ON SUBFACTORS OF FACTORS OF TYPE II,

Malcolm Goldman

1. INTRODUCTION

In the series of papers entitled *On Rings of Operators*, Murray and von Neumann study certain classes of operator algebras on a Hilbert space \mathcal{H} . Among the more remarkable types of algebras are the factors of type II_1 [3, p. 172] which, although they have infinitely many orthogonal nonzero projections (self-adjoint idempotents), have a unique linear functional tr such that

- (1) tr(AB) = tr(BA),
- (2) tr(A*A) > 0, and tr(A*A) = 0 only if A = 0,
- (3) tr(I) = 1, where I is the identity operator.

An $f \in \mathcal{H}$ such that $tr(A) = \alpha(Af, f)$ for $\alpha > 0$ will be called a trace vector. Although Murray and von Neumann assume \mathcal{H} to be separable, subsequent work has shown this assumption to be unnecessary, and most proofs in [3], [4], [5] do not assume separability of \mathcal{H} . Therefore, the definitions and notation of [3] will be used, except that factors will be designated by script letters. All isomorphisms mentioned will preserve the adjoint operation.

In [5, Section 5.3] it is shown that any (countable) group G whose non-identity conjugate classes contain infinitely many elements will lead to a factor of type Π_1 on a (separable) Hilbert space. In this paper, we study relationships between a Π_1 -factor and a Π_1 -subfactor which are reminiscent of group and subgroup relationships. The work was motivated by the factors generated in the manner of [5] by the group of all finite permutations of the integers and the subgroup of all even permutations.

First we select the factors to be studied. In [4, Theorem II], it is shown that a Π_1 -factor $\mathscr M$ with a vector cyclic under $\mathscr M$ and $\mathscr M'$ (we use the superscript ' to denote the commutant [3, p. 117]) possesses a trace vector $f \in \mathscr H$ with ||f|| = 1. Associated with f, which will now be fixed, is an anti-isomorphism $A \to A'$ for $A \in \mathscr M$, $A' \in \mathscr M'$ defined by Af = A'f. Hence, $\operatorname{tr}_{\mathscr M'}(A') = (A'f, f)$. The details of the anti-isomorphism are in [4, Chapter IV]. Let $\mathscr M \subset \mathscr M'$ be a II_1 -subfactor such that $\mathscr M'$ is finite. Let

$$c_1 = \dim_{\mathscr{A}'}([\mathscr{A}f]),$$

where $[\mathscr{F}f]$ = closure of $\{Sf: S \in \mathscr{F}\}$. Let $\mathscr{N}' = \{A' \in \mathscr{M}': A'f = Af \text{ for } A \in \mathscr{A} \subset \mathscr{M}\}$. Then \mathscr{N}' is anti-isomorphic to \mathscr{A} , and is weakly closed by [5, p. 728]. Let $c_2 = \dim_{\mathscr{N}}([\mathscr{N}'f])$. We shall show that $c_1 = c$. Since $\mathscr{A} \subset \mathscr{M}$, any trace vector for \mathscr{M} will be a trace vector for \mathscr{A} , but \mathscr{A} will have trace vectors which are not trace vectors for \mathscr{M} . We shall study trace vectors g for \mathscr{A} which lie in the "smallest" subspaces $\eta_{\mathscr{M}'}$ in which such trace vectors can lie, that is, in subspaces of dimension c_1 by [3, Lemma 9.3.3]. Theorem 1 shows that $g = \alpha Vf$, where $V \in \mathscr{M}$ is a partial isometry with dim $(V*V) = c_1$. If $c_1 = 1/n$ for integral n and there are "enough" different V's giving trace vectors for \mathscr{A} , then there is a coset-like decomcomposition of $\mathscr{H} = [\mathscr{A}f_1] \oplus \cdots \oplus [\mathscr{A}f_n]$, where f_k is a trace vector for \mathscr{M} . If

 $c_1 = 1/2$, there always are enough V's; and if \mathcal{A} , in a suitable representation, has a complete, orthonormal set of trace vectors, then the same is true of \mathcal{M} . This is a very special case of a conjecture of Singer.

