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1. Preliminaries

LetC" denote the space aftomplex variables = (zy, ..., z,) with the Euclidean
inner product(z, w) = »""_; z;w; and the Euclidean norifz|| = (z, 2)V2,

Letz’ = (z2,...,2n) SOthatz = (z1,27’). Let B" = {z € C" : ||z|| < r}and
let B" = B7. In the case of one variabl®," is denoted byU, andU; by U. If
G c C"is an open set, el (G) denote the set of holomorphic mappings from
G into C". If f € H(B'), we say thatf is normalizedif f(0) = 0 andDf(0) =
I. Let S(B}") be the set of normalized univalent mappingg40B;’). The sets of
normalized convex (resp., starlike) mappingBgfare denoted b (B/") (resp.,
S*(B!")). Whenn = 1, the setsS(U), S*(U), andK(U) are denoted by, S*
andKk, respectively. For vectors and matricé$,denotes the conjugate transpose
of A.

We recall that a mapping': B" x [0, c0) — C" is called aLoewner chainf
F(-,t) isunivalentonB”, F(0,t) =0, DF(0,t) = €'l fort > 0, and

F(z,5) < F(z,1), z€B", 0<s <t < o0,

where the symbok means the usual subordination. We will consider the set
§9(B™) consisting of those mappindgse S(B") that can be imbedded in Loewner
chains. It is well known that, in the case of several complex varialR&R") is
a proper subset of(B") (see [K; GrHK]). If F: B! — C" (0 < r < 1), we say
thatF e SO(B!") if F, € S°%(B"), whereF, (z) = 1F(rz) andz € B".

A mappingf € H(B") with f(0) = 0 is calledstarlikeif f is univalent onB”
and if f(B") is a starlike domain with respect to zero.

It is known that starlikeness can be characterized in terms of Loewner chains:
f is starlike onB" iff f(z,1) = e'f(z) (z € B", t > 0) is a Loewner chain. For
the analytical characterization of starlikeness, see [S1; S2].

A key role in our discussion is played by tledimensional version of the
Carathéodory set:
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M = {heHB") : h(0) =0, Dh(0) = I, Re(h(z),z) > 0, z€ B" \ {0}}.

Recently, three of the present authors have shownttiigg compact [GrHK].

In order to generate mappings $¥(B"), we will make use of a modification
of a criterion of Pfaltzgraff [Pf1]. In his initial result, Pfaltzgraff used the follow-
ing additional assumption df(z, t), which now is not necessary: For edth> 0
andr € (0, 1), there exists a numbeéd = M (r, T) such that

Ih(z, Ol =M@, T), llzll <r, O<r=<T.

LemMma 1.1. Let f(z,t) = e’z + --- be a mapping fronB" x [0, co) into C"
suchthat(@) (-, t) € H(B") for eachr > 0and(b) f(z, t) is a locally absolutely
continuous function af € [0, co) locally uniformly with respect ta € B".

Leth: B" x [0, o0) — C" satisfy the following conditions
(i) h(.t)eM, 1 >0
(i) foreachz € B", h(z,t) is a measurable function ofc [0, c0).

Suppose that

g(z’ 1) = Df(z,0)h(z,1) a.er=0

and for allz € B", and suppose there exists a sequefagé (t,, > 0) increasing
to oo such that

lim e ™ f(z,t,) = G(2)
locally uniformly onB”. Thenf(z, t) is a Loewner chain.

The Roper-Suffridge extension operaisrdefined for normalized locally univa-
lent functions o by

,(f)(2) = F(z) = (f(z0). Vf'(z07'), (L1

where the branch of the square root is chosen such figd) = 1.

Roper and Suffridge [RS] proved thatffe K then®,(f) € K(B"), and in
[GrK1] it was shown that iff € S* then®,,(f) € S*(B").

