Michigan Math. J. 50 (2002)

Multiplicative Functional for the Heat Equation
on Manifolds with Boundary

ELTON P. Hsu

1. Introduction

By the Weitzenbdck formula relating the Hodge—de Rham Laplacian and the co-
variant Laplacian for differential forms on a Riemannian manifold, the heat equa-
tion for differential forms is naturally associated with a matrix-valued Feynman—
Kac multiplicative functional determined by the curvature tensor. The case of a
closed manifold (without boundary) is well known and will be briefly reviewed
below. In constrast, the case of manifolds with boundary is not well known, and
for good reasons. Because the absolute boundary condition on differential forms
is Dirichlet in the normal direction and Neumann in the tangential directions, the
associated multiplicative functional is discontinuous and much more difficult to
handle. Ikeda and Watanabe [6; 7] have dealt with this situation by using an ex-
cursion theory (for reflecting Brownian motion) that seems to have been created
especially for this problem. In this paper we suggest a different approach that is
based on an idea of approximation due to Airault [1]. This construction has the
advantage that a key property of the multiplicative functional (i.e., the attendant
Ité’s formula for this functional) follows almost automatically from the approxi-
mate multiplicative functional without resorting to excursion theory, thus greatly
simplifying this part of the theory; see Theorem 3.7.

Before coming to another and more important raison d'étre for the present work,
we briefly review some relevant facts for a closed manifold. Mdbe a compact,
closed Riemannian manifold and teg be a 1-form onM. Consider the following
initial value problem:

oo 1

—_ = = o,

ot 2 1y
(-, 0) = ap.

Hered = —(d*d + d*d) is the Hodge—de Rham Laplacian on differential forms.
Let A = traceV? be the covariant Laplacian. Then we have the Weitzenbdck
formula

Oo = Aa — Rica,

where Rig: T)M — TM is the Ricci curvature transform. The solution can
be represented probabilistically as follows. et} be a Brownian motion oM
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and let{u,} be its horizontal lift in the orthonormal frame bundlgM ) starting
from a frameug: R” — T, M, which we will use to identifyT, M with R". Let
Ric,: R" — R" be the Ricci curvature transform at the framand consider the
matrix-valued multiplicative functiondlM,} defined along each patt by

M, 1 :
—M, Ric, =0, Mo=1.
ar T MR 0
The solution of the heat equation can be represented as
a(x, 1) = Eo{Mu; ao(x)}. (1.2)

Among many applications of this representation is the following. Consider the
heat semigroup

Pf(x) = /M ptx ) f()dy, feCEM).

Since the exterior differentiation commutes with the Hodge—de Rham Laplacian,
it follows thata = d(P, f) is a solution of1.1) with the intial conditiorng = df’;
hence

IVP f(x)]2 < Ex{|M;]2,2|Vf (x0)]2}.

Let A (x) be the lower bound of the Ricci curvaturexafThen we have (obviously)
that

1 t
[M;l22 < exp[——/ )\(xs)ds:|.
2 Jo

This gives the gradient estimate due to Elworthy [4]:

1 t
VP f(x)]2 = Ex{|vf(xt)|2exp|:_§/(; k(xs)dsn. 1.3)

Other applications include explicit formulas of Bismut [2] and an integration-by-
parts formula proved by Driver [D] (cf. Stroock and Zeitouni [10] and Hsu [5]).

The present work grows out of an attempt to generalize these and other inter-
esting results to manifolds with boundary. As we will explain in this paper, such
generalizations are by no means routine. In particular, we want to clarify the role
of the Neumann boundary condition in the gradient estimate (1.3). We note that
Qian [8] proved that (1.3) still holds if the boundary is convex. It is therefore nat-
ural to expect a general gradient estimate involving the second fundamental form
integrated against the boundary local time of reflecting Brownian motion. In the
course of our investigation, we find it necessary to give a different construction of
the multiplicative functional, one where the second fundamental form is placed on
a similar footing with the Ricci curvature. Based on this construction, we find the
proper generalization of the gradient estimate (1.3):

1 t t
|VPrf(x)|2SEX{Wf(XereXP[—E fo Axy) ds — /0 h(xodls}},

where{x,} is a reflecting Brownian motior, its boundary local time, antl(x)
the lower bound of the second fundamental form atoM. If M is convex then
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we haver > 0 and the preceding inequality reduces to (1.3), thus recovering the
result of Qian just mentioned.