In Section 3, we obtain a representation theorem for \mathcal{M} in terms of \mathcal{A} . Here, too, no special hypotheses are needed if c = 1/2, but conditions akin to normality of subgroups are needed if c = 1/n (n > 2).

2. TRACE VECTORS FOR SUBFACTORS

We shall deal with the factors $\mathcal{N}\supset\mathcal{M}\supset\mathcal{M}$ and their commutants $\mathcal{N}'\subset\mathcal{M}'\subset\mathcal{A}'$. Since f is a trace vector for \mathcal{M} and \mathcal{M}' , by [3, pp. 142-143] and [4, Lemma 4.1.2], every vector $g'\in\mathcal{H}$ can be written as

$$g' = VBf = CWf = B'V'f = W'C'f$$
,

where V, W \in \mathcal{M} , V', W' \in \mathcal{M} ' are partial isometries and B, C η \mathcal{M} , B', C' η \mathcal{M} ' are possibly unbounded, densely defined and defined on f, closed by [3, Theorem XV] and self-adjoint. Therefore they have a unique resolution of unity.

THEOREM 1. Let g be a trace vector for \mathcal{A} with the property that for some projection $E' \in \mathcal{M}'$, dim $(E') = c_1$ and E'g = g. Then there is a partial isometry $V \in \mathcal{M}$ and a scalar $\alpha > 0$ such that $g = \alpha V f$.

The proof will need a sequence of lemmas. It should be noted that every projection $E' \in \mathcal{M}'$ with $\dim(E') = c_1$ has a trace vector for \mathscr{A} in the subspace $E' \mathscr{H}$. Indeed, since $\dim_{\mathscr{A}}([\mathscr{A}f]) = c_1$ and \mathscr{M}' is contained in the factor \mathscr{A}' , there is a partial isometry $W' \in \mathscr{A}'$ [3, Theorem VII] such that $W'[\mathscr{A}f] = E' \mathscr{H}$. Clearly, W'f is a trace vector for \mathscr{A} .

LEMMA 2.1. Let $A \in \mathcal{A}$; let V_1 and V_2 be partial isometries in \mathcal{M} ; and let B_1 , $B_2 \eta \mathcal{M}$ be positive and defined on f. Then

$$(AV_1B_1f, V_2B_2f) = (A'V_2*B_2'f, V_1*B_1f)$$

where A'f = Af and A' $\in \mathcal{N}$.

Proof. By a well-known spectral theorem, $B_j f = \lim_{n \to \infty} C_{nj} f$, where j = 1, 2 and $C_{nj} = \int_0^n \lambda \, dE_{\lambda j}$. Since $A \to A'$ gives an anti-isomorphism of $\mathcal M$ and $\mathcal M'$, the

lemma is immediate for bounded B_i. Hence

$$\begin{aligned} (AV_1B_1f, V_2B_2f) &= \lim_{n \to \infty} (AV_1C_{n1}f, V_2B_2C_{n2}f) \\ &= \lim_{n \to \infty} (A^{\dagger}V_2^{*\dagger}C_{n2}f, V_1^{*\dagger}C_{n2}f) = (A^{\dagger}V_2^{*\dagger}B_2f, V_1^{*\dagger}B_1f). \end{aligned}$$

COROLLARY. If $V_1 B_1 f$ is a trace vector for \mathcal{A} , then $V_1^{*} B_1 f$ is a trace vector for \mathcal{N} .

Proof. Lemma 2.1, together with the anti-isomorphism between $\mathcal A$ and $\mathcal N$ and the uniqueness of the trace subject to conditions (1) to (3) of Section 1, gives the corollary.

LEMMA 2.2 If \mathcal{A} is finite, then \mathcal{N} is finite and $c_1 = c_2$.

