CUBIC CONGRUENCES

D. J. Lewis

1. INTRODUCTION

It has been conjectured that there exists a positive integer N such that every
homogeneous cubic polynomial equation over an algebraic number field in at least
N variables has a nontrivial solution in that field. It is known [2] that if such an N
exists, then N > 10. In an attempt to determine an upper bound on N we were led
to the problem of determining the smallest integer M such that if m is an ideal in a
ring A of algebraic integers, then every congruence of the form

n
Z ox$=0(modm) (a; in A, n>M)

i=1

has a solution in A which is nontrivial, modulo each prime factor of m. The results
of [2] can be used to show that M need not exceed ten. It is our purpose here to show
that M = 7 will suffice, and that no smaller value will do. In showing this fact, we
consider diagonalized cubic forms over finite fields and over p -adic fields.

2. DIAGONALIZED CUBICS OVER FINITE FIELDS
THEOREM 1. If k is a finile field and a, b and c are in k, then the equation
1) . ax3+ by®+cz¥=0

has a nontrivial solution in k.

Assume that k has characteristic p; then k has q = pf elements. Let k* be
the group of nonzero elements of k, and let k® be the group of cubes of k*. If a is
in k3, so are (a~!) and (-a). If q # 1 (mod 3), there exist integers s and t such
that 1 = (g - 1)s + 3t, hence a = (al)?, and we have k* = k3. If q =1 (mod 3), then
k3 # k*, In fact, k® contains exactly (q - 1)/3 elements, and if 6 is not in k3, then
k* = k2U6Kk3 UH3kS.

We may assume that abc # 0; otherwise the result is trivially true. If ab™! is
in k3, say e’ = ab~?, then (1, -e, 0) is a solution of (1). We obtain similar solutions
if ac™ or bc~! are in k3. Thus we are left with the case where a, b and c lie in
different cosets of k, modulo k3, a situation which can only occur if g =1 (mod 3).
The following lemma completes the proof of Theorem 1.

LEMMA 1. If q=1 (mod 3) and k is a field of q elements, then theve exists a
nonzevo element 6 of k which is not in k3 and such that the equation

146 = 5228

has a solution in k.
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Let W be the set of all nonzero elements of k* of the form p3 - 1. Then W con-
tains exactly (q - 4)/3 distinct elements. Let W-! be the set of multiplicative in-
verses of the elements of W, and let V= k3UWUW~, Then V contains at most
d - 3 elements. Let 6 be any nonzero element of k not in V. Clearly, 6 and 1+ 6
are not in k® Furthermore, 6-! is notin V, hence 1+ 67! is not in k3, and conse-
quently 1 + 0 is not in 0k3. Since -1 isin k3, 1+ 6 # 0, and it follows that 1 + &
is in 6%k3,

For many diagonalized forms of degree d # 3 over finite fields, d + 1 variables
are necessary to guarantee that the form will have a nontrivial zero in the field of
coefficients of the form. This is easily seen by observing that if p is a prime, the

- -1
congruence Zliil xli) = 0 (mod p) has only the trivial solution, modulo p. Also,

since our proof relied heavily on the fact that the quotient group k*/k® is of order
three, one would not expect this proof to generalize to higher degrees. It should also
be noted, in passing, that there exist homogeneous cubic polynomials over k in three
variables, that have only the trivial zero in k; example: the norm form of GF(q3®) to
GF(q).

3. DIAGONALIZED CUBICS OVER p-ADIC FIELDS, WHERE THE
RESIDUE CLASS FIELD HAS CHARACTERISTIC 3

Let K be a complete field under a discrete nontrivial valuation whose residue
class field k is isomorphic to GF(Sf). If the characteristic of K is not zero, let
T = K. If the characteristic of K is zero, let T be the inertial field of K relative
to the minimal complete subfield of K. Then the residue class field of T is iso-
morphic to k. Let D be the ring of integers of K, and ¢ the prime ideal in D .
Then » = TN D is the ring of integers of T, and p = P N » is the prime ideal in ».
Let R be a complete residue system of o, modulo p, containing 0, 1, -1. R will
also serve as a complete residue system of O, modulo $. Let II be a fixed prime
of $, 7 a fixed prime of p. Then 7= €II¢ (mod Pe*!l), where ¢ isin R and e is
the ramification degree of K over T. Also, 3 = ull® (mod $e*1), where u is in R.
If the characteristic of K is not zero, then R is a field, and 3 =u = 0.