2. Reflecting Brownian Motion

Throughout this paper, we assume tiats a compact Riemannian manifold of
dimensiorm with boundaryoM. The bundle of orthonormal frames is denoted by
O (M), with the canonical projection: O(M) — M. A frameu € O(M) is an
isometryu: R" — T, M, the tangent space at= wu. A curve {u,} in O(M)
is horizontal if, for anye € R", the vector field{u;e} is parallel along the curve
{mu,}. A vector onO(M) is horizontal if it is the tangent vector of a horizontal
curve. For eachv € T, M and a frame: € O(M) such thattu = x, there is a
unique horizontal vectov, called the horizontal lift ob, such thatr,V = v. For
eachi = 1,...,n, let H;(u) be the horizontal lift ofue; € T, M. EachH, is a
horizontal vector field orO(M), andHy, ..., H, are the fundamental horizontal
vector fields onO(M). Bochner’s horizontal Laplacian 8o = Y ¢y Hf.

For a pointx € M, we denote by (x) the inward unit normal vector at Its
horizontal lift atu is denoted by (). Thus,N is a vector field on the boundary

JOM) = {(ue OM) : mu € IM).

Let w = {w,} be a Euclidean Brownian motion and consider the following
stochastic differential equation an(M ) with normally reflecting boundary con-
dition: .

du, =Y Hi(u,) o dw] + N(u,)dl,. (2.1)

i=1

By general theory, there is a unique solution to this equation starting from any
given initial frameuo. The process$u;,} is a horizontal reflecting Brownian mo-
tion. Letx, = 7u,. Thenitis well known thatx,} is a reflecting Brownian motion
on M, that is, a diffusion process oW generated by the Laplace—Beltrami oper-
ator A /2 with the Neumann boundary condition. Its transition density function
is the Neumann heat kernglz, x, y). The nondecreasing procdss the bound-
ary local time, which increases only whepn € d0(M) or, equivalently, when
X; €0M.

We denote the space afx n matrices byM,,. Now suppose that we have two
smooth functions

R: OM) > M,, A:00(M) — M,,.
Define theM ,-valued, continuous multiplicative functiong/,} by

1
dM,+M,{§R(ut)dl+A(M,)dl,} :O, M():I.

The following lemma shows th@#,} is the multiplicative functional associated

with the operator
o 1

L=——Z[Aow — R
9s 2[ o(M) ]
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with the boundary condition
(N —A)F =0 ondOo(M). (2.2)

Let VAF = {H,F, H,F, ..., H,F} be the horizontal gradient of a functiadn
onO(M).

LemMma 2.1. LetF: O(M) x R, — R" be a smooth function. Then

t
M F(us, T — 1) = Fluo, T) + / (MY F(uy, T — ), dw;)
0
t
+f M LF(us, T —s)ds
0

t
+/ M,[N — A]F(us, T — s)dl,.
0

Proof. Apply Ité’s formula toM, F(u,, T — t) and use equation (2.1) for the hori-
zontal reflecting Brownian motiom. O

3. Discontinuous Multiplicative Functional

In Section 4 we will show that the heat equation on 1-forms with the absolute bound-
ary condition is equivalent to the following heat equation onaim)-invariant
functionF: O(M) x R, — R":

aIF 1
i §[A0<M> — R]F,
F(-,0) = f,

[ON — (H + P)]F =0.

Here R = Ric is the Ricci transform. Let’s explain the notation in the boundary
condition. For each € oM, let P(x): T, M — T, M be the projection onto the 1-
dimensional normal subspace spanned by the normal vector and letP (i) =
uP(x)u: R" — R” be its lift to the frame spacé, (M). ThusP(u) is the pro-
jection onto the 1-dimensional subspace spanneti(ay. Let Q(u) = I — P(u).

