INVERSION OF TWO THEOREMS OF ARCHIMEDES

Herbert Knothe

Archimedes proved the following theorems:

THEOREM I. The curved surface of a cylinder circumscribed about a sphere is equal to the surface of the sphere.

THEOREM II. The volume of a cylinder circumscribed about a sphere is 3/2 times that of the sphere.

We shall invert these theorems as follows:

THEOREM 1. If the curved surface of each right cylinder circumscribed about a convex body K is equal to the surface of K, then K is a sphere.

THEOREM 2. If the volume of each right cylinder circumscribed about a convex body K is 3/2 times that of K, then K is a sphere.

We shall first deal with Theorem 1. Let L be the length of the closed convex curve K which is obtained by an orthogonal projection of K; let B denote the breadth of K in the direction of the projection; and let dw be the solid angle element of the directions of projection. We consider the integral

$$\mathbf{J} = \int \mathbf{L} \mathbf{B} \, d\mathbf{w},$$

extended over the whole unit sphere. It is known that ${\bf L}$ can be represented by the integral

(2)
$$\int_{0}^{2\pi} p \,d\phi,$$

where p denotes the support function of the projection of K, and where $d\phi$ denotes the angle element of its tangent. Therefore (1) can be written in the form

(3)
$$J = \int \left(\int p \, d\phi\right) B \, dw$$

Now we take advantage of the concepts of integral geometry [1]. The symbol $d\phi$ dw represents the density of the configuration consisting of one space direction D_1 and a direction D_2 perpendicular to D_1 . Since this configuration has no invariant under motions, we have

$$d\phi dw = C d\overline{\phi} d\overline{w}$$

where \overline{dw} is the solid angle element of the normals of the plane D_1D_2 , and where $\overline{\phi}$ measures the rotations in this plane. C is easily shown to be 1 (for instance, by integration over the whole unit sphere). Hence, it follows that (3) can be transformed into

Received May 14, 1956.

(5)
$$J = \int \left(\int pB d\overline{\phi} \right) d\overline{w} = \int \left[\int p(\overline{\phi}) \left\{ p\left(\overline{\phi} + \frac{\pi}{2}\right) + p\left(\overline{\phi} + \frac{3\pi}{2}\right) \right\} d\overline{\phi} \right] d\overline{w}.$$

For any convex curve, $p(\phi)$ can be expanded into a Fourier series:

(6)
$$p(\overline{\phi}) = \sum_{n=0}^{\infty} (a_n \cos n\overline{\phi} + b_n \sin n\overline{\phi}),$$

where the a_i , b_i are integrable functions of $\overline{\theta}$, $\overline{\phi}$ ($d\overline{w} = \sin \overline{\theta} d\overline{\theta} d\overline{\phi}$), $\overline{\theta}$, $\overline{\phi}$ being polar coordinates of the projection vector

$$a_i$$
, $b_i = a_i(\overline{\theta}, \overline{\phi})$, $b_i(\overline{\theta}, \overline{\phi}) = a_i(\overline{w})$, $b_i(\overline{w})$.

Replacing p in (5) by the series (6), we find

(7)
$$J = \int \left[4\pi a_0^2(\overline{w}) + 2\pi \sum_{n=1}^{\infty} (-1)^n \left\{ a_{2n}^2(w) + b_{2n}^2(\overline{w}) \right\} d\overline{w} \right]$$

We now compare formula (7) with a corresponding expression for the surface S of K. Cauchy found the now well-known formula

(8)
$$S = \frac{1}{\pi} \int P dw,$$

where P is the area of an orthogonal projection of K.

The area P can be expressed by the integral

(9)
$$P = \frac{1}{2} \int_{0}^{2\pi} \left(p^{2} - \left(\frac{dp}{d\overline{\phi}} \right)^{2} \right) d\overline{\phi}.$$

Substituting (6) in (9), we obtain

(10)
$$S = \frac{1}{4\pi} \int \left[4\pi a_0^2 + 2\pi \sum_{n=1}^{\infty} (1 - n^2)(a_n^2 + b_n^2) \right] d\overline{w}.$$

Comparing (7) and (10), we conclude that

$$S \leq \frac{1}{4\pi} \int LB \, dw.$$

The equal sign holds only if the support function $\, p \,$ of each orthogonal projection of $\, K \,$ has the form

(12)
$$p = a_0 + a_1 \cos \phi + b_1 \sin \phi.$$

Formula (12) says that every orthogonal projection of K is a circle. Therefore K is a sphere, and Theorem 1 has been proved.

It will be shown that Theorem 2 is a consequence of Theorem 1. We consider the integral extended over the whole unit sphere

$$\int V_c dw = \int PB dw.$$

 V_c is the volume of a circumscribed cylinder, P the area of an orthogonal projection. The arithmetic mean of the volumes of the circumscribed cylinders is

$$\frac{1}{4\pi}\int PB dw$$
.

