THE CONTENT OF A YOUNG DIAGRAM
G. de B. Robinson and R. M. Thrall

1. INTRODUCTION. As is well known, the substitutional analysis of Alfred
Young leads from the diagram [A] to an explicit representation theory of S,,. The
purpose of this paper is to throw light on the graph G[r] of [A], discussed elsewhere
[4, Part III; 5], and on the significance in this context of Frobenius’ notation for a
partition. It will be helpful to exhibit the ideas involved in a highly intuitive form,
and this we attempt to do here.

Consider a doubly infinite matrix G = (g;;), where
gij =j-i (i) i= =, *t°y '1’ 0; 1, *tty +°°),

and imagine a given [A] superimposed upon G so that the (i, j) node of [X] covers
gij- The operators T and S defined in (2.4) correspond to the horizontal and verticai
displacement of [A] over G. The content C[A]of [X] corresponds to the set of ele-
ments of G covered by [A]. In (3.9) we obtain a necessary and sufficient condition
that a given content should be admissible, i.e. should correspond to a Young diagram
[r], and in §4 we show how to construct [A] when its content is given.

In §5 we pass to the modular theory by replacing the g'ij by their nonnegative
residues modulo q. The operators T and S are now periodic of order q, so far as
the content is concerned. This periodicity shows itself in the fixed content of a q -
hook under T and S, which corresponds to a complete set of residues modulo q.

This leads in §6 to a criterion that a diagram [A] be a q- core in terms of Frobenius’
notation, the criterion having already been given in Young’s case [6].

The paper concludes with the adaptation of the familiar partition generating func-
tion [2] to yield the content C[A] for all [x].

2. THE CONCEPT OF CONTENT. As a tool in the study of Young diagrams we
introduce some concepts associated with the lattice of integer points in the plane.
For this theory it is customary to alter the usual coordinate system so that the posi-
tive direction is downward on the first axis, towards the right on the second axis. To
proceed more formally, let I be the set of integers {---, -2, -1, 0, 1, 2, -+:}. We give
the name node to any element (i, j) of the cartesian product IXI. Let {xi |i € I} be a
set of commutative indeterminates. We call X5 3 the content of the node (i,j) and
write

(2.1) x;-; = C{(i, )}
If M = {(i,, i), -**, Gy, j,)} is a finite subset of IXI we define the content C(M) of

M to be the product of the contents of its nodes, that is,

(2.2) CM) = IT C{(iy, in)}-
h=3
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We usually collect terms and write the monomial C(M) in the form

(2.3) cM) = IT xih,

h=_oo
The set of nodes (i, j) in IXI for which j - i = h we call the h-th diagonal. Clearly
Ky, is the number of nodes in M which lie on the h - th diagonal.
We consider two operators on IXI. These are T, a one-unit shift to the right,
and S, a one-unit shift downward, i.e.

(2.4) 1L, IT=3G,j+1), G js=>30+1,j).

We apply T and S to sets by shifting each node of the set. We also define T and S
-as operators on monomials by

15 En Hhye _ Hh
(2.5) (T IT =%, 2, UIx")8=1Ix7".

Note that we have defined T and S as right operators; they have no effect from the
left. For example, ‘

- 4 =
Txo Txo Txy TXy = THX X, X)X = XgX,X; Xq -

We shall use the notation (Tx,)* for the extreme left-hand member of this equation;
and, in general, we shall understand that powers of expressions involving operators
are to be written out before the operators are applied.

It follows readily from definitions (2.4) and (2.5) thét, for each finite set M,

(2.6) C(MT) = (C(M))T, C(MS) = (C(M))S
and
(2.7) C(MTS) = C(MST) = C(M).

3. THE CONTENT OF A YOUNG DIAGRAM. Corresponding to each partition
(A) of n,

(3.1) N+ dg=n (4> >0 > A > 0),
we have the Young diagram [A], consisting of the n nodes
(1, 1), -+, (1, 1)), (2, 1), «--, (2, X;), o, (&, 1), -oe, (&, Ag).
The diagram [A] is completely determined by its set of first column hook lengths
(3.2) lj=2+k-i (=1, --k)
where, of course,

(3.3) 1, >1L> - >1> 0.
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Conversely, corresponding to each set of strictly decreasing positive integers
there exists a uniquely determined Young diagram [A] which has these numbers as
its set of first column hook lengths.