Let H(x): T.oM — T,.0M be the second fundamental form of the boundxsiy
atx. We can regard it as a linear transformBr by letting H(x)v(x) = 0. Let
H®u) = u *H(x)u: R" — R” be its lift to O, (M). The boundary condition in
the heat equation just displayed consists of two independent components:

O[N —H]F =0, PF=0. (3.1)

In contrast with (2.2), this is a degenerate boundary condition, bedausea
degenerate matrix. Our goal in this section is to construct the matrix-valued mul-
tiplicative functional associated with this heat equation. The main idea, which
goes back to [1], is to replace tl@in (3.1) by Q + I and rewrite the boundary
condition as
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P
|:N—H——:|F:0.
&

According to Lemma 2.1, the multiplicative functional for this approximate bound-
ary condition is given by

AM! + M, { %R(uz) di + EP(uf) + H(uz)} dlr} =0. (32)

The technical part of this work is to show th#t® converges to a discontinuous
multiplicative functionalM (ase | 0) that is the right one for the boundary con-
dition (3.1). In order not to interrupt our exposition, we will move some proofs to
the last section.

Let’s start with a few properties d#/¢. Let

{ Ax) = infyer, =1 (R(x)V, V),

3.3
h(x) =infyer,onm jo=1(H(x)v, v). (33)

Lemma 3.1. For all positivee such thats ™ > min, ¢y 2(x), we have

1 t t
IM]22 < exp[——/ A(xg)ds — / h(-xs)dlsi|-
2 Jo 0

Here| - |2 2 denotes the norm of a matrix as a linear map®hwith the standard
Euclidean norm.

Proof. In this proof we drop the superscriptfor simplicity. Since|M, ;. =
|M, |22, it is enough to show the inequality fa,!, the transpose aff;. Letv €
R" and consider the function

f@) = MM =v"M M.
Differentiating with respect to, we have
1 1
d{f() = —ZUTMt{ER(u,) dt + [gp(u,) + H(u,):| dll}MtTv.

For the terms involving the boundary local time, by our assumptiosiwa have

P
v‘th[ 0 + H(ut)}M,Tv > h(x,)| M, 0|2
&

Hence we obtain the inequality
df (1) = = f(O{A(x,) dt + 2h(x,) dl,}.
Solving this differential inequality yields

t

t
) = O exp[— [ roas -2 [ h(xadls}.
0 0
The desired result follows immediately. O

In view of the inequality in Lemma 3.1, we need the following integrability result
concerning the boundary local time.
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LemMA 3.2. For any positive constar, there is a constant’; dependent o
but independent of such that

E.e < Cie.

Proof. By the definition of the boundary local time,

t
E.xl;=/ ds/ p(s, x, y)o (dy),
0 oM

whereo is the Riemannian volume measure of the boundafy The Neumann
heatkernep(s, x, y) can be constructed by the method of parametrix (see Sato and
Ueno[9]), and we have a Gaussian type upper boun@far, y) € (0, 1] x M x M:

C d 2
—d(x,y)*/Ct
(s, x,y) = € :

Hence, by a simple calculation we have the inequality
Exlt = CZ\/;

for some constant’, independent of and: € [0, 1].
We now proceed inductively. Suppose that

E. " < K,t"/? forall xe M.
From

t
= [ -1,
0

we have

s

t
E.l" =nE, / (B, L'~ Y di,
0
t
<nkK, |E / (t — )24,
0
1 t
- En(n —1DK,1E / (t — )32 ds
0

1 t
< En(n - 1)1<,,_1c2/ sY2(t — 5)"=3/2 gy
0

< JnK,_1Cst"?.
We can afford to be generous and cho&$esuch that

K,=nC3K, 1 or K,=mn! Cg

Now it is clear that, ift <1/2CC3 def to, then

E,e < i g]El" < i(ccgz)" = <2
B ! 1-CCst —
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For anyr > to, letk = [t/t0]. Then

k
E, e < [Sup]EzeCl’O] SUPE eClko < 2K+L,
M zeM

It is easy to verify thak + 1 < 4CC3t, hence
E ,eCI’ < 24CC3II

This completes the proof. O

Define
Toy = inf{S >0:x, €M}

= the first hitting time ofoM.