In this paper we consider the operators

Sf(z1)

<1

Wi o,8(f)(2) = Fop(2) = (f(Z1), ( > (f(m))ﬂZ’), zeB", (1.2)
wherea > 0, 8 > 0, and f is a locally univalent function o, normalized by
f(0) = f'(0) —1= 0, and such thaf(z1) # 0 forz; € U \ {0}. We choose the

branches such that

20 \" ,

(f( 1)) =1 and (f'(z))’l=0=1
2 21=0
If « € [0,1] andB = O (resp.,« = 0 andp < [0,1/2]) then we obtain 1-

parameter families of operators, which have been recently considered in [GrK2;
GrKK]. Of course, wherr = 0 andg = 1/2 we obtain the Roper—Suffridge op-
erator®,,.
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We remark that all of thev, , s fall into the general class of operators of the
form W,(f)(z) = (f(z1), 2’g(z1)), where f is normalized locally univalent ol
andg is a nonvanishing holomorphic function @hsuch thatg(0) = 1 If f is
univalent onUU and if g is analytic and nonzero afif, then the mapping,(f) is
clearly univalent orB". However, if we impose some geometric conditions on the
extended mapping,, our methods require that we have some connection between
the functionsf andg. In fact, for a given convex functiop, it is difficult to find a
function g such that¥,(f) is a convex mapping. As we shall see in Example 1.3,
the only choice o0f(z1) that makes the mapping@s, z’) — (z1/(1—z1), 2'g(z1))

a normalized convex mappinggszi) = 1/(1 — z3).

In [PfS1, Ex. 1] it was shown that, if is starlike onU, thenW, 1 o( f) is starlike
on B"; in [GrKK] it was shown that¥, o g (f) is starlike whenevey is starlike
andg € [0, 1/2]. This suggests that one should examine the geometry associated
with ¥,  g(f). We note that the operatdr, , s has the property that the function
f(z1) = z1/(1— z1) is mapped tdz1 /(1 — z1), 2/(1 — 21)*T2).

We obtain a number of extension results that are validvfer [0, 1] and 8 €
[0,1/2] with @ + B < L if f € S thenW, , 5(f) € S%B"); if f € S* then
U, o,p(f) € S*(B"). Also, if f is a univalent function that satisfies known growth
and distortion estimates, th@n, , s(f) is a univalent mapping that satisfies a re-
lated growth estimate. It is interesting that the same set of parameter values arises
in these different extension problems.

We will also prove that the operatois, o s can be used to construct further ex-
amples of linear-invariant families that have minimum or¢er+ 1)/2 and that
are not subsets & (B") for n > 2 (cf. [GrK2; PfS3]).

As already indicated, the preservation of convexity seems to be a very rigid
property of the Roper—Suffridge operator. Only far ) = (0, 1/2) does¥,, 4 g
preserve convexity. It would be of interest to determine whether there is any per-
turbation of the Roper—Suffridge operator that preserves convexity.

We now give the example that shows that the only choicg(ef) that makes
the mapping(z1, z’) — (z1/A — z1), Z’g(z1)) a normalized convex mapping is
g(z1) = 1/(1 — z1). For this purpose, we need the following result.

Let F: B" — C" be a normalized holomorphic univalent mapping of the ball
B" onto a convex domaif2. Suppose tha® is unbounded. Also let = L(u) =
{ru : r > 0}, whereu is a unit vector inC". Then we have the following lemma
[MS, Lemma 2.1].

LEmMA 1.2. IfveQandL(u) C 2, thenv + L(u) C Q.