If a and a are elements of v and O, respectively, there exist unique elements
aj and bj in R such that

[~}
a= X ajnj and a = I byIlJ.
j=0 j=0

The characteristic of the residue class field is 3, hence for each a in R there
exists a unique @ in R such that 2% = a (mod p). Hence, if by is the first nonzero
element in the expression for ¢, then

oo
a = Eka Hk(l + CjHJ) s
j=0

where 'B'k and the cj are in R and 'Eks = bk (mod p). Thus in determining the
existence of a zero, in K, of

n

i=1
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we may, without loss of generality, assume that a, = 1 and that for i> 1,

o = 071 + Z aIJII)
i=0

where 0 <V; < 2, and where the a;; are in R. If m(k) is the number of @; for which
v; = k, we may also assume that m = m(0) > m(k), for k> 0, and that a,, a,, +-+, an,
are units.

Write xi=23 0% HJ then F(X) = k OkaI , where f, is a polynomial in the Xij

with j <k, and w1th coefflc1ents from R. If the x;; are from R, then the fii are in
K and hence F(X) is in K. However, if R is not a field, then the Xij being in R
need not imply that the fi. are in R. Hence in this case it would not be possible to -
show that F(X) = 0 by making fi.= 0 (mod §). If for some xjjfrom R, fi =0
(mod ), then, since the coefficients of fi are in R and R is in o, it Would follow
that fi = 0 (mod p), hence that fix = 0 (mod $€). Of course, if R is a field, then

fi = 0 (mod P) implies fy = 0.

Define
f;":O if s <0, f::fs+ﬂ‘ef§_e if s>0.

If we can find x;; in R such that, for each s, f¥ = 0 (mod p), then F(X) = 0. To in-
sure that X is nontrivial, we shall seek such X5 for which at least one of
X105 X205 ***s Xno iS not zero.

We shall make use of the usual dot product of two vectors, as well as of a com-
ponentwise product; that is, if A = (a,, a,, ***, ay) and B = (b,, b,, ***, by), then

AB = (albn Ay, *, anbn) .
Define Ly = (ajk, a2k, ***, ank), wWhere the a;; come from the expression for oj.

Define X = (x)¢, X245, ***, Xps), Where the x;; come from the formal expression for
X;. Let

[s/3]
8s = z Ls-3j 'st,
j=0
where [s/3] is the greatest integer not exceeding s/3. Then

f¥=g, if 0<s<e,
fx=g, + I"°f, = g, + h,
ff=g,+h, if s>e,

where

hy =u 2 Lj- X_z]:Xt + H_ef;—e
i+2jtt=s-e
j#t

= uL X ? X o + ko (X, X}, o0, Xs—e—l)'
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[Recall that 3 = ull® (mod $°™!)]. I R is a field, and £= 0 for i=1, 2, «, s-1,
then hg, = 0 for s > e.

If we determine vectors X; such that, for all t > 0, g¢ = hgye =0 (mod p), then
the associated vector X is clearly a solution of F(X) = 0.

If V= (v, Vv, *, V) is a vector with v; in o, we define V = (¥, ¥, -+, ¥,),
where V; is the unique solution in R of the congruence z3= v; (mod p). Thus
V:-X3+a=(V.X+73)® (modp). Consequently, whenever we encounter a congruence
of the type V:X%+ a = 0 (mod p), we shall speak of it and treat it as a linear con-
gruence. If V and W are linearly dependent (independent), modulo p, so are V and
W. This is due to the fact that the map b:>b® is an automorphism of the residue
class field. For the remainder of this section and the next two, whenever we speak
of linear dependence (independence), we shall mean linear dependence (independence),
modulo p. Likewise, dimension shall mean dimension modulo p .