Proof. By Lemma 2.1, the subspaces $[\mathscr{A}V_jB_jf]$ are pairwise othogonal if and only if the subspaces $[\mathscr{N}'V_j^!*B_jf]$ are orthogonal. Hence if there are at most q orthogonal subspaces of the form $[\mathscr{A}V_jB_jf]$, where V_jB_jf is a trace vector for \mathscr{A} , then there are at most q orthogonal subspaces of the form $[\mathscr{N}'V_j^!*B_jf]$, where $V_j^!*B_jf$ is a trace vector for \mathscr{N}' by the corollary. By [3, Chapter VII], a II₁-factor with at most finitely many orthogonal, equivalent nonzero projections is finite, and by [3, Lemma 9.3.3] all subspaces of the form $[\mathscr{N}'f']$, where f' is faithful under \mathscr{N}' , are equivalent under \mathscr{N} .

Now let $E' \in \mathcal{M}'$ with dim $E' = c_1$. By a previous remark, there is a trace vector g = E'g for \mathscr{A} . For suitable $V' \in \mathscr{M}'$ and $B' \eta \mathscr{M}'$, g = V'B'f. Since E'g = g, E'V' = V' by [4, Chapter IV]. But $\dim_{\mathscr{A}'}([\mathscr{A}g]) = c_1 = \dim E'$, and therefore the projection on the range of V' cannot have dimension less than c_1 . By the finiteness of \mathscr{A}' , E' is the projection on the range of V'. Dually, by the corollary, V*Bf is a trace vector for \mathscr{N}' , and since E'V' = V', it follows that VE = V and EV* = V*. Moreover, E is the smallest projection such that EV* = V*. By [3, Lemma 6.2.1] and the fact that dimension is invariant under anti-isomorphism, E, the projection on the range of V*, has dimension c_1 . But $E\mathscr{H} \supset [\mathscr{N}'V*Bf] \eta \mathscr{N}$, so that $c_1 \geq c_2$. By duality, $c_2 \geq c_1$.

LEMMA 2.3. If g = V'B'f is a trace vector for \mathscr{A} , where V', B' are as above, B'f is a trace vector for \mathscr{A} .

Proof. (AV'B'f, V'B'f) = (AB'f, V'*V'B'f) = (AB'f, B'f) by the structure of the canonical (polar) decomposition of an operator $\eta \mathcal{M}'$.

Proof of the theorem. Let E_1' , E_2' , ..., $E_q' \in \mathcal{M}'$ be orthogonal projections of dimension $\leq c_1$ such that $E_1' + \cdots + E_q' = I$. (We can choose $q = [c_1^{-1}] + 1$ for definiteness). By [4, pp. 234-5] and previous remarks, there exist vectors f_1, \cdots, f_q with $E_j' f_j = f_j$ and $tr_{\mathcal{M}'}(A') = \sum_{j=1}^q (A'f_j, f_j)$. But $f_j = V_j B_j f$ as above, and since $E_j' f_j = f_j$, it follows that $E_j' V_j B_j f = V_j B_j f$. By the cyclicity of f under \mathcal{M} and \mathcal{M}' , and since $E_j' \in \mathcal{M}'$, $B_j (I - E_j) = 0$. By Lemma 2.3 and [4, Theorem III], we can choose $f_1 = B_1 f$ with $||f_1||^2 = c_1$ to be a trace vector for \mathcal{M} , since $E_1' \mathcal{M}' E_1'$ is anti-isomorphic to \mathcal{M} when dim $(E_1') = c_1$. Now by the orthogonality of the E_j' and the consequent orthogonality of their anti-isomorphic images E_j , the closure of $B_j B_k$ is 0 whenever $j \neq k$. Therefore, for any $M' \in \mathcal{M}'$ and $g = \sum_{j=1}^q B_j f$, a computation shows that

$$tr_{\mathcal{M}}'(M') = tr_{\mathcal{A}'}(M') = \sum_{j=1}^{q} (M'V_jB_jf, V_jB_jf) = \sum_{j=1}^{q} (M'B_jf, B_jf) = (M'g, g).$$