Apointr > Ty suchthat, —1,_s > O for all positives < ¢ is called deft support
point of the boundary local timé..

LeEmma 3.3. We haveM/P(u;) — O for all left support points > Tyy.
Proof. See Lemma 6.1 (in Section 6). O

We now come to the main result of this section—namely, the limif li;mdf; =
M, exists. The first thing to do is identify the limit. From the definitiomdf we
see that, if is such that;, ¢ dM, then

dM; + $M{R(u,)dt = 0.

Let{e(s, 1), t > s} be the solution of
d( t)+1( HRu,) =0 (s,8)=1
Ee S, Ee S, (u;) =0, e(s,s)=1.

Then, fort > Ty,
M; = M/e(t,, 1),

where for each > T;,; we have
t, =Sup(s <t:x; €M}
= the last exit time frondM beforer.

Now we extendP: 30(M) — M, to asmooth, projection matrix-valued func-
tion on the whole bundl® (M) and define

S = MPw),  Zf=MQu,).
Note thatY, + Z; = M;. We have
Y = Ly MEP () + Lysyy MEP(uy).
If t < Tym, thenM; = e(0, t); otherwise,

Mf =A{Z; + Y }e(t 1).
Hence we can write
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YfE = I{lﬁTaM}e(Oa t)P(uf) + I{t>TaM}ZZ€(Z*a t)P(Ml) + alE’ (34)
where
of = ly=1y Yie(te, ) P(u,). (3.5)

If t > Ty, thene, isaleft support point of the boundary local time. By Lemma 3.3,
Y — 0 ase | 0; hencea; — 0. On the other hand, by equation (3.2) fuff
we have

25 = Q(uo) + f AMEQ(u,) + / M dQ(u,)
0 0

— Quo) + /0 ¥ + Z¢] dx.. (3.6)

where
dxs = —H(uy)dls — %R(MS)Q(u.v)ds +dO(uy). (3.7)

Note—and this is an important point—that the term involvirg disappears be-
causeP(u;)Q(u;) = 0.

From the equations fdr¢ andZ¢, we expect that the limity;, Z,) is the solu-
tion of the following equations:

{ Yt = I{ISTBM}e(Ov t)P(ul) + I[Z>T3M]Zf*e(t*7 t)P(ul)7
Z = Quo) + [o(¥s + Z) ds.

Substituting the first equation into the second, we obtain an equation ifself
in the form

(3.8)

t

Z; = Q(uo) +/ D(Z),dxs, (3.9)
0
where
D(Z);=Z; + I[ngaM}e(Oa §)P(ug) + I{S>T3M}ZS*€(S*’ $)P(uy).

THEOREM 3.4. Equation(3.9)has a unique solutioZ. DefineY by the first equa-
tion in (3.8)and letM, = Y, + Z,. Then{M,} is right continuous with left limits.
FurthermoreM, P(u,) = O whenever, € 9M.

Proof. See Theorem 6.2. O

We now come to the main convergence result. For a stochastic pracesy/,},
we define
Vi, = sup|Vsl.

O<s<t
THEOREM 3.5. We have, as | 0,
E|z* —Z[5,— 0, ElY-Y[*>—0.
HenceE|M? — M,|> — Oase — 0.