Consider the congruences gg = 0 (mod p). Suppose L, L, and L, are not zero.
If we have previously determined vectors X, X,, ***, X, _1, we can view

g3r = 83r+1 = €3r+2 = 0 (mod ¥)

as linear congruences in Xj,, X2y, ***, Xpny- If R is not a field, we also need to solve
hyie = 0 (mod p). If X, is such that L,X,? # 0 (mod p), then h, ., for r>1,isa
linear polynomial in the x;,. If, for all r > 0, we could determine X, such that

83r =83r41 =B3,42 F hr+e = 0 (mod p),

then the associated vector X would be a solution of F(X) = 0. We can find such vec-
tors X,, provided the rank of the matrix of coefficients of these linear equations is
the same as the rank of the augmented matrix. In case the rank of the coefficient
matrix is less than 4, we must choose the vectors X; (0 <i < r) in such a way that
these two matrices have the same rank. To simplify matters, we shall attempt to
choose X, such that L,X;? is linearly independent of L,, L, and L,. Also, we shall
need f, = 0 (mod p2), so that h,=0 (mod p). If L, or L, should be zero, some
modification is needed, but the approach remains essentially the same. We proceed
with our problem, handling all such modifications at once.

Let E; denote the vector with 1 in the ith coordinate and 0 elsewhere. Then
L, = Zin:l E; and L, -E, = 0, if k> 1. If there exist integers j such that Lg3j;; and
Li3j+2 are not both zero, let v denote the smallest such integer. From our assump-
tions on the a; it follows that if m # n, then v = 0. Let dy be the dimension of the
space spanned by the vectors L3y4] and L3y4z; then dy > 1. If dy = 2, define

pv = Ay = 0. K dy = 1, choose py and Ay from R, not both zero, such that
pvL3ysl + AvyL3yt+2 = 0 (mod p). Define

T:E'V) = pyLi3r+1r + AvLizri2, Sys1 = Tsr"rl—)l’ Sv=0.
Then, if r <v, T() = 0.

Let dy+1 be the dimension of the space spanned by the vectors Li3v+1, Li3v+2
and Sy+1. If dy+1 = 2, set pyt1 = Ayl = 0. If dy41 = 1, choose py+1, Av+1l from R,
not both zero, such that

Py+1 L3yl + Ayp1 Lizypa+ Syyp = 0 (mod p).
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Define

1
_ (v+i)
=P vt1l3rsr + Agr1 Lizryos Stz = 'EO Totz-ie
. 1=

Tg‘v-i-l)

We continue inductively: when Tg."“) and Syt are defined, let d,{ be the di-
mension of the space spanned by the vectors L 3441, L3yi2, Sv+1y Sv+2s ***y Sv+t I
dy+t = 2, choose pyit = 0= Ayst. I dyyg =1, choose pyit, Ayt from R, not both
zerg, such that

PvitL3vil + AvrtL3vtz + Syst = 0 (mod p)
Define

t

L . vittl-i°
i=0

(v+t)
T.. S

= Pypel3ppr + Aot L3pgos vit+l T

As a consequence, we have S,y = -T{’1?).

We observe that if p;j=21;=0 and j> i, then pj and Aj are zero. Let w denote
the smallest of the integers, if such exist, for which pyiw = Ayt = 0. Then S, is
linearly independent of L 3] and L 3y4p.

Finally, we define

vl - z (") it s> 0,1 > 0; U§'”= 0

i=0
T{s) . sirl) It follows that U{7-1) is linearly

vi+w

Then UT ;M =5, and U8 -

vtr v vtr ~
independent of L3,;; and L .,.

4. AN ALGORITHM

Consider the following algorithm, where, if v and (or) w do not exist, in the
algorithm any vector [ polynomial] involving v and (or) w shall be taken as the 0-
vector [polynomial].

ALGORITHM. (%) Determine X, with coovdinales in R such that one of 1, 1I,
orv 1l is satisfied.

I (1) g=0, (2) g3v+1 =0 (mod p), (3) g3y+2 =0 (mod p),
4) U(:_’;:vl) *X3 =0 (mod p),

(5) L Xf, is lmearly independent, modulo p , of the nonzero vectors in the set
{T0, Lave1r Davez THLNT.
I (1) LeX, =0, (2) g,=0, (3) g; = 0 (mod p),
4) U(w'l)-xg = 0 (mod p).

