ON SUBFACTORS OF FACTORS OF TYPE II,
Malcolm Goldman

1. INTRODUCTION

In the series of papers entitled On Rings of Operators, Murray and von Neumann
study certain classes of operator algebras on a Hilbert space &#. Among the more
remarkable types of algebras are the factors of type II, [3, p. 172] which, although
they have infinitely many orthogonal nonzero projections (self-adjoint idempotents),
have a unique linear functional tr such that

(1) tr(AB) = tr(BA),
(2) tr(A*A) >0, and tr(A*A) = 0 only if A = 0,
(3) tr(I) = 1, where I is the identity operator.

An f € o such that tr(A) = a(Af, ) for a > 0 will be called a trace vector. Al-
though Murray and von Neumann assume & to be separable, subsequent work has
shown this assumption to be unnecessary, and most proofs in [3], [4], [5] do not as-
sume separability of #. Therefore, the definitions and notation of [3] will be used,
except that factors will be designated by script letters. All isomorphisms men-
tioned will preserve the adjoint operation.

In [5, Section 5.3] it is shown that any (countable) group G whose non-identity
conjugate classes contain infinitely many elements will lead to a factor of type II,
on a (separable) Hilbert space. In this paper, we study relationships between a II,-
factor and a II,-subfactor which are reminiscent of group and subgroup relationships.
The work was motivated by the factors generated in the manner of [5] by the group of
all finite permutations of the integers and the subgroup of all even permutations.

First we select the factors to be studied. In [4, Theorem II], it is shown that a
I,-factor .# with a vector cyclic under .# and .#' (we use the superscript ' to
denote the commutant [3, p. 117]) possesses a trace vector f € o with Hfﬂ = 1.
Associated with f, which will now be fixed, is an anti-isomorphism A — A' for
Ae M, A € M defined by Af = A'f. Hence, tr 4'(A") = (A'f, f). The details of the
anti-isomorphism are in [4, Chapter IV]. Let .z C .#' be a II,-subfactor such that
' is finite. Let

c) =dim (L2£}),

where [#1]= closure of {Sf: Se % }. Let #'={Ate#': A'f = Af for Aes C M}.
Then ' is anti-isomorphic to ./, and is weakly closed by [5, p. 728]. Let

cz = dim , ([#'£]). We shall show that c, = c. Since -« C #, any trace vector for
A will be a trace vector for .-/, but «/ will have trace vectors which are not trace
vectors for .#/. We shall study trace vectors g for .« which lie in the “smallest”
subspaces 1 ' in which such trace vectors can lie, that is, in subspaces of dimen-
sion ¢, by [3, Lemma 9.3.3]. Theorem 1 shows that g = oVf, where V€ .# isa
partial isometry with dim (V*V) = ¢,. If ¢, = 1/n for integral n and there are
“enough” different V’s giving trace vectors for .+, then there is a coset-like decom-
composition of # = [,del] @G o B [-xlfn ], where f, is a trace vector for .#. If
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¢, = 1/2, there always are enough V’s; and if ., in a suitable representation, has a
complete, orthonormal set of trace vectors, then the same is true of .#. This is a
very special case of a conjecture of Singer.

In Section 3, we obtain a representation theorem for .# in terms of .«#. Here,
too, no special hypotheses are needed if ¢ = 1/2, but conditions akin to normality of
subgroups are needed if ¢ = 1/n (n> 2).

2. TRACE VECTORS FOR SUBFACTORS

We shall deal with the factors .# D # D« and their commutants #'C . #'C .4 .
Since f is a trace vector for .# and .#', by [3, pp. 142-143] and [4, Lemma 4.1.2],
every vector g' € S¢ can be written as

g!=VBf =CWf =B'V'f = W'C'T,

where V, We #, V', W' € 4" are partial isometries and B, Cn.#, B!, C'nn#"' are
possibly unbounded, densely defined and defined on f, closed by [3, Theorem XV] and
self-adjoint. Therefore they have a unique resolution of unity.