Proof. See Theorem 6.3. O
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CoroLLARY 3.6. {M,} is a multiplicative functional, and

1 t t
|Mr|2,2§exp[——/ A(xods—/ h(xadls}.
2Jo 0

Proof. The first assertion follows becaugd/} is a multiplicative functional. Let-
tinge — 0in Lemma 3.1, we obtain the second assertion. O

We are now in a position to prove the following important property of the multi-
plicative functional just constructed. Recall thétdenotes the horizontal lift of
the inward normal vector field oW

THEOREM 3.7. Let F: O(M) x R, — R be a smooth function such that
Pw)F(u,t) =0forall u e 900(M) andt > 0. Then we have

t
M F(u,, T —1) = F(uo, T) + / (MVPF(u;, T = 5), dwy)
0
t
—l—f M LF(ug, T —s)ds
0

t
+/ M,[ON — H]F(u,, T — s)dl,.
0
Proof. From Theorem 2.1, we have

t
MF(u,, T —1) = Fluo, T) + / (MEVHE(u,, T — 5), dwy)
0
t
+/ M;LF(us, T —s)ds
0

! 1
+/ M [N —-Zp- Hi|F(u_Y, T —s)dl,.
0 &

The terms involving s vanish becaus® (u) F (u;, T — s) = 0 foruy; € 00(M).
Using Theorem 3.5, we take the limitas—> 0 to obtain the desired equality. Note
that we can insert @ () beforeN in the local time integral because, on the sup-
port of the local time, we have, € oM andM; = M;Q (u,) by Theorem 3.4. [

REMARK 3.8. The existence of the multiplicative functioa,} and the prob-
abilistic representation of the solution of the heat equation (see the next section)
were proved in lkeda and Watanabe [6; 7]. Our approach is different. By using
the approximate multiplicative functional suggested by Airault [1], we are able to
prove Theorem 3.7 without recourse to excursion theory. Also, by not localizing
the argument, we have clarified the role of the second fundamental form. More
importantly, we are able to obtain Corollary 3.6 without any extra effort. As we
mentioned in Section 1, this inequality was one of the main reasons that motivated
the current investigation.
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4. Heat Equation on 1-Forms

A probabilistic representation of the solution of the initial boundary value prob-
lem for the heat equation associated with the Hodge—de Rham Laplacian on dif-
ferential forms with absolute boundary condition can be obtained easily once we
identify the boundary condition in the form discussed in the previous section.

Let a be ak-form M. At each pointx € oM, let Q(x): T, M — T, M be the
projection to the tangent spa@edM C T, M. The tangential componety,, is
defined by

Utan(V1, ..., Vg) = (Qu1, ..., Quy), v € Ty M.

The normal component is defined as
Onorm = & — Utan.
The forme is said to satisfy the absolute boundary condition if
anom=0 and (da)norm=0.

Let A* M be the space of differential forms ate M. If x € M, we will use
P(x): A* M — A M to denote the orthogonal projection to the normal compo-
nent; that isP(x)a@ = anorm. L€t Q(x) = I — P(x).

An orthonormal frame: € O(M) atx = mu can be regarded canonically as
an isometryu : A*R" — A* M. For a differential formx on M, its scalarization
F,: O(M) — A*R"isdefined byF, (1) = u~%a(mu). As such, itis aiR”-valued
function onO(M), which is O(n)-invariant: F, (ug) = gF,(u) forall g € O(n).
Conversely, any(n)-invariant,R”-valued function orO(M) is the scalarization
of a differential form onM.

For simplicity, from now on we consider only 1-forms. Parallel discussion can
be made for forms of higher degrees. The covariant Laplagiaa tracev? on
M is related to Bochner’s horizontal Laplaciay,y = Y i H? on O(M) by

Aoy Foa(u) = Fpq(u).

Let(d = —(dd* + d*d) be the Hodge—de Rham Laplacian on differential forms.
The Hodge—de Rham LaplaciaGhand the covariant Laplaciaf are related by
the Weitzenbéck formula

Oa = Aa — Rica,

where Ri¢x): T*M — T M is the Ricci curvature transform (tensor). This for-
mula can be lifted ta@) (M) to read

DO(M)Fa = AO(M)Fa — RIiCF,,

where now Ricu): R" — R” is the lift of the Ricci transform Ricx).

