A REPRESENTATION THEORY FOR MEASURES
ON BOOLEAN ALGEBRAS
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1. INTRODUCTION

In an abstract (L)-space with weak unit (see [3], [6]), the characteristic elements
constitute a Boolean o-algebra. The countably additive measures on this algebra
may be identified with the elements of the given (L)-space. These elements, as they
reappear in the second adjoint space, are usually identified with certain Baire mea-
~ sures on the zero-dimensional, compact Hausdorff space associated with the first

adjoint space of the given (L)-space.

The principal purpose of this paper is to represent measures on an arbitrary
Boolean algebra as Baire measures on a zero-dimensional, compact Hausdorff
space. Once this purpose is achieved, certfain applications of the representation
will be indicated. Of these, the most important is intended to be a conversion proc-
ess, wherein considerations of measures and measurable functions with respect to
a o-field of sets are replaced by considerations of Baire measures and continuous
functions with respect to a zero-dimensional, compact Hausdorff space.

A first key device to be used is a decomposition of a measure into a countably
additive portion and a purely finitely additive portion. This device seems to be due
to M. Woodbury [9]. It has been used by E. Hewitt and K. Yosida [10] and by H.
Bauer [1]. A second important technique is the development of a Baire measure
from a content. Familiarity with the explanation of this technique given in [4] will
be assumed. As a third aid, free use will be made of the theory of (L)-spaces as
developed in [3] and [6].

2, PRELIMINARY CONCEPTS

Let 8 be an abstract Boolean algebra. Let o and e denote the null element and
the unit element in ¥, while a indicates the complement of the element a with rc-
spect to these elements. Let a Vb and a A b denote the lattice operations as ap-
plied to a pair of elements in 8. Frequent use will be made of the symbol Horf=1 an
as denoting the greatest lower bound in & of a sequence {an} of elements, when
such a bound exists.

Let ¢ denote a real-valued function defined on 8. Consider the three following
properties, which might be postulated for ¢.

(D) sup ep |¢>(a)| < o
(In) ¢(aVv b) =¢(a)+ ¢(b) for all a,be B with aA b= o;

(IIT) lim ¢(a,) = 0 for each nonincreasing sequence {a,} with ny_,a, =o.

n—oo0

A real-valued function ¢ defined on ¥ and possessing properties (I) and (II) is
said to be a measureon B. A measure with the additional property (III) is called a
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countably additive measure, whereas a measure for which (IIl) fails for at least one
such sequence is said to be finitely additive. A measure ¢ on 9B is called nonnega-
tive if ¢(a) > 0 for each element a of ¥, and strictly positive if $(a) > 0 for each
element other than the zero element of 8 .

A nonnegative measure ¢ on 8B is called purely finitely additive if the zero
measure is the unique countably additive measure y on B for which 0 < Y(a) < ¢(a)
for each a € 8. A measure ¢ on B is called purely finitely additive if its disjoint,
nonnegative components ¢t and ¢-, in the usual lattice sense, are both purely finitely
additive.

Now let ¢ be any measure on B. A decomposition of ¢ essential to our work is
accomplished as follows.

First let ¢+, ¢~ be defined by the relations

(A) ¢*(a) = SUPL < ¢(b), -¢~(a) = inbea é(b),

for all a € 8. Next let ¢*P be defined by the relation

(B) ¢*P(a) = sup [lim{qb*(an)}l a,<a, any <a,, Il ap= 0]
n n=1

for all a € A. Let ¢~P be defined by a similar relation based on ¢~.
Finally let ¢¥€, ¢™¢ be defined by the relations

(©) ¢tC(a) = 9% (a) - ¢*P(a), ¢ “(a) =¢"(a) - ¢97P(a),

for all a € B. The analysis of ¢ may now be described.