We now study the content of a Young diagram [A]:

) A-1
(3.4) cAl= 7 xh= 1 xib,
h=-c0 h=-k+1

The second equality follows from the fact that for each node (i, j) of [A] we have
1<i<k and 1< j<Aj whence @i, j) lies in the h- th diagonal, where -k <h < A,.
Moreover, the up nodes lying in the h - th diagonal are

{(1, h + 1)’ **%y (Iih, h + IJ'h)} if hZ 0
and
{(-h + 1, 1), -+, (<h + g, pp)} if h < 0.

It follows that

(3.5) Two Young diagrams [\] and [X'] are identical if and only if theiv contents are
equal.

We now determine which monomials are contents of Young diagrams, and we give
two methods for determining a partition from the content of its Young diagram.

Let (1) be a partition of n in the form (3.1), and let h;; denote the length of the
hook Hjj whose corner is the node (i, j) of [A]. The hooks H,,, H,,, --- are called
diagonal hooks. The number r of diagonal hooks of [A] is called the rank of (A).
Clearly r = u, Since each node of [A] lies in exactly one diagonal hook, the positive
integers h,,, -**, hyy form a partition of n. However, since several partitions ()
may have the same hjj, we go one step further and write

hj;=a;+b;+1 (i=1,..,71),

where a; is the number of nodes in [A] to the right of (i, i) and (b;) is the number
of nodes in [A] below (i, i). Then

(3.6) a;>a,>>a,.>0, b,>b,>->b.>0
and
a;+ ~+ap+by+ e +bp+r=n,
The a;, b, (i=1, -+, r) are determined umquely by (A); and, conversely, (A) is

determmed umquely by r and the a;, b; (i=1, .-, r). This justifies the Frobenius
symbol

a;, ***y Ay
(3.7)
bl) % br

for (A).
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Now consider py for h> 0. If aj4; <h<a; (i=1, -, r), then py =i (we set
y4y = bryy = 0). Similarly, if h < 0 then py, = j, where b4, < -h < ;.

These statements imply that

]

1 ifh=ai (i
(3.8) Uh - Upyr = ¢-1 if h=-b;-1 (

0 otherwise.

1, -, r)!
1, AL r),

This establishes the “only if” part of the following theorem.

(3.9) Let IT x h pe a monomial of degree n. Then theve exists a partition (\) of n
wkose Young Diagvam has this monomial for its content if and only if

0,1 for h>0,
i) my = M = Hpgpy =
0,-1 for h<0,

and
(ii) Zmy =0.
To establish the “if” part we denote by r the number of positive m;,, and define

a e0e a
a; and b; by (3.8). Then the partition (A) whose Frobenius symbol is ( v br)
' r

has content I7 xhh This is our first construction for obtaining [A] from 1ts content.
The second construction is given in the next section.

4, THE FUNDAMENTAL THEOREM. We will call a monomial admissible if it
satisfies the conditions of (3.9). In this section we obtain a formula which determines
the diagram [A] corresponding to an admissible monomial. The connection is made
in terms of the first column hook lengths 1.

The following theorem is almost obvious.

(4.1) Let (A) be a partition of n in the form (3.1). Then the last node in the i- th
row of [AJTX has content xy; (i =1, -, k), and the last node in the first

column of [ANT¥ has content x,.
Let L be the first column or set of left end nodes of the rows of [A], and let R
be the set of right end nodes of the rows of [A]. Then clearly
(4.2) CcLS)-Ccrxl=cCrls-Ccr).

(This equation was suggested to the authors by J. S. Frame.)

Next, apply Tk to both sides of (4.2) and equate the contents of the results.
First, we note that C(LSTX) = x,x, -+- X}, since the bottom node of (LS)TX lies in the
zero diagonal (see (4.1)). Next,

k
CRTX) = IT x,

i=1
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by (4.1); we denote this monomial by y. Putting these results together and using
(2.6) we have

(4.3) C[AITE (%o X, ++* Xic—y) = C[A]STRy.
It is easy to verify that

(4.4) TR X, *** Xy ) = (T %)%

hence (4.3) can be written in the form

(4.5) ' CIANT x,)¥ = C[A]sTYy.

Finally, we may divide both sides of (4.5) by C[A]STK, and we obtain our main
result

4.6) y = g[[%]]g(Txo)k.

If in this formula C[A] is replaced by any admissible monomial 6 =]7 xﬁh, we

can calculate ¥ and therefore obtain (A) in the following way. The integer k is de-
termined by Formula (3.4) from #. Then

(a4.7) % =ég—s—(Tx0)k

contains only known terms and so can be calculated.