Similarly, using $g_j = V_j^{*} B_j f$ instead of f_j and $M \in \mathcal{M}$ instead of M', we see that $tr_{\mathcal{M}}(M) = (Mg, g)$, since $B_j^t f = B_j f$. Hence g is a joint trace vector for \mathcal{M} and \mathcal{M}' , and by [4, Lemma 4.2.3.], it must be of the form Uf, for some unitary $U \in \mathcal{M}$. Hence each B_j has a bounded extension which is positive, and $(\Sigma B_j)^2 = I$. This implies that $B_j = E_j$, and in particular that $B_1 = E_1$. Returning to any g = E'g which is a trace vector for $\mathcal A$ with dim $E' = c_1$, we have $g = V_1' E_1 f = E_1 V_1 f$ up to a normalization. But E_1 is the projection on the range of V_1 , so that $g = V_1 f$ except for normalization.

The proof of Theorem 1 shows that there is always a projection $E \in \mathcal{M}$ with $\dim(E) = c_1$ such that Ef is a trace vector for \mathscr{A} . If $c_1 = 1/n$ for some positive integer n, we can ask whether there exist n orthogonal projections E_1, \dots, E_n such that $E_j f$ is a trace vector for \mathscr{A} ($j = 1, 2, \dots, n$). In the case where $c_1 = 1/2$, it is clear that if Ef is a trace vector for \mathscr{A} , then (I - E)f is also such a trace vector. A fallacious induction led the author to assert in [2] the existence of such projections

for n > 2.) In the case of general integral n, it can be shown that there is a unitary $W \in \mathscr{A}$ such that $F = WEW^* \neq E$ but Ef and Ff are both trace vectors for \mathscr{A} . However, it is not clear whether EF = 0.

With E_1 , ..., E_n as above, we set $U = \sum_{j=1}^n \omega^j E_j$, where ω is a principal n^{th} root of unity. A computation reveals that the subspaces $[\mathscr{A}U^jf]$ and $[\mathscr{A}U^kf]$ are orthogonal if $j \not\equiv k \pmod{n}$.

Let $\mathscr{H}_1 = [\mathscr{A}f]$, and let \mathscr{A}_1 be the restriction of \mathscr{A} to \mathscr{A}_1 . Then f is cyclic (in \mathscr{H}_1) under \mathscr{A} , and therefore, by [4, Lemma 4.2.3], there exists, corresponding to each trace vector h for \mathscr{A} which is cyclic in \mathscr{H}_1 , a unitary $V \in A$ such that h = Vf, up to a scalar factor. We say that a factor of type II_1 has the C.O.N. property on a Hilbert space if there exists a C.O.N. set of cyclic trace vectors for it.

THEOREM 2. If $c_1 = 1/n$, if $\mathcal A$ has the C.O.N. property on $\mathcal H_1$, and if there are projections $E_1, \, \cdots, \, E_n \in \mathcal M$ such that the $E_k f$ are trace vectors for $\mathcal A$, then $\mathcal M$ has the C.O.N. property on $\mathcal H$.

Proof. Let $\{V_{\alpha}f\}$, where the $V_{\alpha} \in \mathcal{A}$ are unitary, be a C.O.N. set of trace vectors for \mathcal{A} in \mathcal{H}_1 . Then the sets $\{V_{\alpha}U^kf\}$ $(k=1,2,\cdots,n)$ are orthonormal and span $[\mathcal{A}Uf] \oplus \cdots \oplus [\mathcal{A}U^{n-1}f] \oplus [\mathcal{A}f] = \mathcal{H}$. Since V_{α} and U^k are unitary, $V_{\alpha}U^k \in \mathcal{M}$ is unitary and $(V_{\alpha}U^kf, V_{\beta}U^jf) = \delta_{\alpha\beta}\delta_{ik}$ for $k, j=1, 2, \cdots, n$.

3. STRUCTURE OF FACTORS

In this section we derive, under suitable hypotheses, a structure theorem for the factor \mathcal{M} in terms of the subfactor \mathcal{A} .

LEMMA 3.1. Let $U \in \mathcal{M}$ be a unitary operator such that $UAU^*f \in [\mathscr{A}f]$ for all $A \in \mathscr{A}$. Then $UAU^* \in \mathscr{A}$.