(5) L1X§ is linearly independent, modulo p, of the nonzero vectors in the set
{To, T, T, TV}
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oI (1) LyX, =0, (2) LiX, =0, 3) g.=0,
@) U{7-1).x3 = 0 (mod p),
(5) L,X3 is linearly independent, modulo v, of the nonzevo vectors in the set
~ A ~ ~
{Lo, L.ls Lz: Us;:v_l)}'

(8) If r > 1 and if X, X,, ***, X, _) have been determined, select X, with co-
ovdinates in R such that

(6) g3, = €3(r+v)+l = 83(r+v)+2= 0 (mod »),

r
M = U
j=0

(8) If X, is determined by 1, then h,.,. =0 (mod p),
If X, is determined by 11, then h,.,_.; = 0 (mod p),
If X, is detevmined by Ili, then h.,_,, = (mod p).

We observe that if j <v, then 835+1 and 83j+2 are the zero polynomial. If
go = 0, then

(w-1)
viwtj Xy ;=0 (mod p),

If L;X,=0 and j is either 0 or 1, then g; = Lj-ng 0. ¥ LyX,=0 and g, = 0, then
hop = T8LX2 X, + f,} = 0.
If LX,=L,X,=0 and g, = 0, then
heyz = I “{3L,X2+ 3L,X2-X, + f,} = 0.

Hence, if there exist vectors X; satisfying the algorithm, then, for these Xj,
hgie = g5 =0 (mod p) for s> 0. Thus the associated vector X would be a solution

of F(X)=0.

LEMMA 2. If n> 1, there exist vectors Xj = (X1j, X4, ***, Xpj), With Xy; in R,
which satisfy the algovithm and such that X, is nontrivial, modulo p.

The following is a consequence of Lemma 2.

LEMMA 3. If K is a complete field under a discrete nontrivial valuation and if
it has a finite vesidue class field of characteristic 3, then every equation of the form

QX3+ 0 X3+ e+ anXp =0 (af mK,n>17)

has a nontvivial solution in K,

Proof of Lemma 2. In the next section we shall show that we can select an X,
satisfying conditions (9) of the algorithm. We now show that for r > 1 we can select
a vector X, satisfying (3), provided the preceding X; fulfill the conditions specified
in the algorithm.

As was previously noted, the congruences in (6) and (7) may be viewed as linear
congruences in X,. Since

hr+e+j = uLjX"(’,-Xr + °c (j = 0, 1, 2)
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is also a linear polynomial in X, condition (8) requires X, to be a simultaneous
solution of a system of linear congruences.

The choice of w (or our assumption, if w does not exist) and condition 5) as-
sure us that a simultaneous solution exists provided the system of congruences in 6)
has a simultaneous solution. Since L, is linearly independent of the L; (i > 1), the
system in 6) has a solution provided -

(2) PvE&3(vir)+l *AvEB3(vir)+2 = 0 (mod.p).

0=2a

I

Trivially, (2) is true if v does not exist or if p,,
other possibilities. Since

v+ We need to consider the

(v+t) _ rp(w-1
o+ ana s, =ulv-l

— B 3 — . 3
g3v+l“L3v+l XO’ g3V+2_L3V+2 XO’ Sv+t viw ?

the conditions (%) on the choice of X, assure us that

Sy+t" X3 =0 (mod p)

if t S w. Observe that

r-s

+
Pv+s83(vir-s)+l * )'V+sg3(v+r—s)+2 = 'EO TSle-is)'Xi‘—s -i*
1=

If the vectors X ,._g_; satisfies 6), the left side of this relation is congruent to zero,
modulo p. If in addition 1 < s < w, we obtain

r-s
5 1{vts). xs (mod p).

v+Hi r-s-i

.x3 = —TV+S'X3

v+s r-s v r-s

uls.xs =5

v+s r-s

i=1

Consequently, if X,, X,, ***, X _) satisfy the algorithm and if t < min (r, w), then

r
Pv83(v+r)+l * AvB3(vir)+2 = 2 TSrYl-)l "Xig =

i= i

(- %3
1

M~

"% ul©)
= 2 Uyt Xii1a
=0

i
r-2

s ulb

. %3
. v+2+i X
i=0

r-2-i

(mod p)

(t-1)  ¢s
Uv+t+i Xr-t—i

(mod p).

-
1]
o

Hence, if r < w, then

-1
Pv&B(vir)+l +AvE3(vir)+2 = U\S-{r )'Xg = Sv4r X3 =0 (mod p).
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If r>w, then

r-w
Pv83(vir)+l + AvE3(vir)+2 = 'z(} U\$+w+§ * X% -w-j (mod p).
J=

The choice of X, _, (see condition 7)) assures us that the right side of this congru-
ence is congruent to 0, modulo p.