ExampLE 1.3. Letn = 2 andF: B?> — C? be given by

F(z) = (Z—l ng(zl))’ 7= (z1,22) € B?,
-z 1-2zn
whereg is a nonvanishing analytic function dn with g(0) = 1. We show that
the mappingF is convex only forg(z;) = 1
Observe that the liné = {(it, 0) : t € R} C F(B?). From Lemma 1.2 we de-
duce that, for every¥ € F(B?), the lineW + L C F(B?).
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Let

21 and v — 728(z1)

1-71 1-2z; )

u =

Then Rer > —1/2 and

ul> 1+ 2Reu
1+ul2 ™ 14+ul®’

|22® <1—Jzaf® =1~
so the mapping is of the form
(u, pe N1+ 2 Reuh(u)), p <1 h(u)= g(%)
u

Note that, from the nature of the mappifgand Lemma 1.2, we have the fol-
lowing relations:

(u,v) € F(B?) <= (u, |v])€ F(B?) <= (u +it,|v]) e F(B® VteR. (1.3)

For eachu, let

M) = supi|v| : (u, v) € F(BY)} = /1+ 2Reu) |h(u)|.

Then (1.3) implies tha¥ (1) is independent of Im, so that|(«)| is constant on
the lines Rer = constant- —1/2.

By the Schwarz reflection principle, we may reflect the functiomith the do-
main restricted to the right half-plane across the unit circle (it is the unit circle
becausé: (0) = 1) by h(—it) = 1/h(u). This extended function is entire because
h(u) # 0. Writeu = o +it and observe thdt(u) = Re’® wherer is independent
of . Using the Cauchy—Riemann equations, it is easy to seetisdhdependent
of o and, in factsi(u) = e** for some reak. Using the convexity of the mapping,
it follows that the setu, v) such that: > —1/2 and O< v < /14 2ue®™ = k(u)
is convex. By elementary calculus, sinc&u) > 0 for largeu whena # 0, this
set(u, v) cannot be convex unlegs= 0.

We recall that a linear-invariant family (L.1.F.) is a famify of locally univalent

mappingsF: B" — C” such that, ifF € F, then:

(i) F(0) =0andDF(0) =1; and

(i) Ag(F) e F for all ¢ € Aut(B"), where AuiB") is the set of holomorphic
automorphisms oB” andA4(F') is the Koebe transform df given by

Ay(F)(2) = [D$(0)] [DF(¢p(0)] (F(¢(2)) — F(¢(0))), z€B"
(see [Pf2]).
The order of the L.1.FEF is defined by
ordF = sup{|tracd  D2f (0)(w, )}| : f e F, |wll =1}

(see [BFG; Pf2]).

We determine the order of the L.I.F. generateddy, s(F), whereF is a
L.I.F. onU of known order. We then consider the radius of convexitybpfF )
and the radius of starlikeness ¥f, . s(F), where againF is a L.I.F. onU of
known order.
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We would like to thank the referee for offering suggestions on an earlier version
of this paper.

2. Loewner Chains Associated with the Operatony, . s
We begin this section with the following result.

THEOREM 2.1. Assume thaf € S and thatx € [0, 1] and 8 € [0, 1/2] such that
a+p<LThenF,pg=W,qp(f)c SO(B™).

Proof. It suffices to give the proof when = 2. Since f € S, there exists a
Loewner chainf(zy, t) such thatf(z1) = f(z1,0) for all z; € U. Let F, g(z, 1)
be defined by

Fop(z,t) = (f(zl, 1), et Piz, (f Sl )) (f'(z1, 1) ) (2.1)

for z = (z1, z2) € B andr > 0. We shall show thak, 4(z, t) is a Loewner chain.
Sincef(z1, t) is a Loewner chain i@, it follows that (a) f (z1, 1) is a locally ab-
solutely continuous function efe [0, co) locally uniformly with respectta; € U
and (b) for eachr € (0, 1), there exists a positive constarfy, = Mo(r) such that
|f(z1,0)| < Moe', |zl <r, t=0.
Also there exists a functiop(zy, ¢) that is holomorphic o/, measurable in >
0, with p(0,7) =1and Rep(z1,t) > 0forz;e U and 0< ¢ < oo, and such that

%(Zl, 1) =z1f'(z1,)p(z2,1) a.er >0 (2.2)

and for allz; e U.

