ON MATRICES OF TRACE ZERO

A. A. Albert and Benjamin Muckenhoupt

In 1937, K. Shoda [1] showed that if M is any n-rowed square matrix with elements in a field \Im of characteristic zero, and M has trace τ (M) = 0, then there exist square matrices A and B with elements in \Im such that M = AB - BA. Shoda's proof is not valid for a field \Im of characteristic p. The purpose of this note is to furnish a proof holding for any field \Im . We begin by deriving the following lemma.

LEMMA. Let $M = (m_{ij})$ be an n-rowed square matrix with elements in \Im such that

$$\tau(M) = \sum_{i=1}^{n} m_{ii} = 0, \qquad \sum_{i=1}^{n-1} m_{i,i+1} = 0, \qquad m_{ij} = 0 \text{ for } j \ge i+2.$$

Then M = AB - BA, where A and B are square matrices with elements in \Im and A is nonsingular.

For proof, we let $K=(k_{ij})$ be the n-rowed square matrix with $k_{j+1,j}=1$ for $j=1,\cdots,n-1$ and with all other $k_{ij}=0$. We also let $B=(b_{ij})$ be the matrix with every $b_{i1}=0$ and $b_{i,i+3}=0$ for $i=1,\cdots,n-3$. Then the first row of KB is zero and the (i-1)st row of B is the ith row of KB. Also, the (j+1)st column of B is the jth column of BK, and the nth column of BK is zero. Then $H=KB-BK=(h_{ij})$, where

(1)
$$h_{i1} = -b_{i2}$$
, $h_{12} = -b_{13}$, $h_{n-1,n} = b_{n-2,n}$, $h_{nn} = b_{n-1,n}$, $h_{ij} = 0$ $(j \ge i + 2)$,

and

(2)
$$h_{ij} = b_{i-1,j} - b_{i,j+1}$$
 [i = 2, ..., n; j = 2, ..., min (n - 1, i + 1)].

It should now be clear that $m_{ij} = h_{ij} = 0$ for $j \geq i+2$. The other entries h_{ij} , in each column of H except the last, contain a term b_{ij} which does not appear in earlier columns or elsewhere in the same column, and the coefficient of this term is ± 1 . It follows that the b_{ij} may be selected successively so that H differs from M in at most two elements, and these are the elements h_{nn} and $h_{n-1,n}$. Since

$$\tau(M) = \tau(H) = \tau(KB - BK) = 0,$$

and $m_{ii} = h_{ii}$ for $i = 1, \dots, n-1$, it must be clear that we also have $m_{nn} = h_{nn}$. By the form of H we have

Received May 24, 1956.

This paper was sponsored in part by the Office of Ordnance Research, United States Army, under Contract No. DA-11-022-ORD-1571.

$$\sum_{i=1}^{n-1} h_{i,i+1} = -b_{13} + (b_{13} - b_{24}) + \dots + (b_{n-3,n-1} - b_{n-2,n}) + b_{n-2,n} = 0$$

$$= \sum_{i=1}^{n-1} m_{i,i+1} = 0.$$

Hence $h_{n-1,n} = m_{n-1,n}$, and H = M, as desired. Put A = K + I, so that |A| = 1 and A is nonsingular. Then AB - BA = (K + I)B - B(K + I) = M, as desired.

We are now ready to derive our main result.

THEOREM. Let M be an n-rowed square matrix with elements in an arbitrary field \mathfrak{F} and with $\tau(M)=0$. Then there exist n-rowed square matrices A and B with elements in \mathfrak{F} such that M=AB-BA.

We observe first that M is a commutator if and only if any matrix N similar to M is a commutator. Indeed, if $N = P^{-1}MP = AB - BA$, then

$$M = (PAP^{-1})(PBP^{-1}) - (PBP^{-1})(PAP^{-1}).$$

Hence we may assume that M is in rational canonical form, that is,

$$M = diag \{ C_{\phi_1}, \dots, C_{\phi_k} \},$$

where the $\phi_i = \phi_i(x)$ are the nontrivial invariant factors of xI - M, where $\phi_i(x)$ divides $\phi_{i-1}(x)$ for $i = 2, \dots, k$, and where C_{ϕ} is the companion matrix

(3)
$$\begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ \alpha_{m} & \alpha_{m-1} & \alpha_{m-2} & \dots & \alpha_{1} \end{pmatrix}$$

of the polynomial $\phi = \phi(x) = x^m - (\alpha_1 x^{m-1} + \dots + \alpha_m)$. Then the matrix M has elements 1 and 0 above the diagonal. Consequently, there exists a similarity transformation by means of which the elements 1 may be replaced⁽¹⁾ by a sequence 1, -1, 1, -1, \cdots . Indeed, we may multiply the third row and column in (3) by -1, if necessary, and replace the second 1 by -1. Assume then that we have carried out the similarity transformation which makes the first k nonzero elements $m_{i,i+1}$ alternate in sign. Then the (k+1)st element occurs in the sth row and (s+1)st column and can be changed in sign, if necessary, by the similarity transformation which merely multiplies the (s+1)st row and column by -1.

The argument just given shows that, by passing to a similar matrix if necessary, we may assume that $M=(m_{ij})$, where $m_{ij}=0$ for $j\geq i+2$, where $\tau(M)=0$, and

⁽¹⁾ We can actually replace the elements $m_{i,i+1}$ by products $d_i m_{i+1} d_i^{-1} = \mu_{i,i+1}$, by means of a diagonal similarity transformation. The d_i can clearly be selected so that $\sum_{i=1}^{n-1} \mu_{i,i+1} = 0$ except when there is only one nonzero $m_{i,i+1}$ or when δ is the field of two elements and there is an odd number of $m_{i,i+1} \neq 0$.

where $m_{i,i+1} = 1$, -1, or 0 and the nonzero $m_{i,i+1}$ alternate in sign.

If there are an even number of nonzero $m_{i,i+1}$, we have the property

$$\sum_{i=1}^{n-1} m_{i,i+1} = 0$$

of the lemma, and M = AB - BA as desired. If the number is odd, the matrix M has the form

$$\mathbf{M} = \begin{pmatrix} 0 & \mathbf{u} \\ \mathbf{v}^{\mathbf{i}} & \mathbf{M}_1 \end{pmatrix},$$

where u and v are $1 \times (n-1)$ matrices and M_1 is an (n-1)-rowed square matrix. But then M_1 has all of the properties of our lemma, and therefore $M_1 = A_1B_1 - B_1A_1$, for some nonsingular matrix A_1 . Take

$$A = \begin{pmatrix} 0 & 0 \\ 0 & A_1 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & -uA_1^{-1} \\ A_1^{-1}v^{\dagger} & B_1 \end{pmatrix},$$

and see that

AB - BA =
$$\begin{pmatrix} 0 & 0 \\ v' & A_1B_1 \end{pmatrix}$$
 - $\begin{pmatrix} 0 & -u \\ 0 & B_1A_1 \end{pmatrix}$ = M,

as desired.

REFERENCE

1. K. Shoda, Einige Sätze über Matrizen, Jap. J. Math., 13 (1936), 361-365.

The University of Chicago

