A THEOREM OF E. HOPF
L. W. Green

In 1948, E. Hopf published [2] a remarkable theorem to the effect that the total
curvatuve of a closed suvface without conjugate points is nonpositive and vanishes
only if the surface is flat. (Here a Riemannian manifold is said to be without con-
jugate points if no geodesic contains a pair of mutually conjugate points.) Thanks to
the Gauss-Bonnet formula, the latter part of this theorem may be paraphrased: a
torus without conjugate points is flat. We have been able to modify Hopf’s proof to
obtain the following result.

THEOREM. The integval of the scalar curvature (contrvacted Riemann tensor) of
a compact C* Riemannian manifold without conjugate points is nonpositive, and it
vanishes only if the melvric is locally euclidean.

Here, however, the Gauss-Bonnet-Allendoerfer-Chern-Weil-Fenchel formula
does not apply, so that whether an n-dimensional torus without conjugate points is
flat is still an open question.

1. ORDINARY DIFFERENTIAL EQUATIONS

Consider the real mXm matrix differential equation in one independent variable,
@) A"(s) + K(s)A(s) = 0,
where K(s) is continuous in s and symmetric. (All differentiations, denoted by
dashes, and integrations are entry-wise.) Assume that the solution A(s) with
A(0C) = 0 and A'(0) = I (identity matrix) is such that det A(s) # 0 for s # 0. (This
corresponds to the nonconjugacy hypothesis.) Then most of the formalism of the one
dependent variable case carries over; in particular, the Wronskian of two solutions

A and B, (A")*B - A*B', is constant (* denotes transpose). Putting A = B, we find
that A'A~! is symmetric for s # 0. Setting

B.(® - As)[ A @[a-®]*at,

we see that B, is a solution of (J) for 0 < s < ¢ such that

Bo(0) = lim Bs) = I

and B.(c) = 0. Since the integrand is symmetric and positive definite, and

B.(s) - B4(s) = A(s)[B_'(0) = Bj(0)],
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the term in brackets is symmetric and positive definite if 0 < d < ¢. (We shall use
the same symbol B to denote the solution of (J) defined for all s and equal to the
integral expression when the latter exists.) Set

B_,(s) = A(s)N_+ B_(s),

where N¢ = -A~"1(-1)B¢(-1). Another argument with the Wronskian shows that N. is
symmetric. B_,(s) is a solution of (J) with B_,(-1) = 0, B_,(0) = I, and

B',(0) - BL(O) = N

Now N is positive definite for every positive c¢. It is sufficient to show this for
Ngl, and differentiation at t = 0 reveals that B-1(t) A(t) is positive definite for small
positive t, consequently for all positive t (in particular, for t = ¢), since its deter-
minant is positive for positive t. Hence the set of positive definite matrices

{B'C(O) - B} (0)| ¢ > 1} is monotone increasing in ¢ and bounded above by

B.,(0) - B,(0).
The existence of the least upper bound for this set is clear, and we obtain the first

part of
LEMMA 1. a) lim [BL(0) - B1(0)] = Q exists and is symmeltric.

b) hm B.(s) = D(s) exists (uniformly for bounded s mtem)als)

D(s) is a solution of (J) such that D(0) = I, D'(0) = Q + B/(0), arnd det D(s) # 0 for all
s.

Part (b) of the lemma is a consequence of the continuous dependence of solutions
of equation (J) on the initial data.

A computation now shows that U(s) = D'(s) D-1(s) is a symmetric solution, de-
fined for all s, of the Riccati matrix equation :
(R) U'(s) + U2(s) + K(s) = 0, ~0 <8< 00,
Moreover, the construction of U(s) is independent of the position of s = 0, in the fol-
lowing sense:

LEMMA 2. If Z(s; a) = llm Z(s; a, b), wheve Z(s; a, b) is the solution of (J)
with Z(a; a, b) =1 and Z(b; a b) = 0, then Z'(s; a) Z~-1(s; a) = U(s).

The proof of Lemma 2 is the same as the corresponding result in [2], and it will
therefore be omitted.