We will express the absolute boundary condition in terms of scalarizations on
O(M). As before, letN (1) be the horizontal lift of the inward unit normal vector
n(x) to aframeu atx. The second fundamental forf: 7,.0M Qr T,0M — R
is defined by

Hx)(X,Y)=(VxY,v), X,YeT,0M.
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By duality, H(x) can also be regarded as a linear ni&gx): 7,0M — T,0M via
the relation
(HX,Y)=H(X,Y).

We extendH to the whole tangent spadg M by letting Hv = 0. We denote the
dual of H still by H: T)M — T*M. As usual, at each framewe can lift H to
a linear map:

Hu) = uH(7u)u: R" — R",

LemMma 4.1. A 1-form o on M satisfies the absolute boundary condition if and
only if
[ON — H]F, — PF, =0 ondo(M).
Proof. It is enough to show that
anormzo <~ PFaZO
and that, ifenorm = 0, then
(do[)norm = 0 <:> [QN - H]Fa == 0.

Let 6 € T M be defined by (X) = (X,v). Thenanom = (o, 6)6. Thus
anorm = 0 if and only if (@, ) = 0. On the other hand,

PF,(u) = u"P(x)a = u*({(a, 0)0) = (a, O)u™.

Thus PF, = 0 if and only if aporm = O.

Next, let {6’} be an orthonormal basis fdaf*M with 61 = 6, and let{f;}
be the dual basis. Thefi = v, the inward unit normal vector. The condition
[ON — H]F, = 00nd0O(M) is equivalent to

OV,a — He =0 onoM.
Becausefy, ..., f, spanT; oM, this in turn is equivalent to
Vya)(f)) — (Ha)(f)) =0, i=2,....n.

On the other hand,
de= Y da(fi. 0" n6/.

1<i<j<n

By definition,

(dat)porm = Zda(fi, U)Ql/\ Qi;
i=2

hence(da)norm = 0 is equivalent to
da(v, f;)=0, i=2,...,n.

The left side is equal to
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da(v, f) =va(fi) + fiav) —a([v, fi])
= (Vva)(fi) +a(V fi) —a([v, fi])
= (Vya)(fi) +a(Vpv)
= (Vo) (fi) = (V) (v)
= (V) (fi) — (Ha)(f)-

Here in the second and fourth steps we have uged = 0, which follows from
anorm = 0. It follows that, under the conditio,orm = 0, (da)norm = O if and

onlyif[ON — H]F, = 0. O
Letagbe al-form oM and consider the following initial boundary value problem:
o _ 1
a2 °
a(-, 0) = ao, (4.1)

norm = 0, (da)norm = 0.

Let F = F, be the scalarization of the solution. Then, by Lemma 4.1, system (4.1)
is equivalent to the following system on &‘-valued function orO(M) x R :

oF _ 1(A Ric) F
Bt _ 2 O(M) 9
F(-,0) = Fy,

[ON — H]F — PF = 0.

We have the following probabilistic representation of the solution.{M&t be
the discountinuous multiplicative functional defined in Section 3.

THEOREM 4.2. Let F be the scalarization of the solution of the initial boundary
value problen{4.1). Then

F(u,t) = E {M; Fyy(u;s)}.
Equivalently, the solution is given by
a(x, ) = E {Mu;  ag(x,)} (4.2)
for anyu € O(M) such thatru = x.

Proof. We haveP(u)F(u,t —s) = 0 for allu € 00(M) becausd satisfies the
absolute boundary condition. Thatis a solution implies, by Theorem 3.7, that
{M,F(ug,t —s), 0 <s <t}is amartingale. Equating the expected values=at

0 ands = ¢ yields the formula forF (u, t). O

5. A Gradient Inequality

Let P, f(x) = fM p@t,x,y) f(y)dyfor f e C*®(M), wherep(z, x, y) is the Neu-
mann heat kernel oi. We have the following gradient inequality.
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THEOREM 5.1. Suppose that the smallest eigenvalue of the Ricci curvature at
is L(x) and the smallest eigenvalue of the second fundamental foxnisat(x).
Then we have the gradient estimate

