("1"")

11,2 1,2 0 0 1 10 0o 1

n+1 0
1,2 r

no
10

nl
01

n+1 0
1 r

n 1

11.2 (of order 2),
’

and by
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n 1 (n+1 1) (n+2 —1)_(n 2)(n+2 -1
(1 1,2) 1,2 0 0 r/ “\10 0 r) (of order 4).

Let Y = L(Z,s, n) with s > 1. The group 7,,,(Y) ~ Z, + Z, has

(nO) _(nO)(nl) (n+10) and (n2)
s0/MmMm+1 =1 g0/)\01 1 0) M+l e \so

for generators. The latter generator satisfies the equation ( n; 1 _;) (: g) =Mp1-

Let (2 f) be an extension over L(Z,, n + 2) of (rsl g) If
P=L(Z,,n+ 1)V L(Z,, n+ 2),

then

(rs1 g) (3 }) + (: f)’”j(P)“”j(Y) G=n+1,n+2).

Thus [L(Z,, n+ 1); Y] ~ Z, + Z, is generated by (2 g) (8 i) , which is of order 4,

and
(n 2) (n+2 -1\ _ (n 2) (n+2 0)(n+2 -1)
s 0 0 1/ \s 1 1 0 0 1/°
If r> 1, then [L(Z,r, n+ 1); Y] = Z,+ Z, + Z, is generated by
(n 0)(n 1) (n+1 0)
s 0 01 1 r/°
(n O) (n 1) (n+1 0) (n+2 —1) _ (n 0‘) (n+2 -1)
so0/\o1/\ 1 0o/M™ms1\ 0o /T \so/MMm+t1\ o
and
(n 2) (n+2 0) (n+2 —1) _ (n 2) (n+2 —1)
s 1 1 0 0 r/ \sbO 0 r/°
Let Y=8" andlet P=N(1, 2, n+ 2) V L(Z,, n + 3). Let

2
(3 1’3):N(1, 3,n+2) —Y

be an extension of

n+1 1
nn( ; 1) +3v_:L(Z,,n+ 2)VSH3 oy,

and let

<n3

0 1):L(Za,n+ 3) - Y
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be an extension of 8v_: s»t3 ., ¥. Then
2 3 _
(813\+(31)1W5(P)=W3(Y) G=n+2,n+ 3).
We obtain:

[(Z,r,n+2); Y] =Z,+Z, (k= min(27, 8))

is generated by

n 2 2 0 n+1 1 n+2 0
(0 1,3) (1,3 r) =Mn ( 0 1) ( 1 r) (of order 2),

and
(n 2) (n+2 1>(n+3 -1) _ 3y (n+3 -1)
01,3/ \1,3 0 o r/ =™\ 0o r/-
Let Y = L(Z,, n), and let P = L(Z,, n+ 2) V L(Z,, n+ 3). Let

(111 g) :L(Z, n+2) > Y

be an extension of

n 2\, on+2 _,
(1 0).s Y,

and let

(rll:;):L(Zz,n+3)——'Y

be an extension of 12p,: S**3 — Y. Then
n2), (29),manm G-
(1 2) + (1 1 '”J(P)"'“J(Y) G=n+2,n+3).

Thus [L(Z,, n+ 2); Y] = Z,+ Z,+ Z, is generated by
(n 2) (n+2 0) B (n O‘) (n+1 1)
12/\V2 1/ \10!/™V 0 1/°
(n 2) (n+2 O) (n+3 -1) _ (n 2\) (n+3 —1)
12 2 0/M™+rz2\ 0 1) \10/™2 \0 1/
and
(n 3) (n+3 0) (n+3 —1) =12 (n+3 —1)
11 1 0 o 1/ ="\ o 1/

If r> 1, then [L(Z,., n+ 2); Y] = Z,+ Z, + Z, is generated by
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n2) /n+2 0)
(1 2) ( 9 1 (of order 4),

(n 2) (n+2 0) (n+3 -1) _ (n 2) (n+3 —1)
12/\ 2 o/Mm2\ 0 =/ \10/Tmr2\ 0 =
and
(n 3) (n+3 O) (n+3 -1) - 1920 (n+3 -1)
11 1 0 0 r/ = n 0 1/°
Let Y =L(Z, n), andlet P=N(1, 2, n+ 2)V L(Z,, n+ 2). Let

n 2
(2 1,2).N(1, 2,n+2)—-Y

be an extension of

(39) (3 ("3 1) +08) s 20t ne v 02—,

Then

(121 1,22) * (2 i\):ﬂj(P)z"j(Y) (i=n+2,n+3).

We now deduce that [L(Z,, n+ 2); Y] ~ Z, + Z, + Z, is generated by
(n 2 )(n+2 O) _ (n 0) (n+1 1)
21,2/\1,2 1) " \20/™\ o 1/
(n 2 )(n+2 1‘) (n+3 —1) B (n 0)(61/) n+3 -1)
21,2/\1,2 0/l 0 1) 120 n(o 1

n 2) , this last being an element of order 4. If r > 1, then

and (2 1

[L(Z,,, n+2); Y] = Z,+ Z,+ Z,+ Z,

is generated by

n 2 n+2 1 n+3 —1) _ (n 0) n+3 -1)
(2 1,2)(1,2 o) ( o r)=\320 (Gvn)( o r (of order 4),

(n 2 (n+2 0) _ nO) (n+1 1‘) (nZ) (n+2 O) and
21,2) 1,2r‘(207h o r)” \21 1 r

(n 2) (n+2 0) (n+3 —1)

21 1 o/ T2\ o /-

Let Y = L(Z,s, n) with s> 2, andlet P=N(1, 3, n + 2) V L(Z,, n + 2). Let

(n 2 ) : N(1, 3, n+ 2) — Y be an extension of
s 1,3
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(Isl g) (nn (ng—l i) + 3vn): L(Zz, n+ 2)V gnt3 L,y

Then

(5 1,23) - (2 i)”j(l’)”jm (G=n+2n+3).

Thus [L(Z,, n+ 2); Y]~ Z, + Z, + Z, is generated by -

K}
-

(%) (13 1) = (50)ma (™51 1)
(22%) (02 8) (%7 1) - (2 )@ (%57 1)

and (ISI f) , this last being an element of order 4. The group

(1(Z,n+ 2 Y] = Z,+ 2o+ Z,+ Z,

is generated by

) (533) (50 D) - (e )
('s 1,3/ \ 1,3 0 ) ( (v n)( 9 (of order 4),
(n 2)(+2 0) (n 0) n+1 1)

51,3/ 11,32 s0)m ("0 2)-
(n 2) (n+2 0) and n 2 (n+2 0) (n+3 —1)
s1l/\ 1 2 (sl) 1 o/M™m2\ 0o 2/
If r> 2, then [L(Z,r, n+ 2); Y] = Zg + Z, + Z, + Z, is generated by

(2 123) (Téz (1)) (ngs —11-) = ( )(3 Vn) (n+3 11,) (of order 8),
(3.0 (22 () (31D
31:3) 1,3 2/~ s 0/ M 0 r/’
(n 2)(n+2 0) and (n 2) (n+2 O) n+3 —1)
s 1 1 r s1 1 0 nn+z( 0o r/°
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