THEOREM 2.1. Le! ¢ be a measure on . Then each of the six functions
ot o7, ¢TC, 67C, ¢*P, ¢~P is a nonnegative measure on B , and

¢ =[¢%¢ - ¢7C] + [¢*P - ¢7P]
is the (unique) expression of ¢ as the sum of a countably additive measure and a

purely finitely additive measure.

‘Proof. Here ¢+, ¢~ are familiar (see [4], [6]). There is little difficulty in
verifying that ¢*P, =P are nonnegative measures on $, and that the same is true of

¢*<, $~C¢. Moreover, ¢+<, ¢~C are counggbly additive on ®. Thus let {a,} be a non-

increasing sequence of elements with Il,-; a, =0 in 3B. Note that
$*P(ap,) > lim{$*(a,)}
for all m. Then, from the relations

$*(ay) + #P(a,) = ¢*(@y) and  Lim{g*<(@y} + lim{¢*P(a,)} = lim{s*(a,)},

one concludes that lim_{¢*P(a,)} = lim,{¢*(a,)} and lim,{¢*S(a,)} = 0. Thus ¢*c
is countably additive on 9, and a similar proof holds for ¢<C.

Finally, if ¥ is a nonnegative, countably additive measure on %, with
0 < ¥(a) < $*P(a) for each a € B, it is to be shown that ¥ is the zero measure on
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B. For some a € 9, let Y(a) = 3r > 0. Then ¢+P(a) > 3r. By definition of ¢*P,
there exists a nonincreasing sequence {an} with anp <a and I¥-ja, =o0 in B, with
the property that lim,{¢+(a,)} > 2r. Then ¢*P(a,) > 2r for each a, in this se-
quence, while lim, 1¥ (ay)} = 0. But a = a,\v (a Aa,). Hence, for some subscript
ny, Y(a A E.no) > 2r. But then ¢*P(a) > 4r. Repeating this procedure, one would con-

clude that ¢+P(a) > nr for each positive integer n. However, ¢ (and thus ¢*P) is
bounded on B. Hence r = 0 and ¥ is the zero measure on 3.

3. BOOLEAN MEASURES AS BAIRE MEASURES

Let B continue to denote an abstract Boolean algebra. Let X, be the set of all
measures on B assuming the values 0 and 1 and no other values. For a € 9, let
0, be the set of all ¢ € X, such that ¢(a) = 1. The sets 0, being taken as a basis for
open sets, X, is the zero-dimensional, compact, Hausdorif, Stone-representation
space for ¥ [5]. Thus, under the correspondence a —0,, the family of all open-
closed subsets of X, is a faithful representation of 8 as a Boolean algebra, atten-
tion being restricted to finite unions and intersections.

With respect to X,, let M be the class of all Baire sets, and let % be the class
of all Baire sets of the first category. Thus I is the o-algebra of subsets of X,
generated by the compact Gg-subsets of X, or, equivalently, the og-algebra of sub-
sets of X, generated by the open-closed subsets of X,. A Baire measure on X, is
understood, of course, to be a nonnegative, countably additive measure on M.

Every Baire measure ¢, on X, is regular (see [4], p. 228). Thus
¢o(B) = sup{¢,(C)| C € B, C a compact Gg-set in X},

for each Baire set B of X,. Since each compact Gg-subset C of X, may be re-
garded as the set intersection C = ﬂff’=1 Oan of a nonincreasing sequence of open-

closed subsets Oan, one concludes that Baire measures on X, are uniquely speci-
fied by their values on the open-closed subsets of X,.

Now let ¢, be a Baire measure on X,. Define a function ¢ on ¥ with
#(a) = $4(0,) according to the correspondence a «+0,. Then ¢ is a nonnegative
measure on 8. Conversely, let ¢ be a nonnegative measure on 8. For each com-
pact subset C of X,, let A(C) = inf{¢(a)| Cc 0,, a€ B}, Then the function A is a
content (see [4], p. 231), defined on the compact subsets of X,. This content, in the
manner described in [4], generates a Borel measure (and thus a Baire measure) bo
on X,. In particular, for the open-closed subsets 0, of X;, one has

#(a) = AM0,) = p(0,)

(see [4], p. 234, Theorem C). Therefore there exists a one-to-one onto correspon-
dence of Baire measures on X, to nonnegative measures on 3. This correspondence
may be extended to a similar correspondence of signed Baire measures on X, to the -
signed measures on 9.