VP f(x)] < ]Ex{|vf(xt)| exp[—%/()tx(xs)ds - /Olh(xs)dls“-

Proof. Leta(x,t) = dP, f(x). Thena satisfies the absolute boundary condition
becaus@P, f/ov = 0. Now the Hodge—de Rham Laplaciahcommutes withi,

hence
du d(aP,f> 1 1 1

— = = -d0P,f = -0dP,f = =0c.
o o p AR = 5Hdb ) = 50
Thusa = dP, f is a solution to the heat equation (4.1). By Theorem 4.2, we have
the following generalization of Bismut’s formula (see [2]):
VP f(x) = Eo{Mu; Vf (x)}.
The desired inequality follows this and Corollary 3.6. O

REMARK 5.2. If M is closed (without boundary) or the boundary is convex, we
have

1 t
VP f(x)] = EX{IVf(xt)IeXP[—EfO )»(xs)dS“- (5.1)

These two special cases were proved by Elworthy [4] and Qian [8], respectively.

6. Some Proofs

This section contains the proofs of the technical results used in Section 3. We
retain the notation used throughout the paper. The results are restated for easy
reference.

LeEmMA 6.1. We haveM/P(u,) — 0 for all left support points > Tyy,.

Proof. For simplicity we writeM ¢ asM in this proof. Leta € R" and differenti-
ate the function

f(s) = |Pu)Mlal? =a"M,P(u)Ma.
Using the equation foM yields
df(s) = —gf(s)dls + dNj, (6.1)
where the stochastic differentidlV, is equal to
%aTMS{ZP(u,) — P(uy) P(u;) — P(u,) P(ug)yMa dl,

— a"M{H (us) P(u,) + P(u,) H(u)}M ] a dl
— a"M{R(us) P(u;) + P(u,)R(us)}Ma ds.
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By continuity we have, as 1 ¢ with x; € IM,
P(u)P(us) = Pu)? = P(u),  Pluy)Pu)) — Puy).

Hence, by Lemma 3.1, for any > 0 there exists @ > 0 such that, for alk €
[t — 8, t] with x; € OM,

|M{2P(u;) — P(ug) P(ur) — P(u) Pus }M[T| < 1.

Also by Lemma 3.1, there is a constaitsuch that, for alls € [t — §, ¢] with
Xy € OM,
M {H (us) P(u;) + P(u;)H(us)}M,| < C
and
IMs{R(us) P(u;) + P(ur) R(us)}M;| < C.
It follows that

AN, | < |a|2[(ﬁ + c) dl, + Cds].
£

Now, from (6.1) we have

t

f(0) = 672(1’71”5)/8.]“([ -8+ / e*Z(szlx)/‘9 dN;.

t—§
Using the definition off () and the estimate fafN,, we find that this equation
gives

+ Ce
M PG < e 20mbdle 2 4 T2 1 gm2tlisley

t
+C / e 2=l g (6.2)
t—4

Because is a left support point, — I, > Oforalls < z. Lettinge — 0 and then
n — 0in (6.2), we haveM, P(u,) — O. O

THEOREM 6.2. Equation(3.9)has a unique solutio. DefineY by the first equa-
tionin (3.8)and letM, = Y, + Z,. Then{M,} is right continuous with left limits.
Furthermore, M, P(u,;) = 0 whenever,; € OM.

Proof. The unique solvability of (3.9) is a consequence of the following three
facts.

(1) @isLipschitzinthe normZ|, = sup,,,|Z;|; thatis, there exists a constant
independent of andr such that

|®(ZY) — ®(Z?)|, < Ce"| 2t — 77|,.

(2) If Z is adapted, thed(Z) is also adapted.
(3) The semimartingale differentidly; has the form

dxs = a(ug) dws + b(ug) ds + c(uy) dly, (6.3)

with uniformly bounded smooth functions b, c on O(M).