We now form the expression

$$E = \frac{1}{4\pi} \int PB \, dw - \frac{3}{2} V,$$

where V is the volume of K. In order to investigate the sign of (14), we make use of a powerful method, applied with special success by G. Bol [2], namely the transition to interior parallel surfaces.

If we translate all support planes of K inwards through the same distance λ , we obtain a new convex body K_{λ} . It generally happens, during the shifting process, that some of the translated original support planes cease to be support planes of K_{λ} and become superfluous. Finally, we reach a convex body of at most two dimensions, the so-called nucleus N of K. The points of N consist of those interior points of K for which the smallest distance from the boundary of K is a maximum m.

We first calculate (14) for the nucleus. One sees immediately that in this case $E\geq 0$, since V=0. The shifting process mentioned above is then performed in the opposite direction, that is, starting from the nucleus N. Let $m-\lambda$ be called μ . The nucleus corresponds to the value $\mu=0$, the boundary of K to the value $\mu=m$. The support planes of $K_{\mu+\Delta\mu}$ consist of those of K_{μ} , translated outwards by $\Delta\mu$, and possibly of new support planes. In any case, $K_{\mu+\Delta\mu}$ contains the convex body $K_{\mu+\Delta\mu}^{\dagger}$ which may be defined in the following way. About every boundary point Q of K_{μ} as center, we draw a sphere with radius $\Delta\mu$. The points of K_{μ} , together with the points of the spheres, describe a convex body $K_{\mu+\Delta\mu}^{\dagger}$. From this statement we conclude that, in every direction, the quantity PB formed with respect to $K_{\mu+\Delta\mu}^{\dagger}$ is greater than or equal to the quantity PB formed with respect to $K_{\mu+\Delta\mu}^{\dagger}$. Moreover, the volumes of $K_{\mu+\Delta\mu}$ and $K_{\mu+\Delta\mu}^{\dagger}$ differ only by $o(\Delta\mu)$, since (see [2])

$$\lim_{\Delta \mu \to 0} \frac{V(K_{\mu+\Delta \mu}) - V(K_{\mu})}{\Delta \mu} = \lim_{\Delta \mu \to 0} \frac{V(K_{\mu+\Delta \mu}) - V(K_{\mu})}{\Delta \mu} = S.$$

Therefore (with easily understandable notation)

(15)
$$E(K_{\mu+\Delta\mu}) - E(K_{\mu}) \ge E(K_{\mu+\Delta\mu}) - E(K_{\mu}) + o(\Delta\mu).$$

The right-hand side can be written

(16)
$$E(K_{\mu+\Delta\mu}^{\dagger}) - E(K_{\mu}) + o(\Delta\mu) = \Delta \mu \left\{ \frac{1}{4\pi} \int LB dw + \frac{1}{4\pi} \int P dw - \frac{3}{2}S \right\} + A^* + o(\Delta\mu),$$

where A* is always smaller than a number M depending on K only. (An explicit expression for M can be given very easily [2], but it is of no interest for our purposes.)

Because of (8), formula (16) can be written

(17)
$$E(K'_{\mu+\Delta\mu}) - E(K_{\mu}) + o(\Delta\mu) = \Delta\mu \left(\frac{1}{4\pi}\int LBdw - S\right) + A*\Delta\mu^2 + o(\Delta\mu).$$

We now divide the interval [0, m] into equal parts by the points $0 = \mu_0, \mu_1, \mu_2, \cdots, \mu_n = m$ with $\mu_{i+1} - \mu_i = \Delta \mu$; and we add the inequalities

(18)
$$E(K_{\mu_{i}+\Delta\mu}) - E(K_{\mu_{i}}) \geq E(K_{\mu_{i}+\Delta\mu}) - E(K_{\mu_{i}}),$$

and let $\Delta\mu$ tend to zero. Using (11) and (17), we conclude that

$$E(K_m) - E(K_0) > 0$$
.

Now $E(K_0)$, that is, the quantity E formed for the nucleus, is nonnegative. Therefore

$$E(K_{m}) = \frac{1}{4\pi} \int PB \, dw - \frac{3}{2} V \ge 0$$

Since LB depends continuously on μ , the equal sign holds only, as (17) shows, if for every μ

$$\frac{1}{4\pi}\int LB\,dw-S=0.$$

In this case Theorem 1 shows that K is a sphere. Herewith, Theorem 2 has also been proved.

REFERENCES

- 1. W. Blaschke, Vorlesungen über Integralgeometrie II, Hamburger Math. Einzelschr. 22 (1937), Leipzig and Berlin.
- 2. G. Bol, Beweis einer Vermutung von H. Minkowski, Abh. Math. Sem. Univ. Hamburg 15 (1942), 37-56.

Holloman Air Development Center