Proof. UAU*f = $\lim_{n\to\infty} A_n f$ for suitable $A_n \in \mathcal{A}$. Hence, by [5, p. 728], UAU* $\in \mathcal{A}$.

It is clear that if $U^n = I$ and $UAU*f \in [\mathscr{A}f]$ for each $A \in \mathscr{A}$, then $A \to UAU*$ is an automorphism of \mathscr{A} . In the case where c = 1/2, the $U = E_1 - E_2$ of Section 2 satisfies $U^2 = I$ and (Af, BUf) = 0 for all $A, B \in \mathscr{A}$. Therefore,

$$(UAUf, BUf) = (UAf, Bf) = (UAB*f, f) = (B*f, A*Uf) = 0$$

and $UAUf = UAU*f \in [\mathscr{A}f]$.

THEOREM 3. Let $\mathcal{A}, \mathcal{M}, \mathcal{A}', \mathcal{M}'$, f and $U \in \mathcal{M}$ be as above, with $c_1 = 1/2$. Then each $M \in \mathcal{M}$ can be written uniquely as $M = A_1 + A_2 U$ with $A_1, A_2 \in \mathcal{A}$. The multiplication is characterized by the automorphism of \mathcal{A} given by $A \to UAU$.

Proof. Since c = 1/2, (Af, BUf) = 0 for $A, B \in \mathscr{A}$ and $[\mathscr{A}f] \oplus [\mathscr{A}Uf] = \mathscr{H}$. Thus the vectors $A_1f + A_2Uf$ are dense in \mathscr{H} , and by [5, p. 728] the operators $A_1 + A_2U$ are weakly dense in \mathscr{M} .

Since c=1/2, any $B'\in \mathscr{A}'$ can be written as $B'=\sum_{i,j=1}^2 E_i'A_{ij}'E_j'^*$, where $E_1'\in \mathscr{A}'$ is the projection on $[\mathscr{A}f]$, and where $E_2'\in \mathscr{A}'$ is defined by $E_2'Af=AUf$, $E_2'AUf=0$, so that it is a partial isometry carrying $[\mathscr{A}f]$ onto $[\mathscr{A}Uf]$. The $A_{ij}'\in E_1'\mathscr{A}''E_1'$, and since $[\mathscr{A}f]=E_1'\mathscr{H}$, $A_{ij}'f=A_{ij}'f$ for a unique $A_{ij}\in \mathscr{A}$. We now ascertain which $B'=\Sigma E_1'A_{ij}'E_j'^*$ are elements of \mathscr{M}' . For this purpose, we note that

$$B'f = E'_1A'_{11}f + E'_2A'_{21}f = A_{11}f + A_{21}Uf$$

and

$$B'Uf = E_1'A_{12}'f + E_2'A_{22}'f = A_{12}f + A_{22}Uf$$
.

 $B' \in \mathcal{M}'$ if and only if B'(A + BU) = (A + BU)B' for each $A, B \in \mathcal{A}$, since the A + BU are weakly dense in \mathcal{M} and since $B' \in \mathcal{A}'$, B'A = AB'; therefore we need only require that B'U = UB'. In fact, we need only require that B'Uf = UB'f, since upon setting $A_1 = UAU$ and $B_1 = UBU$ we have

$$B'U(A + BU)f = B'A_1Uf + B'B_1f = A_1UB'f + B_1B'f = UAB'f + UBUB'f$$
$$= UB'Af + UB'BUf = UB'(A + BU)f.$$

By the boundedness of U and B' and the density of the (A' + BU)f, B'U = UB'.

In order that B'Uf = UB'f, we need $A_{12}f + A_{22}Uf = UA_{11}f + UA_{21}Uf$. By the orthogonality of $[\mathcal{A}f]$ and $[\mathcal{A}Uf]$, we must therefore have $A_{12}f = UA_{21}Uf$ and $A_{22}Uf = UA_{11}f$. Hence

(i)
$$A_{12} = UA_{21}U$$
 and $UA_{22}U = A_{11}$,

since f is faithful for \mathcal{M} .