We see, therefore, that if X, X,, ---, X,._; satisfy the algorithm, then an X, may
be determined which also satisfies the algorithm.

To obtain X, satisfying (38), we need to solve at most five linearly independent
linear congruences. Consequently, at this juncture in the proof, we only need n> 6.

5. DETERMINATION OF X,

We shall show that a nontrivial X, satisfying (%) can be found, provided n > 7.
Throughout this section we assume that n>1,

If v does not exist, neither does w, and condition (% I} is trivially satisfied by
taking X, = E, - E,. .

If v exists, set A = L(,—Z1 1 Ej, where 3<m<n. If L3yy) #0, set B= L3y,
If L3v+1 = 0, set B=Ls,,,; then B# 0. Choose a vector C such that i) C-E; =0,

ii) C is 11near1y independent of B, iii) C and B span a space which contains

w-1
L3y41s Ligyyp, and $+w ).

For m <n, we have v = 0; hence either B=L,, or L, = 0 and B = L,. Keeping
in mind these various changes of notation, we see readily that condition (%) of the
algorithm is satisfied if we determine a vector X which is nontrivial, modulo p, and
has coordinates in R, and which has either the property that condition I* (see below)
is satisfied, or else the property that II* is satisfied and m < n.

I* i) A-X3=0,
ii) B- X3 = 0 (mod p),
iii) C*X3 = 0 (mod p),
iv) AX? is linearly independent, modulo p, of K, B and C. .

II* i) AX=0,
ii) B-X3*= 0,
iii) C-X3% = 0 (mod p),
iv) BX2 is linearly independent, modulo p, of K, B and C.

For any vector D = Zjx; d;E;, define D' = 3;2; 4;E; and D" =D - D', For
m < n, it follows from the assumption on the ¢; that if B" and C" are linearly de-
pendent, then B" =3, ., E..

If B" and C" are linearly independent, choose X'=E, - E, and X" such that
B-X=0=C.X (mod p). Then X satisfies I*. We let Dj; ij = bch - ¢jbj. Whenever
B" and C" are linearly dependent, we may assume that D,, # 0 (mod p) For the
remainder of this section we assume that B" and C" are linearly dependent.
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If n-m=3, take X=E, - E_;; then X satisfies II*.

If n-m=2, take X=x,(E, - E,)+ E; - E; + X,E;,. Since n> 7, we have m > 5,
and clearly A. X3 0. The resulting system of congruences, B-X = 0 = C-X (mod p)
has a solution for (x,, X,). Suppose that

0A + 8B + yC + 6AX? = 0 (mod p).

By lookmg at the first coordinate, we immediately obtain o + §x2 = 0 (mod »). Hence
Bb, + ¥C, = 0 (mod p). But fbn+ YCn = 0 (mod p). Since Dy, # 0 (mod p), Dy, # (mod p);
it follows that g =y = 0 (mod p). Looking at the fifth coordinate, we see that

o+ by + ¥C; = 0 (mod p) and hence ¢ = 0 (mod p). Since AX? # 0 (mod p), 5 = 0 (mod p).
Thus X satisfies iv) and hence I*

I n-m< 1, we have several cases. If Djj=Dji (mod p) for 3 <i<j<k<n,
set X = x,(E, - E4)+ x5(Es - Eg). Since n> 7, we have m > 6; hence A-X®= 0. The
system of congruences B-X= 0 cC-X (mod p) has its determinant of coefficients
congruent to zero, modulo p, hence there exists a solution which is nontrivial, modulo
p. The resulting X clearly satisfies I*,

Suppose there exist integers i, j and k such that 3 <i<j<k< n and such that
Djj #Dix (mod p). For n- m=1, set
X=x;E;-E) +xx By - Ej) + Ep;
for n=m, set

X = x;(E; - E,) + xx(Ex - EJ)+ E,-E,.

In either case, the congruence B-X =0 = C X (mod p) has a solution for (xj, X3
which is also a solution for the congruence A - - X3 = 0 (mod p). In either case, sup-
pose that 0A + 6B + yC + 6AX? = 0 (mod ). By looking at the first coordinate, we
see that o+ 6x3 = 0 (mod p), hence that gb; + ¥C; = 0 (mod p). At the jth coordinate
we have

o+ BBj + 'yE:i+ 6x,2 = 0 (mod p),
and at the kth coordinate we have
o+ B’Bk+ y3k+ 6x32 = 0 (mod p).