THEOREM 1. Lef g be a trace vector for & with the property that for some
projection E' € #', dim (E') = ¢, and E'g = g. Then there is a partial isometry
Ve Mt and a scalar a > 0 such that g = aVi,

The proof will need a sequence of lemmas. It should be noted that every projec-
tion E' € ' with dim (E') = ¢, has a trace vector for .« in the subspace E'#. In-
deed, since dim ([#£]) = ¢, and .#"' is contained in the factor "', there is a
partial isometry W' € #' [3, Theorem VII] such that W'[#4f] = E'#. Clearly, W'f
is a trace vector for 7.

LEMMA 2.1. Let A€xZ;let V, and V, be partial isomelries in M ; and let
B,, B, n 4 be positive and defined on £. Then

(AV, B,f, V,B,f) = (A'V,*B}f, V]*B,f),

wheye A'f = Af and A' € 4,

Proof. By a well-known spectral theorem, ij = lm, an f, where j=1, 2
n

and an = S AdEAJ-. Since A — A' gives an anti-isomorphism of .# and.#', the
0

lemma is immediate for bounded Bj. Hence

(AV1 B1 f, V2 Bzf) lim (A\!?'1 Cnl f, VZBZanf)

n-— oo

lim (A'V3'C .1, V}'C ,f) = (A'V}'B,f, V]'B ).

n —*c0

COROLLARY. If V, B I is a trace vector for £, then V¥'B,f is a trace vector
for 4",

Proof. Lemma 2.1, together with the anti-isomorphism between .« and .# ' and
the uniqueness of the trace subject to conditions (1) to (3) of Section 1, gives the
corollary.
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LEMMA 2.2 If ' is finite, then 4 is finile and c, = c,.

Proof. By Lemma 2.1, the subspaces [« V;Bj f] are pairwise othogonal if and
only if the subspaces [,/V'V'* B;f ] are orthogonal. Hence if there are at most q
orthogonal subspaces of the form [.«V;Bjf], wherc V;B;f is a trace vector for .7,
then there are at most q orthogonal subspaces of the form [+’ Vi*B; f], where
Vi*B;f is a trace vector for «#' by the corollary. By [3, Chapter Vf[] a II,-factor
with at most finitely many orthogonal, equivalent nonzero projections is finite, and
by [3, Lemma 9.3.3] all subspaces of the form [.#'f'], where f' is faithful under .7 ',
are equivalent under .4 .

Now let E' € ' with dim E' = ¢,. By a previous remark, there is a trace vec-
tor g=E'g for . For suitable V' € /' and B' n-#"', g=V'B'f. Since E'g =g,
E'V' = V' by [4, Chapter IV]. But dim z:([#g]) = ¢, = dim E', and therefore the pro-
jection on the range of V' cannot have dimension less than c¢,. By the finiteness of
', E' is the projection on the range of V'. Dually, by the corollary, V*Bf is a trace
vector for .#', and since E'V' = V', it follows that VE =V and EV* = V*, Moreover,
E is the smallest projection such that EV* = V*, By [3, Lemma 6.2.1] and the fact
that dimension is invariant under anti-isomorphism, E, the projection on the range of
V*, has dimension c¢,. But E# D [#'V*Bf] 5.4, so that ¢, > c¢,. By duality, ¢, > c,.

LEMMA 2.3. If g =V'B'f is a trace vector for «Z,where V', B' are as above,
B'f is a trace vector for A .

Proof. (AV'B'f, V'B'f) = (AB'f, V'*V'B'f) = (AB'f, B'f) by the structure of the
canonical (polar) decomposition of an operator n.#"'.

Proof of the theorem. Let E'l, E'z, EI € (' be orthogonal projections of di-
mension <c, such that Ej + - + Eg (We can choose q =[c;*] + 1 for definite-
ness) By [4, pp. 234-5] and prev1ous remarks, there exist vectors fj, .-, f; with
E;fj = f; and tw (A" = 2%, (A5, £;). But f; = V;B;f as above, and since Ejf; = fj,
1t follows that E; V;B;f = V]/ B;f. By the cychclty of f under .« and .#', and smce
Eg € M, BJ(I _E ) = 0. By Lémma 2.3 and [4, Theorem III], we can choose f, = B, f
with ||, || = ¢ to be a trace vector for 7, since E,.Z'E) is anti- 1somorph1c to o
when dim (E)) = ¢,. Now by the orthogonahty of the E' and the consequent ortho-
gonality of their anti-isomorphic images Ej, the closure of BjBk is 0 whenever
i # k. Therefore, for any M' € /' and g = Z?ﬂ Bj f, a computation shows that