Now let ¢ be a nonnegative measure on . Let ¢ = ¢€ + ¢P be an expression for
it as the sum of a nonnegative, countably additive measure ¢< and a nonnegative,
purely finitely additive measure ¢P on 8. Let ¢, ¢5, 5 be the corresponding
Baire measures. It is then easily verified that ¢5 vanishes on every compact Gg-
set in X, with empty interior. Moreover, since every Baire set of the first category
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in X, has an empty interior, the measure ¢; is seen, by regularity, to be identically
zero on the class % of all Baire sets of the first category. Conversely, a Baire
measure on X, vanishing on the class % has value zero for all compact Gg-sets
with empty interior, these latter being nowhere-dense Baire subsets of X,. Then the
measure ¢ on B corresponding to such a measure is seen to be countably additive
on B, and one concludes that nonnegative, countably additive measures on $ are in
one-to-one onto correspondence with Baire measures on X, vanishing on 9.

Next, with Baire measure ¢8 corresponding to ¢P, let
Yo(B) = sup {¢5(N)| Nc B, Ne }

for each Baire set B of X,. It is a small matter to verify that i, thus defined, is a
Baire measure on X,. Then (¢>8 - Yg) is a nonnegative Baire measure on X,, vanish-
ing on the class . If Y is the corresponding countably additive measure on 3,
from 0 < ¢ < ¢P, one concludes that ¥ is the zero measure on 9, and thus that

(¢g - z[/O) is the zero Baire measure. Thus qbg = ¥,. Here the construction shows
that ¢>8 = Y is zero outside a certain Baire set of the first category. Conversely, it
is easily seen that a Baire measure on X, that is zero outside a Baire set of the first
category determines a purely finitely additive measure on 9.

Finally, for the Baire measure ¢, and for each Baire set B, let
Vo) = sup {$,(N)| Nc B, Nem}.

Let z/xo l,DO » so that ¢, = z// + 1//p Again it is easily verified that 1{/8 isa
Baire measure vanishing out51de a certam Baire set of the flrst category, while wc
is a Baire measure vanishing on 2. Then, with ¢4 = ¢0 + ({)0 = zpo + 1[/0, itis a
small matter to conclude that ¢5 = ¢§ and ¢f = ¢§. Thus the decomposition

® =6+ ¢P of a nonnegative measure ¢ on B into a sum of countably and purely
finite additive portions in unique.

THEOREM 3.1. The measures on an abstract Boolean algebrva B ave in one-to-
one onto corrvespondence to the Baire measures on the Stone-vepresentation space
X, of B. A measure on B is countably additive if and only if its Baive countevpart
vanishes on all Baire sels of the first category. A mieasuve on B is puvely finitely
additive if and only if its Baive countevpart vanishes outside a Baive set of the firsi
category.

4, BOOLEAN MEASURES AS ABSTRACT (Lj-SPACES

As is well known [7], the linear, normed lattice of all Baire measures on a com-
pact Hausdorff space is an abstract (L)-space. Under the correspondence just de-
veloped, the set of all measures on a Boolean algebra is then also an abstract (L)-
space. However, in view of the decomposition of a Baire measure into a Baire mea-
sure identically zero on  and a Baire measure zero outside a Baire set N € %, to-
gether with the obvious disjointness of any two Baire measures of these distinct
types, one concludes that the abstract (L)-space of all Baire measures may be
viewed as the cross product of two abstract (L)-spaces, one composed of all signed
Baire measures identically zero on %, and the other composed of all signed Baire
measures vanishing outside some element of ®t. This cross product of Baire
measures is reflected in a cross product of the countably additive and the purely
finitely additive measures of an arbitrary abstract Boolean algebra.
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THEOREM 4.1. For arbitrary abstvact Boolean algebra B, the set of all mea-
sures, the set of all countably additive measures and the set of all purely finitely
additive measures each constitute an abstract (L)-space. If these thrvee sets of
measuves ave vegavded as abstract (L)-spaces, the fivst is the cross product of the
remaining two.