One further simplification is possible. We call the monomial

c[a]

DAl = e

the #race of [A], and it follows from (2.5) and (3.9) that

A;-1 m
(4.8) D[A]= IT xhP?,
h=-k
and thus we have
A-1 m
(4.9) y= JT xpP(Tx,)k.
h=-k

In view of Formula (3.8), this provides a direct analytic connection between the For-
benius symbols a;, b;j and the Aj;.

We close the section with an illustrative example. The monomial
2 2 3 3 53 2
0 = X_ x23x2, %3 XXI X3 X3 X4 X5 Xg

is admissible. We have
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b

- wv=1 =1, -1
98 = X75 XiXTpX XX .

According to (3.8), the Frobenius symbol for the corresponding partition (A) is
(6, 3, 1)
4, 3, 1
Applying our second method, we have k = 5 and hence

y = (7 xzixzhx, Xy %) (T P

= X5 X7 X531 Xg Xg Xq1 X0 Xy Xp X3 Xy
= XX XgXg X, -
Thus
1,, 15, 15, 14, 15) = (11, 8, 6, 4, 2)
and

0’1, 7‘2’ Aa: Ay )s) = (7, 5, 4, 3, 2)-

5. THE MODULAR CASE. Let q be any positive integer, and let {y,, y,, ***, Yq-1}
be indeterminates. We define the q-confent Cq4(i, j) of a node (i, j) to be yn, where
h is the smallest nonnegative integer congruent to j - i modulo q; we define the q-
content of finite subsets of IXI analogously. In this section we obtain several rela-
tions between q - content and q - cores.

We recall that a q - core is a Young diagram which has in it no hook of length q.
The following criterion for q- cores was developed in [5] and [6].

(5.1) A Young diagram [A] is a q- core if and only if every class of congruent 1;’s
contains all smaller nonnegative integevs congvuent to the largest one in
the class, the zero class being empty.

The last proviso is obviously necessary since, if 1; = sq, then the rim of Hj,
contains a q - hook.

(5.2) The q-content of every q-hook is y,y,¥,++yq-1-

This follows immediately [4, Part II] from the periodicity of the operators T and
S defined in (2.4).

It follows from (5.2) that two Young diagrams with the same q- core and the same
weight n have the same q- content. Littlewood [3] proved the converse of this state-
ment. In particular we have

(5.3) Two q- cores [A] and [X\'] are equal if and only if theiv q- contents are equal.
From (5.2) and (5.3) we see that

(5.4) Two Young diagrams [A] and [\'] have the same q- cove if and only if the
quotient of theiv q-contents is a power of y,y, *** Yq-1-

We define the shift operators S and T on monomials in y,, -+, yq-, just as for
the nonmodular case (2.5), except that we replace Vq by ¥o and y., by yq-,. Note
that T and S? are both equal to the identity operator on monomials in the yy.
Moreover,
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(5.5) (Yoyu* Yq-—1)T = (Yoy1-* Yq—1)s =¥Yo¥Y1°*Yq-1-
For any partition (A) we have, from (4.8),

(5.6) Dg[r] = C__[[_;_l]]_ = [Typb

we call Dq[h] the q- trace of [A]

(56.7) Two diagrams [A] and [\'] have the same core if and only if they have the
same q-trace. For any [)A] the sum of the exponents in its q- trace is

zero. Conversely, if 6 =1] yﬁh and Zny = 0, then theve exisis a unique
core [MA] having b as its q-trace.

The first statement follows from (5.4) and (5.5). The second statement follows
from the fact that the monomials in the numerator and denominator of the second
member of (5.6) have equal degree. The uniqueness part of the third statement fol-
lows from the first statement. We establish the existence as one step in giving a
construction for [A] in terms of 6.

First, suppose [A] given and equate the q -~ contents of both sides of (4.2). Fol-
lowing the development of Section 4, this gives

(5.8) Cq[Al(Tyo)E = Cq[AIST Y4,
where yq is the q - content of RTYX, We can now solve for Yq*
(5.9) vq = Dg [A(Tyo)*.

On the other hand we have, by the definition of R,

1 kn
(5.10) Yq= Il yn, k=2Zkp,
h=1

where k;, is the number of first column hooks of lengths congruent to h modulo q
(ko = 0 by (5.1)). Now, by (5.1), we can reconstruct y from yg if [A] is a core,
that is, if the 1; congruent to h modulo q are

(5.11) h,h+q, - h+qlky- 1).