q q
tr, (M) =tr_,(M') =2, (M'V;B,£, VB, f) = 2. (M'B.f, Bf) = (M'g, g).
j=1 j=1

Similarly, using gj = VJ Bjf instead of fj and M € .« instead of M', we see that
tr_, (M) = (Mg, g), since Bif = B;f. Hence g is a joint trace vector for .//l and /',
and by [4, Lemma 4.2.3.], it must be of the form Uf, for some unitary U € .#. Hence
each Bj has a bounded extension which is positive, and (EBJ)2 I. This implies that
B; = Ej, and in particular that B, = E,. Returning to any g = E'g which is a trace
vector for s with dimE' = ¢,, we have g = V| E,f = E,V,f up to a normalization.

But E, is the projection on the range of V,, so that g = V,f except for normalization.

The proof of Theorem 1 shows that there is always a projection E € . with
dim (E) = ¢, such that Ef is a trace vector for 7. If ¢, = 1/n for some positive in-
teger n, we can ask whether there exist n orthogonal projections Ej, ..., E; such
that E;f is a trace vector for « (j=1, 2, *--, n). In the case where c, = 1/2, it is
clear that if Ef is a trace vector for ./, then (I - E)f is also such a trace vector. A
fallacious induction led the author to assert in [2] the existence of such projections
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for n> 2.) In the case of general integral n, it can be shown that there is a unitary
W e€ « such that F = WEW* # E but Ef and Ff are both trace vectors for «/. How-
ever, it is not clear whether EF = 0.

with E;, ..., E; as above, we set U= 3 j=1 wJEj, where w is a principal nth
root of unity. A computation reveals that the subspaces [«#Uif] and [« Ukf] are
orthogonal if j # k (mod n).

Let o, =[#f], and let ./, be the restriction of .« to «,. Then { is cyclic (in
) under ﬂ and therefore, by [4, Lemma 4.2.3], there exists, corresponding to each
trace vector h for wh1ch is cyclic in &,, a unitary V € A such that h = Vf, up to
a scalar factor. We say that a factor of type I, has the C.O.N. property on a Hilbert
space if there exists a C.0.N. set of cyclic trace vectors for it.

THEOREM 2. If ¢, = 1/n, if o has the C.O.N. property on ,, and if theve are
projections Ej}, «--, E, € M such that the Exf ave tvace vectors for £, then -# has
the C.O.N. m‘foperty on I,

Proof. Let {Va f} , where the Vo € .« are unitary, be a C.O.N. set of trace vec-
tors for  in o,. Then the sets {Vy UKf} (k=1, 2, +-+, n) are orthonormal and
span [ Uf] @ -+ @ [ U] @ [2f]=2¢. Since Vy and UK are unitary, Vo UK € .«
is unitary and (Vo UXf, Vg Ulf) = 648 9;, for k, j =1, 2, -+, n.

3. STRUCTURE OF FACTORS

In this section we derive, under suitable hypotheses, a structure theorem for the
factor .« in terms of the subfactor «.

LEMMA 3.1. Let U € 4 be a unitary opervator such that UAU*f € [«f] for all
A €z, Then UAU* € A,

Proof. UAU*f = lim__,,A_ f for suitable A, € «#. Hence, by [5, p. 728],
UAU* € /.

It is clear that if U™ =I and UAU*f € [«f] for each A € ««, then A — UAU* is
an automorphism of .#. In the case where c = 1/2, the U= E, - E, of Section 2
satisfies U2 =1 and (Af, BUf) = 0 for all A, B € .«#. Therefore,

(UAUE, BUf) = (UAf, Bf) = (UAB*{, f) = (B*f, A*Uf) = 0

and UAUf = UAU*f € [«f].

THEOREM 3. Let A, M, A", #', £ and U € 4 be as above, with ¢, = 1/2. Then
each M € M can be written uniquely as M = A, + A, U with A,, A, € 4. The multipli-
cation is charactevized by the automovphism of & given by A — UAU.