Multiplicative Functional for the Heat Equation on Manifolds with Boundai365

By the standard Picard iteration, we know that (3.9) has a unique solution that is
a continuous semimartingale. We now defihby the first equation in (3.8). Itis
clear thatY is right continuous with left limits, hence soié, = Y, + Z,.
Let us now prove tha¥/, P(u,) = 0 if x, € 9M. This is to be expected because
we have imposed the Dirichlet condition in the normal direction, ¥ 9M, then
t = t, and we have
Y, = Z;,Q(u;,)P(u;,) = 0.

Itremainsto showthaf, = Z,Q(u,) forall: > O, forifthis holds therZ,; P(u;) =
0 and this implies

M P(u;) = Y, P(u;) + ZP(u;) = 0.

In the rest of the proof we will abbreviat@ («,) as Q,. By Ité’s formula and
(3.9),

d{Z,0,} =M, dx,Q;+ Z,dQ, + M,d{Q, Q),
= M {dx;Q, +d(Q, O):} + Z, dQ,.
From (3.7) and the fact th&, is a projection matrix, we have
dx,Q, =dx, —dQ,+dQ,0;,.
Thus, the stochastic differential aftéf, is

dy; —dQ; +dQ,;0; +d{Q, Q) =dy; — Q;dQ,.
Hence

d{Z,0:} = M{dy, — Q:dQ:} + Z,dQ,
=M,dx; +{Z;, — M;Q,}dQ;.
UsingM, dx, = dZ, andM,Q, = Z,Q, we have, forz, = Z,0, — Oy,
dS, = —%,dQ,, o= QF— 0o=0.
It follows thatX,; = 0, and the proof is completed. O
THEOREM 6.3. We have, as | 0,
E|Z® — Z|w; — 0,  E|Yf —Y,| — 0.

HenceE|M? — M,|> — Oase — 0.

Proof. We write |Z* — Z|,; as|Z® — Z|, to simplify the notation. From (3.4)
and (3.6), we have

t
z = Q(uo)+/ ®(Z°), dy,s + 6,
0
where

t
szf of dys. (6.4)
0

Subtracting from this the equation f@ryields
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t
Zi—7, = / (®(Z5), — B(Z),} dys + 6.
0

Lett — t, be the inverse function of — s + I;. Then eacht; is a stopping
time. Switching to the new time scate and using the Lipschitz property df
and standard moment estimates for stochastic integrals, we have

t

E|Z¢ - Z|? < c2/ E|Z¢ — Z|2 ds + 2E|0; |°.
0

This implies that
E|Z¢ - Z|? < 2/(: eCUIE|QZ P ds. (6.5)
From (6.3), (3.5), (6.4), and the inequalitigs< s and/;, < s, we now have
El0 |* < CE /:|M§*P(us*)|2{ds +dl}.

Itis well known that reflecting Brownian motion does not spend time on the bound-
ary. For a time point such that, € M, s, is a left support point of the boundary
local time. On the other hand, as a measur®aqnthe boundary local time is sup-
ported on the set of left support points (and also on the set of right support points,
for that matter). Hence, Lemma 3.3 shows that the integrand tends to zero, and
Lemma 3.1 shows that the integrand is dominated by an integrable random vari-
able. Thereforell|0; |2 tends to zero boundedly. Now we candet> 0 in (6.5)
and obtain “

lim E|Z° — Z]2 =0.

To show that we can replaag by ¢, we note first that, since, + oo ass 1 oo,
this implies in particular thaZ, also satisfies the inequality in Lemma 3.1. Hence,
for a fixedT > 0O,

28 =22, <12° - 2%

AT

is bounded by an integrable random variable independentidw,
E|Z° - Z|} <E|Z° — Z|2 +B{|Z° — Z|%; © < T}.
Lettinge — 0 and thenr 1 oo, we obtain
!@OE|Z£ —Z]2=0.

Finally, from Lemma 3.1, Lemma 3.3, (3.4), (3.5), and what we have just proved,
it follows that lim,_o E|Y;* — Y;|?> = 0 for all z. O
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