In a system of differential equations such as (R), it is often possible to apbly
standard Sturm comparison techniques to the inner product (U(s)x, x) for constant
vectors Xx.

LEMMA 3. If (K(s)x, x) > -R? for every unit vector x and all s, then
| (U(s)x, x)| < R for all s, and consequently U(s) is uniformly bounded,

Proof. Suppose (U(ty)x, x) > r > R for some t, and unit x. There is a number d
such that

r coth (rt, - d) = (U(ty)x, x);
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set V(t) = [r coth(rt - d)]I. Then V is a solution of the equation V' + V2 - r?I = 0,
for t# d/r. Put f(t) = ([U(t) - V(t)]x, x). Then

1 (t) + (U2(ty)x, x) - (VA(t)x, ¥) + (K(ty)x, X) + r2 =0,
But
(8) (V3(ty)x, x) = r? coth®(rt, - d) = (U(ty)x, x)* < (Ulty)x, Ult)x) = (U(ty)x, x),

by Schwarz’s inequality and the symmetry of U. Therefore f'(t,) < 0, and hence
f(t) < 0 for t> t,. The remainder of the proof follows Lemma 2.1 of [1]; the only
additional information needed is inequality (S).

In addition, if K(s, P) depends measurably on the (measure-space) variable P,
then U(s, P) is also measurable. (This is proved exactly as in[2].)

2. APPLICATION TO GEOMETRY

L.et M be an n-dimensional compact C* Riemannian manifold with no conjugate
points, B its bundle of orthonormal frames, and T the unit tangent bundle. Let the
natural projection of B onto T be given by (x; e,, **+, en)— (X, en). The geodesic
flow of M is defined to be the one-parameter group of homeomorphisms of T ob-
tained by sending the element P = (x, e,) after time t into the unit tangent vector P;
at the end of the (directed) geodesic segment of length t with initial conditions
(x, en). This flow is measure-preserving when one uses the natural volume element
dm = dV do, where dV is the volume element on M and do is the measure on the
unit (n - 1)-sphere.

By fixing an element (x; e,, -+, e,) of B, a set of Fermi coordinates is specified
along the geodesic on M with initial element (x, e,). In these coordinates, with s as
arc-length, the Jacobi equations become

dz . . j
a? yl(s) + Kj(Ps) YJ(S) = 0’

where the indices run from 1 to n - 1, and where K}(Ps) is the curvature tensor
contracted in the direction P4 (P, = (X, ey)). The hypothesis that there be no con-
jugate points enables us to apply the results of Section 1, and to obtain a well-defined
symmetric matrix U(s; x, e,, ***, ep) which is a solution for all s of the equation (R),
measurable in the bundle variables. If O is an (n - 1)X(n - 1) orthogonal matrix
which accomplishes a change of frame (leaving e, fixed), the equation becomes

OU'(s)O™'+ OU%(s)O~ !+ OK(s)O! = 0.
Therefore (ir denotes trace)
tr U'+tr U2+ tr K =0
is an equation in functions of (s, P) = P; only. By Lemma 2, tr U and tr U? are

well-defined functions of Py, regardless of the choice of initial element for the
geodesic. Integrating with respect to s, we get
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1 1 .
tr U(P,) - tr U(P) + J’ tr UX(PJ) ds + .[ K;(P.)ds = 0
0 0

Now integrate with respect to dm over all of T, and use the fact that dm is invar-
iant with respect to the geodesic flow. We find that

f J tr U"’(I; )dsdm + J j Kl(P )dsdm = J tr U%(P)dm + J K(P)dm
T o

In terms of local coordmates with P = (x, e,) and e, having components vJ,
KI(P) = K1 a® v vK; hence we may evaluate the last integral as follows:

sn-1

LK%(P)d f f Ky (0 vivEdoay = Zn=l fMK(x) av,

where K(x) is the scalar curvature of M (the contracted Ricci tensor). The final
formula from which the theorem follows is

wn-l
j-» tr U3(P)dm = - - f K(x)dv.
M

Now, because U is symmetric, tr U? equals the sum of the squares of all components
of U. But if U vanishes identically, so must the curvature tensor, since P is arbi-
trary.
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