Moreover, it is clear that if equations (i) hold, the induced $\mathbf{B}^{\, \mathrm{l}}$ is a member of $\mathcal{M}^{\, \mathrm{l}}$.

Now Bf = B'f = $A_{11}f + A_{21}Uf$ for A_{11} , $A_{21} \in \mathcal{A}$, and the theorem is proved.

When c = 1/n, we could hope for a representation of this type. Certainly the existence of a unitary $U \in \mathcal{M}$ with $U^n = I$, $U \mathcal{A} U^* \subset \mathcal{A}$, and $[\mathcal{A} U^j f]$ orthogonal to $[\mathcal{A} U^k f]$ if $j \neq k \pmod{n}$ would allow us to carry through the above proof. However, a counterexample due to J. E. McLaughlin shows that there are factors \mathcal{M}, \mathcal{A} such that for any $U \in \mathcal{M}$, $U \mathcal{A} U^* \subset \mathcal{A}$ implies $U \in \mathcal{A}$. These factors are generated as in [5] by discrete groups whose nontrivial conjugate classes are infinite. Let G be the group of 2-by-2 unimodular matrices with integral coefficients. Let G_1 be the subgroup of all matrices whose lower left-hand entry is even. Let Z be the center of

G, that is, $\begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \end{bmatrix}$. Let $\overline{G} = G/Z$ and $\overline{G}_1 = G_1/Z$. Let \mathscr{M} be the factor associated with \overline{G}_1 , and \mathscr{A} the factor associated with \overline{G}_1 . It is known that \overline{G}_1 has index 3 in \overline{G}_1 , so that c = 1/3. The proof of Lemma 3 in [1] shows that if \overline{G}_1 satisfies conditions 1 and 2 below, then each $A \in \mathscr{M}$ for which $A \mathscr{A} A^* \subset \mathscr{A}$ must be in \mathscr{A} .

Our conditions are essentially (ii) of [1], namely: if for each finite set $B \subset \overline{G}$ and for every $x \in \overline{G} - \overline{G}_1$ there is a $y \in \overline{G}_1$ such that

1.
$$x^{-1}yx \notin \overline{G}_1$$
 for all $x \in \overline{G} - \overline{G}_1$,

2.
$$z \in B$$
, $w \in B$ and $z^{-1}yw = y$ implies $z = y$.

If y is the coset containing $\begin{pmatrix} r & 1 \\ r^2 - 1 & r \end{pmatrix}$ where r is an odd number much larger than the entries of the (finitely many) matrices in the cosets of B, we see that \overline{G} and \overline{G}_1 satisfy the conditions.

4. CONCLUSION

There appear to be many open questions in this area. A characterization of the projections $E \in \mathcal{M}$ for which dim $E = c_1$ and Ef is a trace vector for would be desirable. Do there always exist n such orthogonal projections, if $c_1 = 1/n$? If not, what is the supremum of those projections?

In connection with Section 3, one can ask whether \mathscr{M} is approximately finite ([5]) if \mathscr{A} is so. This would be the case if one could show that there are finite-dimensional rings $\mathscr{A}_1 \subset \mathscr{A}_2 \subset \cdots \subset \mathscr{A}$ such that \mathscr{A} is the smallest ring of operators containing all of them, and $U\mathscr{A}_kU^* \subset \mathscr{A}_{k+p}$.

REFERENCES

- 1. J. Dixmier, Sous-anneaux abéliens maximaux dans les facteurs de type fini, Ann. of Math. (2) 59 (1954), 279-286.
- 2. M. Goldman, A coset-like decomposition relative to certain rings of operators, Bull. Amer. Math. Soc. 63 (1957), 226 (Abstract).
- 3. F. J. Murray and J. von Neumann, *On rings of operators*, Ann. of Math. (2) 56 (1936), 116-229.
- 4. ——, On rings of operators, II, Trans. Amer. Math. Soc. 41 (1937), 208-248.
- 5. ——, On rings of operators, IV, Ann. of Math. (2) 44 (1943), 716-808.

The University of Michigan