An interesting application of this viewpoint is found in the theory of abstract (L)-
spaces with weak unit. In general, such spaces are not reflexive [7]. However, in
such spaces the set of all characteristic elements constitutes a Boolean o-algebra.
Moreover, the given abstract (L)-space can be identified with the abstract (L)-space
of all countably additive measures on this o-algebra [3]. At the same time, the first
adjoint space is the (M)-space of all continuous, real-valued functions on the com-
pact Hausdorff space that is the Stone-representation space for this Boolean o-
algebra. Finally, the second adjoint space is the (L)-space of all Baire measures
on this zero-dimensional, compact Hausdorff space. On expressing this second ad-
joint space of Baire measures as a cross product in the manner indicated above, the
first factor (that is, the factor composed of all Baire measures vanishing identically
on %) can be identified with the given abstract (L)-space.

THEOREM 4.2. The second adjoint space of an abstract (L)-space with weak
unit is the crvoss product of the given abstvact (L)-space together with a second,
newly introduced abstract (L)-space.

5. STRICTLY POSITIVE BOOLEAN MEASURES

Henceforth, let B denote a Boolean o-algebra. The conditions under which such
algebras possess a strictly positive, countably additive measure have been much dis-
cussed. This section is intended to add one comment to that discussion. If there ex-
ists a strictly positive, countably additive measure on 8, then clearly any family of
pairwise disjoint elements of ¥ is at most countably infinite. More interesting,
however, is the fact that this condition suffices to distinguish an element a;, in 8,
with the property that there exists a nonnegative, countably additive measure on B
which is strictly positive on elements of 9 contained in a, while every countably
additive measure on 8 is 1dent1ca11y zero on elements of ¥ contained in the com-
plement of a,.

Thus, let 8 be a Boolean o-algebra satisfying the stated countability condition.
Let ¢ be any nonnegative, countably additive measure on B. By Zorn’s lemma; one
may form a maximal family of pairwise disjoint elements of B on which ¢ vanishes.
Under the assumed condition, this family is at most countable. Under the o-addi-
tivity condition, ¢ vanishes on the element of ¥ which is the union in 8 of the ele-
ments of this family. Because of the maximality of the family, ¢ vanishes on no
element of ¥ contained in the complement of this union. Thus to each such measure
¢ is assigned an element of ¥ with the property that ‘¢ is strictly positive on ele-
ments of ¥ contained in this element, and identically zero on elements of B con-
tained in the complement of this element.

Next, let ¥ be a second nonnegative and countably additive measure on %. As-
sume that ¢ A ¥ = 0. Let a, represent the intersection in 8 of the elements as-
signed as above to ¢ and y. Recall that [¢ A ¢](a,) = g.l.b.b<ao{ ¢(b) + w(b A ag)}.

By virtue of this fact and under the assumption that ¢ A ¥ = 0 one may construct, for
arbitrary ¢ > 0, a nonmcreasmg sequence 1b,f with b, < a,, with ¢(b,) < /2" and
Ybni1A by < s/(2th ), while (b1 A ao) < €/2. Then ¢(II5-1b,) = 0. This implies
that I3, b, = 0, since ¢ is strictly positive for elements of B contained in as.
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Hence aq= (agA b) V(b3 A bp) V ++-. This, however, means that Y(a ) <&. Thus

a, =0 in B, since Y likewise is strictly positive on nonzero elements of % con-
tained in a, Hence, if ¢ and ¥ are any two nonnegative, countably additive measures
on 9, with the property that ¢ A ¥ = o, then the elements of 8 assigned as above to

¢ and Y are disjoint.