We replace D [A] in (5.9) by any 6 of degree zero, and choose k as the smallest
nonnegative mteger for wh1ch G(Ty,,)k has all its exponents nonnegative. Then, by the
minimality of k, 6(Ty0) ~1T has exactly one negative exponent, and this must be that
of y,. Hence

k _ ) kn
(5.12) 6(Tyy)<=ITy; , Zky=k.

i=1

Now let fA] be the core for which yq = G(Tyo)k. We observe that for any power
product 6 in the y, we have 8(Ty,)(y5*S) = 8; hence powers of Ty, can be cancelled
from the right. In particular, by comparison of (5.9) and (5.12) we conclude that
6 = Dg[r]. This completes the proof of (5.7).
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Before turning to our construction for [A] from &, we give further consideration
to the determination of k. First, we observe that for any power product 6 in the yy

we have :

(5.13) H(TYO)q= GYOY1"'Yq—1-

Now, let 6 = Hyﬂh have degree zero and let -j = m}iln ny. Then 6(Ty,)% has all ex-

ponents nonnegative, whereas 6(Ty0)q(j’1) has at least one negative exponent. Hence,
q(G-1) <k < qj. The exact formula for k is

(5.14) k=qgj-s

where -j = m}iln ny and s is the smallest index for which ny = -j. The value for s

is obtained as the largest integer v for which 5(Ty,)% (y;1S)V has all exponents non-
negative.

We illustrate with the example q = 3, 6 = y3y3y,>. Here j=5 and s = 2; so
k = 13, and 6(Tyy)*® = y]yS determines the partition

() = (7’ 627 52, 42, 32, 22, 12).

6. DIAGONAL HOOKS AND q- CONTENT. In this section we give a second con-
struction for obtaining the q - core whose q - trace is a given power product 6 of de-
gree zero. This construction rests on the following property of the Frobenius symbol
for a q- core. '

a,. ***, A

(6.1) Let ( v r) be the Frobenius symbol for a partition (\). Then [A] is a

ETTI
q- core if and only if (i) each class of congruent a;’s and each class of
congruent bi’s contains all smaller nonnegative integers congruent to the
lavgest one in the class and (ii)for no (i, j) is a; + by + 1 divisible by q.

We prove this theorem by partitioning the hooks of [A] into three classes. Class
1 contains all hooks H;: having i <r and j <r; class 2, those having i <r and
j > r; and class 3, those having j <r and i> r. Since r is the rank of [A], no
hook has i > r and j > r; hence every hook falls into at least one class.

We first consider an Hij in class 1. We claim that

(6.2) hyj;=a;+b;+1 if i<rand j<r.
If j =i, this is true by definition of a; and b;. If i < j, then the distance from

(i, j) to (i, i) is the same as that to (j, j), hence there are exactly a; nodes of Hj;
above and to the right of its diagonal node (j, j). Clearly, there are b; nodes below
the diagonal, and hence (6.2) holds in this case. A similar argument holds for i > j.

It follows at once from (6.2) that (6.1 ii) is a necessary and sufficient condition
for the absence of hooks of length q (or of length divisible by q) in class 1.

The proof of Theorem 6.1 included the following lemma (see [1] and [6]).

(6.3) For any [A] and for each i<k, the 13 numbers hj,, =+, hjn , 13 - Lipy, o0, L - Iy
ave a peymutation of 1, -+, 1;. '

In other words, given i such that 1; >q, there exists a hook h;; of length q if and
only if no difference 1; - 1 is equal to q. Moreover, if Hjj has its foot node in row
h, then a study of its position in [2] shows that
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(6.4) i -lh<hjj <li- (k-h+j-2)<lj- lny,.
If, in particular, H;; is in class 2, then h <r <j and it follows from (6.4) that
(6.5) 13 > hjj + k.
On the other hand we have from (6.2) for j = 1 that
(6.6) =a;+k (=1, -7r).
From (6.5) and (6.6) we get
(6.7) a; > h;; whenever i <r and j>r.

Now suppose that h;j = q and Hjj is in class 2. Then a; - ag=1; - 15 for all s,

and hence it follows from (6.3) that (6.1 i) does not hold.
Conversely, if (6.1 i) holds and a; > q, there exists an s such that

aj-ag=1;-1;=gq,

and hence there is no hook Hj; of length q. Thus we see that (6.1 i) is a necessary
and sufficient condition for the absence of hooks of length q in class 2.