Hence BFj + -yE'j = gby + vcy (mod p). Thus

Bbb + yC bi Bbkb + YCC (modp)

and consequently -yD = yD, .. (mod p). It follows that ¥ = 0 (mod p). Similarly we
obtain 8 = 0 (mod p) Since n > 7, we have m > 6, and therefore in either case one
of the first m coordinates of X is zero, and hence K and AX? are linearly inde-
pendent, modulo p. It follows that X satisfies I*. This completes the proof of
Lemma 2.
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6. DIAGONALIZED CUBICS OVER ARBITRARY p-ACID FIELDS

THEOREM 2. If K is a complete field underv a non-avchimedean valuation and
has a finite vesidue class field, then every equation of the form

F(X) = alxi+azxg+ .es +OlnX3n= 0 (Cii in K, HZ 7)

has a nontrivial solution in K.

Let O be the ring of integers of K, and P the prime ideal in ©. We may as-
sume that the @; are in O, and if n > 7, we may assume that at least three of the
a; are units in D.

If 3 is in P, then the characteristic of the residue class field of K is three, and
Lemma 3 is applicable.

If 3 isnotin $, then 3 is a unit in O. Applying Theorem 1, we conclude that
there exists a vector B = (8;, B,, ***, Bn) Such that the g; are in O, such that at
least one of them, say B, is a unit in O, and such that F(B) = 0 (mod $). Further-

more = 3B}, and 3pf is a unitin O. Hence we may refine B to obtain a non-

» 09X
trivial zero in © of F(X), (see Lemma I of [2].)

Since the equation x? + 2y3 + T(x3 + 2y3) + 72(x3 + 2y3) = 0 has only the trivial solu-
tion in the T-adic field, we see that the theorem is false if n <7,

4

7. DIAGONALIZED CUBIC CONGRUENCES OVER
ALGEBRAIC NUMBER FIELDS

LEMMA 4. Let T be a finite extension of the valional field, let N be the ving
of algebraic integers in T, and let p be a prime ideal in A . If 6 is a positive ra-
tional integev, then every congruence of the form

n
F(X)= T o;x¢ =0 (mod p?)

i=1

n>", a;in A)

has a solution in A which is nontvivial, modulo p.

Let K be the completion of T under the natural valuation given by p. Then K
satisfies the hypothesis of Theorem 2. Hence, if n > 7, there exist integers bj in
the ring of integers of K, some of which are units in K, such that Z?;. 1 abi=0 in K.
The congruences B; = b; (mod pﬁ) have solutions for the B; in A . If b; is a unit in
K, then 8; # 0 (mod p). Hence E?:l o; 82 =0 (mod pG).

Let m be any ideal in A ; then m has a prime factorization, say m = pa q""m thP,
where p, q, *++, r are distinct prime ideals in A. If F(X) =Z?=1 ajx3 then for each
prime p in m there exists a vector Bp= (b,p, bzp, eeey bnp) such that the b;, are
in A, not all are in p, and F(By) = 0 (mod p9).

By the approximation theorem in [1], there exists,for each i, a common solution
in A of the system of congruences
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Z; = bip (mod pb),
z; = bi(] (mod qa),

z;=Db;, (mod:P).

But then F(Z) =0 (mod m), and Z is nontrivial, modulo each prime factor in m.

THEOREM 3. If T is a finite extenlion of the field of rational numbers, and if
A is the ving of algebraic integers in T', and m is an ideal in A, then every con-
gruence of the form ‘

axi+ axi+ e+ x3=0(mod m) (m>1T, 0 inA)

has a solution in A which is nontrivial, modulo each prime factor in m .

REFERENCES

1. E. Artin and G. Whaples, Axiomatic characterizalion of fields by the product
Sormula for valuations, Bull. Amer. Math. Soc. 51 (1945), 469-492.

2. D. J. Lewis, Cubic homogeneous polynomials over p-adic numbeyr fields, Ann. of
Math. (2) 56 (1952), 473-478.

University of Notre Dame