Finally, let {qb,y, y € T'} denote a maximal family of pairwise disjoint, nonnegative,
countably additive measures on 8. Since the elements of B associated as above
with these measures form a family of pairwise disjoint elements of 9, it follows that
this family of elements of 3, and thus the given maximal family of measures, is at
most countable. Let {¢,} (n=1, 2, :--) denote this family, according to some enum-
eration, after each measure has been normalized with value 1 on the unit element in
8. Then ¢ = Z2., (1/2")- ¢, is a countably additive measure that is strictly positive
for elements of B contained in the union of the elements assigned to the individual
én, and it vanishes identically on elements of B contained in the complement of this
union. Moreover, by the assumed maximality of the family of measures, the trivial
zero measure is the only countably additive measure possible on this complementary
element. This may be summarized as follows.

THEOREM 5.1. In any Boolean o-algebva B, with the property that each family
of pairwise disjoint elements of the algebva is at most countably infinite, there exists
an element of B and a countably additive measuve on B such that this measure is
strictly positive on elements of ¥ contained in this element, while this measure and
every other countably additive measure on B is identically zevo on elements of B
contained in the complement of this element.

Each element of a Boolean o-algebra determines a Boolean o-algebra composed
of all elements majorized by that element (such an algebra will be called a principal
subalgebra). Moreover, any set of necessary and sufficient conditions for the exis-
tence of a strictly positive, countably additive measure must be equally applicable to
the entire algebra and to each principal subalgebra. Hence, the preceding theorem
indicates that it would be of equal profit to seek a set of conditions, applicable at
once to the whole algebra and to each principal sub-algebra, which are necessary and
sufficient for the existence of some nontrivial, countably additive measure.

6. MEASURABLE SPACES AND BAIRE MEASURES

Let M denote a o-field of subsets of a set Y. Assume that M is separating in
the sense that, for each pair of distinct points p and q in Y, there is an element E
in 9, with p€ E and q ¢ E.

The elements of 9, as partially ordered by the inclusion relation, constitute a
Boolean o-algebra. Measures on 9 may be considered as measures on this alge-
bra, and conversely. The distinction of countably additive and purely finitely additive
measures, along with the decomposition procedures, is preserved in this conversion.
In short, all measure concepts introduced for Boolean o-algebras are now transferred
unchanged to this o-field of sets.

Let X(m) denote the Stone-representation space of M considered as a Boolean
algebra. The points of X(M) may be regarded as zero-one measures on M. They
may also be considered as prime dual ideals of elements of M viewed as a Boolean
algebra. Each point in the set Y may be identified with a unique point in X(3), so
that Y may be regarded as a subset of X(9). The residues in Y of the open-closed
subsets of X(M) are the subsets of Y in the field M.
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The set Y, as underlying the o-field M, is not assumed to possess a topology.
However, even though the continuity concept is inapplicable, the concept of a real-
valued function, defined on Y and measurable with respect to M, is available. Now
let f denote a real-valued function defined and continuous on X(9Mm), and let f denote
the restriction of f on X(M) to the subset Y of X(M).

THEOREM 6.1. The functions ¥ defined and continuous on X(M), as vestricted
to the subset Y of X(Mm), are identical with the functions f defined and bounded on Y,
and measurable with vespect to M.