Interchanging the roles of rows and columns, we see that the part of (6.1 i) involv-
ing the b; is a necessary and sufficient condition for the absence of hooks of length q
in class 3. This completes the proof of (6.1).

(6.8) Let [A] be a q- core with q-trace Dg[A] =17yﬁh. Then ny, is the sum of all m;
with i = h (mod q), and the nonzevo summands of ny, all have the same sign.
Moveover, the vank v of [A] is the sum of those ny, which ave positive.

The value given for np is an immediate consequence of the definitions of content
and q - content (and is correct whether or not [A] is a q- core). Suppose next that
two summands for njy have unlike signs, say

mg =1, m_; = -1, where h=s = -1 (mod q).

Then, according to (3.8), there exist i and j such that a; = s, bj=1-~ 1, and hence
aj + bj + 1 is divisible by q. But this is impossible for a q- core by (6.1 ii); we con-
clude that there is no cancellation in the sum of the n;. Finally, the rank of r is by
definition the number of positive my, and hence for q - cores it is the sum of posi-
tive ny,.

We now provide a second construction for the q-core [A] having a given q-trace

6 = ITy,®. If ny, is positive, then the r numbers a; in the Frobenius symbol for [A]
include h, h +q, *--, h + (ny, - 1)g; if n, is negative, the r numbers b;j include
gq-h-1,2q-h-1,--, -nyg~-h-1. Since r is the sum of the positive nj and
-r if} ;he sum of the negative np, this completely describes the Frobenius symbol
for |A].

In particular, for the example 6 = y3y?y;> treated in the previous section, the a;
consist of 0, 3, 6, 1, 4 and the bj of 0, 3, 6, 9, 12, and the Frobenius symbol is

( 6, 4, 3, 1, 0)
12, 9, 6, 3, 0/°
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We illustrate the results of this section and the previous one by giving a table for
the case of 3- cores, arranged according to the 3 - content y, of the right-end nodes
of the rows of [A]Tk,

a
[A] Ya Dy[A] Cs[A] i) (%)
-1 0
[1] Y1 Yo¥Y2 Yo (1) 0
-1 1
[ 2] y: YiY2 YoY1 (2) 0
- 2
[3, 1] vi yi'Ya Yo¥1¥3 4, 1) (1)
2 -1 0
[1 ] Y.¥2 YoV: YoY2 2, 1) (1)
[4 2] 2 2= 1e,~1 ’ 3 2 3: 0
’ y2 YoV:1 Y2 YoY1¥e (5, 2) 1,0
3 -1,2-1 3452 4,1
[5: 3, 1] ¥yi Yo V1¥z Yo¥V1Y¥Y2 (7, 4, 1) 2.0
- 1
[2, 17] iy Yo'¥a Yo¥iYa (4,2, 1) (2)
- 2
[3, 12] V1¥3 Vo'Ya Yoyivi 6,2, 1) (2)
[6 4 2] 3 =-1.=12 " 34 5, 2
) 4 v vo'yi'y: VA @®, 5, 2) 2 1

7. A MODIFIED PARTITION GENERATING FUNCTION. The significance of

the partition generating function .
/

(7.1) PE)=(1-x"(1-x)"(1-x%)1t ...
for the modular representation theory of the symmetric group was discussed in[2].

We now give a modification of (7.1) which is a generating function for the contents of
all Young diagrams [A].

We write (1 - y)~! as an abbreviation for the formal power series 1 +y + y2 + eee
We next show that

(7.2) (1 - Sx5)™2 (1 - Sxpxy)" (1 - SXox;X,)" eee =14+ = (z)c[x],
n=1(X

where the inner summation is over all partitions () of n.

We establish (7.2) by factoring C[A] in such a way as to show how it appears on
the left-hand side. The content of the i-th row of [XA] is clearly

(7.3) Xlej oo Xp i = (xo"’x)ti-l )it

It follows from (7.3) that C[A] can be written in the form
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(7.4) C[] =(Sx0-‘-x;lk_1)(Sxo---x;\ —1)'"(Sx0"'x>t1—1)'

k-1
Suppose that aj of the A; are equal to j (j=1, -, n). Then
C[r]= (Sxo)al (Sxoxl)m2 e (Sxo X, +er xn—1)an,

and in this form its identification with a unique term in the expanded form of the
first member of (7.2) is obvious. Conversely, each term of the product is the con-
tent of some Young diagram. The extension of these ideas to the modular case is
immediate.
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