Proof. Since c¢ = 1/2, (Af, BUf) = 0 for A, B€ .« and [#f]®[«#Uf]=. Thus
the vectors A;f + A,Uf are dense in ¢, and by [5, p. 728] the operators A, + A, U
are weakly dense in .« .

Since ¢ = 1/2, any B' € «' can be written as B' 2‘1 j=1 EjA};Ej*, where
E, € ' is the projection on [#f], and where E, € &' is defmed by E' Af = AUf,
E' AUf =0, so that it is a partial 1sometry carrymg [«f] onto [« Uf]. The
A{J € E} o E}, and since [wf] = E] &, A{ jf = Aj; f for a unique Aj;j€ . We now
ascertam which B' =2 E'A' E'* are elements of (. For this purpose, we note that

B'f=EJALf+E,ALf=A, f+A,Uf
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and
BUf=E/ALf+EL,ALf=A_f+A,Uf.

B'e#("' if and only if B'(A + BU) = (A + BU)B' for each A, B € ««, since the A + BU
are weakly dense in . and since B' € &', B'A = AB'; therefore we need only re-
quire that B'U = UB'. In fact, we need only require that B'Uf = UB'{, since upon
setting A, = UAU and B, = UBU we have

B'UA+BU)=BA,Uf + B'B,f=A,UB'f + B,B'f = UAB'f + UBUB'f
= UB'Af + UB'BUf = UB' (A + BU)f.

By the boundedness of U and B' and the density of the (A'+ BU), B'U = UB'.

In order that B'Uf = UB'f, we need A,,f + A,, Uf = UA,,f + UA,, Uf. By the
orthogonality of [«/f] and [« Uf], we must therefore have A,,f = UA,, Uf and
A,,Uf = UA,,f. Hence

(i) A,,=UA, U and UA,, U=A,,,

since f is faithful for .# .

Moreover, it is clear that if equations (i) hold, the induced B' is a member of
’ﬂ'ﬂ

Now Bf = B'f = A, ,f+ A, Uf for A,,, A,, € .«, and the theorem is proved.

When c = 1/n, we could hope for a representation of this type. Certainly the
existence of a unitary U € 4 with Un=1, U~#U* C .z, and [«#Uif] orthogonal to
[#UK{] if j # k (mod n) would allow us to carry through the above proof. However,
a counterexample due to J. E. McLaughlin shows that there are factors .#,.«# such
that for any Ue€ .#, U+4U* C & implies U € ««/. These factors are generated as in
[5] by discrete groups whose nontrivial conjugate classes are infinite. Let G be the
group of 2-by-2 unimodular matrices with integral coefficients. Let G; be the sub-
group of all matrices whose lower left-hand entry is even. Let Z be the center of
G, that is, [((1) ‘1)) S _(1))] . Let G=G/Z and G, = G/Z. Let .« be the factor
associated with G, and .« the factor associated with G,. It is known that G, has in-
dex 3 in G, so that ¢ = 1/3. The proof of Lemma 3 in[1] shows that if G, satisfies
conditions 1 and 2 below, then each A € .# for which A.wZA* C .« must be in .

Our conditions are essentjally (ii) of [1], namely: if for each finite set Bc G
and for every x€ G - G; there is a y € G, such that

1. x"lyx ¢ G, forall xe G- G,,

2. z€ B, we B and z"lyw =y implies z =y.

r
rz -
the entries of the (finitely many) matrices in the cosets of B, we see that G and -(31
satisfy the conditions.

I y is the coset containing ( 1 11‘) where r is an odd number much larger than
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4. CONCLUSION

There appear to be many open questions in this area. A characterization of the
projections E € .# for which dim E = ¢; and Ef is a trace vector for ‘.«/; would be
desirable. Do there always exist n such orthogonal projections, if ¢, = 1/n? If not,
what is the supremum of those projections ?

In connection with Section 3, one can ask whether ./ is approximately finite ([5])
if &/ is so. This would be the case if one could show that there are finite-dimensional
rings &, Ce , C *+» C # such that Z is the smallest ring of operators containing all
of them, and U U* C A +p*
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