Proof. Any function f, defined and continuous on X(9), is Baire measurable.
Thus, for each real number r, the set P(f, r) = {pe X(m)|f(p) > r} is a Baire subset
of X(M). Hence (see[4], p. 223), P(f, r) is congruent to an open-closed subset Ox
of X(9M) modulo a Baire subset N of the first category. Such a set N, however, is a
Baire subset of a countable union | Ji-; C,, where each C, is a compact Gg-subset of

. s . _ [oe] s -
X(M) with empty interior. Thus C, = []m=1 OEnm’ where each OEnm is an open

- closed subset of X(M), determined by an element E,,, of M. If a point p, of the
subset Y of X(M) were in such a C,, then it would follow that p, € E, = ﬂ°§1=1 E ms
and the set E, would be a nonzero element of M. Then O C C,, contrary to the

o

assumption that C,, had an empty interior. Thus each C, is without points of the
subset Y of X(M) and, in consequence, so likewise is the set N. Therefore, with
P(f, r) congruent to Ox modulo N in X(9M), one concludes that P(f, r) n Y = E.
Hence, with f denoting I as restricted to Y, the set P(f, r) = {pe Y|f(p) > r} is
seen to be an element of M. Thus f is a function defined and bounded on Y, mea-
surable with respect to the o-field M.

The converse statement, that each function f, defined and bounded on Y and
measurable with respect to 9, determines a (unique) function f defined and con-
tinuous on X(9M) whose restriction to Y is identical with the given f, is easily es-
tablished and need not delay us.

Now let L(Y, M) denote the space of all functions { defined and bounded on Y
and measurable with respect to 9. To each element f of L(Y, M), assign the norm
£l = sup{|£(p)|| p € ¥Y}. With this norm, L(Y, :) becomes a Banach space. This
space, as the preceding theorem indicates, is equivalent to the Banach space C[X(m)]
of continuous functions on X(9:), with the usual norm. The bounded linear functionals
F, on this latter space are, of course, determined by Baire measures ¢, on X(m),

and they assume the form F,(f) = S‘ fdp,(x). Such measures ¢,, however, throughthe
X

relation ¢(E) = ¢o(0g), are in one-to-one onto correspondence to measures ¢ on the
o-field M. Thus the bounded linear functionals on L(Y, M) are all of the form

S fd¢(y), where ¢ is any measure on the field M .
Y

THEOREM 6.2. Measuvres on the field M and bounded linear functionals on the
space L(Y, M) are in one-to-one onto corvespondence to Baire measures on X(M)
and bounded linear functionals on C[X(M)| through the velations ¢(E) = ¢(0g) and

F(f) = S‘Y fdg = EX fdg, = F (.

We next introduce a o-ideal M of elements of the o-field M of subsets of the
set Y. Let L(Y, 9% ) continue to denote the space of functions defined and bounded on
Y, and measurable with respect to M . Now, however, to each element f of L(Y, M),
assign as norm |¥f "oo the infimum of the real numbers r with the property that the
elements E(r) = {p € Y| |f(p)| > r} of M are in the ideal %. Finally, after

{
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identifying elements f and g of L(Y, M) with ||[f - g|l,, = 0, let L (Y, M, %) denote
the resulting Banach space.

Continue to let X(m) have its earlier significance. Now, however, let X( %) de-
note the subspace of X(9) consisting of all points representing zero-one measures
on M vanishing on N or, equivalently, representing prime dual ideals of the algebra
M containing no elements of the ideal % . In terms of these descriptions, it is clear
that X(®) is a closed subset of X(9), and thus a zero-dimensional, compact Haus-
dorff space. It is easily verified that the open-closed subsets of X(®) are all of the
form O0g N X(N), where E is an element of M. It should be noted, however, that a
single open-closed subset of X(%) may be derived from many different elements of
9, while each element of M in % corresponds to the empty set in X(%).

It will now be shown that the Banach space L(Y, M, %) is equivalent to the
Banach space C[X(9)]. Thus let f be any element of L(Y, M), and let f be the cor-
responding continuous function on X(M), as explained earlier. We wish to show that
| £]leo = sup {|E(p)| | p € X(W)}, so that ||f||cc equals the uniform norm of f as re-
stricted to X(9%). Denote this restriction of f by f,. Also, to avoid absolute-value
signs, we assume f and f to be nonnegative. Let r be any real number greater than
llflo. Let F(r) = {pe X(Mm)| f(p) > r}. If pye F(r), then the prime dual ideal of
elements of M represented by p, must contain an element of M in the ideal %N.
Hence each such subset F(r) of X(m) is disjoint from the subspace X(%). Thus
| fo]l < ||f]lo- Next let r be any number less than |f|, and let F(r) be as above.
F(r) is a compact subset of X(M). If F(r) were disjoint from X(9), it would be pos-
sible to cover F(r) in X(mM) by open-closed subsets of the type O, where each E
is an element of M in N. Then, in virtue of the compactness of F(r), there would
be a single element E, of M in %, with the property that O _ contains F(r). This,
however, would imply that "f“(,0 =r < Hf"m Thus, the sets F(Zr) must contain points
of X(N) for each real number r less than ||f «. The desired conclusion, that
| £llo = | o]l, is now established.

It is now clear that each element f of L(Y, : ) determines an element fo of
c[x()] with |fl, = [|[fo]. Also, two elements f and g of L(Y, m) are to be identi-
fied in Lo(Y, M, %) (with ||f - g|lw = 0) if and only if f, = g, on X(N). Finally, it
should be shown that every element h of C[X(%)] has the property that h = f, for
some element f of L(Y,M). This is easily done in virtue of the Stone-Weierstrass
approximation theorem, once one adverts to the fact that, with each element f of
L(Y, %) with corresponding element f, of C[X(%)], there is associated an element
g of L(Y, M) with |g| = | gl and g, =, We note in passing that this entire last
development is equivalent to the statement that every function defined and continuous
on X(%) has a continuous extension on X(a).

It has now been established that the Banach space L.(Y, 2, ) is equivalent to
the Banach space C[X(®)]. Thus the bounded, linear functionals on Le(Y, 22, %)
correspond to those on C[X(%)], and thence to Baire measures on X(®). If ¢, is a
measure of this latter type, then the function ¢, defined on MM through the relation
¢(E) = ¢g(0g N X(M)), is a measure defined on M and vanishing on N. Conversely,
if ¢ is a measure on M vanishing on N, then, for elements E and F of s with
O N X(N) = 0p N X(N), it is easily shown that ¢(E) = ¢(EN F) = ¢(F). From this
it follows that there is an unique Baire measure ¢, on X(%) with

(f)(E) = ¢0(0E n X(x)).

It is now established that there is a one-to-one onto correspondence of measures
on M vanishing on N to Baire measures on X(N). Moreover, there is no difficulty
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in showing, first, that the countably additive measures on 9 vanishing on % corre-

spond to Baire measures on X(%) vanishing on Baire sets of the first category, and

second, that the purely finitely additive measures on M vanishing on N correspond

to Baire measures identically zero outside a Baire set of the first category. Finally,
with measures ¢ and ¢, corresponding as described above, and bounded linear func-
tional F on L(Y,m , %) corresponding to F, on C[X(%)], one concludes that

F(f) =§ fdp = fodeg = Fy(fp).
Y X(m)
These results are now summarized.

THEOREM 6.3. Thyough the velationship [f] —f with "f".,o = ﬂ fo", the Banach
spaces Lyo(Y, M, M) and C[X(RN)] are made equivalent. The resulting equivalence
of their adjoint spaces shows itself in the convertibility of measurves on M vanishing
on N with Baire measures on X(N).

The developments of this section are, essentially, a reformulation of work found
in [10]. However, the direct conversion of measurable functions into continuous func-
tions and of set measures into Baire measures, here employed, provides notable
economy of concept, proof and understanding. It may now be noted that the final con-
jecture of [10] is substantially correct. A correct version of the conjecture follows.

THEOREM 6.4. L&(Y, M, N) contains no countably additive measure if and only
if every countevpart Baive measuve can be confined to a Baive set of the fivst cate-

gory.
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