Obviously F,, 4(-, 1) € H(B?), F, 3(0,1) = 0, and DF, 4(0,1) = €'I; also,
F, p(z, t) satisfies the absolute continuity hypothesis of LenriaUsing (2.1),
we deduce that

oFy, 0 —a—B)t s ,
D (2, 1) = (a—’:m, ). 2pe0eP) ((1— ﬁ)(f (Zi ) (f(z1, 1)

(22

Becausef(zy, 1) is a locally absolutely continuous function o€ [0, oo) lo-
cally uniformly with respect ta; € U, we can deduce that, for almost alt O,

3 L9 [ of
ey B _ / 1" 2
o (f(z2, )" = B(f(z,1)) 8t<aZ1(Zla t))

1 9 [of
_ / p-1
= B(f'(z1,1)) 9 ( Y (z1, t))

0
= B(f'(z1, z))ﬂfla—(zlf/(zl, Hp(z1, 1))
71

f"(z1, 1)
_ ’ B
= B(f'(z1,1)) [p(m, N+ f(z1,1)

making use of (2.2) and the fact that the order of differentiation may be changed.

p(z1, 1) + z1p' (21, l)},
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Consequently, we obtain the relation

oF,
ot

Lz 1) = <11f’(zl, Np(z1, 1), Zzea"‘ﬂ)’<¥i’0> (f'(z1,1))F

af'zn

f(z1, 1)

, z1f"(z1, 1)
+ Bz1p'(z1, 1) + ﬂmp(m, f):|>

X |:1—a—/3+ot p(z1, 1) + Bp(z1, 1)

a.e.r > 0 and for allz € B2.
Moreover, straightforward computation now yields

OF,
[DFy 5(z, r)]—lT’% )

= (z2p(z1. 1), 22l — o — B+ (o + B)p(z1, 1) + Pz1p'(21, 1))
a.e.t > 0 and for allz € B2. Let

ha,p(z, 1) = (z1p(z1. 1), 22l — & — B+ (a + B p(z1. 1) + z1p'(21.1))).
Then we have

8Fa,f5(Z, t)
ot

and for allz € B2. We next show that,, g(z, t) satisfies the requirements (i) and
(ii) from Lemmal.l.
Obviously,hg, (-, t) € H(B?), he 5(0,1) = 0, Dhy 5(0,1) = I, and

Re(hg 5(z, 1), 2) = |z1l*Rep(z1, 1) + 1 — a — B)|z2/?

+ (@ + B)Iz21?Rep(z1, 1) + Blz2l* Re(z1p'(z1, 1)) (2.3)

for z € B2 andr > 0.
Itis clear that ifz = (z4, 0) then

Re(fq (2, 1), 2) = |z1/° Rep(z1, 1) > 0;

hence it suffices to assume that (z1, z2) with z2 # 0. In view of the minimum
principle for harmonic functions, it suffices to prove that

Re(hg 5(z,1),2) >0, |za2+1z2° =1 z2#0, t > 0.

We havep(0,7r) = 1and Rep(z1,1) > 0(z1€ U, r > 0), and it is well known
that

= DF, g(z,t)hqp(z,t) a.er>0

/ 2 Rep(zlv t)
4 t S I
|p'(za, )] 1127
(see e.g. [P2]); from this we obtain

2
|Zl| > Rep(Zl, t), |Zl| < 1’ t > 0

Re(z1p'(z1, 1) = ————
1— |z
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Using this inequality together with (2.3) and the fact that[0, 1], 8 € [0, 1/2],
anda + 8 < 1, we obtain

Re(ha, p(z, 1), 2)
> [z1?Rep(ze, ) + L —a — B — |z1)
+ (@ + B)(L— |za) Rep(z1. 1) — 2B|z1l Rep(z1. 1)
=l-a-pA-1zPd
+Rep(z1. DIz’ A —a — B) — 2Bzl +a + 6] =0 (2.4)

for z = (z1, z2), where|zy|? + |z2> = 1, z, # 0, and > 0.
In determining the nonnegative valuescofind g for which the left-hand side
of (2.4) is nonnegative oB?, there are three cases to consider:

(i) a+B=1L
(i) « + B < land the quadratic polynomial

gx)=A—a—pPx>—2Bx+a+p

assumes its minimum outside the interval [0,1];
(ii) a4+ B < landg(x) assumes its minimum inside the interval IR

In case (i) we obtain & 8 <1/2, « + 8 =1 In case (ii) we obtai + 28 >
La+pB<10<p <1/2 Incase (iii) we obtairr + 28 < 1. These three pos-
sibilities together give the conditions anandg in the statement of the theorem.
Itis also clear that the mappirkg, 4 satisfies the measurability condition (ii) from
Lemmal.l.

Sincee™f (-, t) is locally uniformly bounded o# for ¢+ > 0, there exists a se-
guencelt,,} (t,, > 0), increasing taxo, such that

lim e ™ f(z1, tm) = g(21)

m—00

locally uniformly onU. Then, by Vitali's theorem, we have

”!Inooeitha,ﬁ(Za tm) = lI’n,oz,ﬂ(g)(z)
locally uniformly on B2.
Taking into account Lemm&al, wededuce thaf, z(z, t) is a Loewner chain
and thusF, s(z) = Fy 5(z, 0) belongs taS%(B?). This completes the proof. O

We mention that, fop = 0 andu € [0, 1], the result of Theorem 2.1 has been ob-
tained in [GrK2]. Also, wherx = 0 andg € [0, 1/2], the result was obtained in
[GrKK]. Actually, in all cases it is possible to show tha} z(z) admits a para-
metric representation, which is a slightly stronger conclusion (see [GrHK]).

A direct application of Theorem 2.1 is the following corollary.

CoroLLARY 2.2. Letf e S*andletx €[0, 1]andg € [0, 1/2] suchthatx+ 8 <
L ThenF, g =W, 4 p(f) € S*(B").
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Proof. Since f € S* we know thatf(z, t) = e¢'f(z1) is a Loewner chain. From
the proof of Theorem 2.1, we deduce tfats (z, 1) = e'F, g(z) is also a Loewner
chain. This completes the proof. O

Certain cases of this result (i.e.¢ [0, 1]ands = 0, « = 0 andg € [0, 1/2]) have
been studied in [GrK2; GrKK]. In particular, it is known that the Roper—Suffridge
extension operatob, = W, o1/2 preserves starlikeness.

As for the preservation of convexity under the operalgy, g, we know that
Wn012(K) S K(B"), ¥,00(K) ¢ K(B") (see [RS]) and als@,,o4(K) ¢
K(B") for g €[0,1/2) (see [GrKK]). Moreover, we have the following.

THEOREM 2.3. Leta > 0andpg > 0. Also let¥,, , g be the operator defined by
(1.2). Thenw, , s(K) C K(B"), forn > 2, ifand only if («, 8) = (0,1/2).

Proof. We will use similar arguments to the proof of [RS, Thm. 2] to give a geo-
metric proof. For this purpose, let= 2 and letf : U — C be defined by

_} 1+2z4
f(z1) = > |09(1_ Zl)-

Then f is convex, but the mapping

Fy o(2) = }Iog<l-FZ1) . (;£409<1—le>>ﬂ 1
T 2T \1— g )2 \1—z)) A=

is only convex for(a, 8) = (0, 1/2). To see this, let

L }log<1+zl) S (i Iog<1+zl>)“ 1
2 1-z1)° e 271 1-7 1L-zHF"

If Foo g (B?) is convex, then so is its intersection with the planede 0, Imv =
0. This intersection contains the entire readxis and precisely the intervat1, 1)
of the realv-axis. In order to show that convexity is not satisfied, it suffices to
show that ifz; — 1 along the real axis then we are constrained to have> 0
or else it is possible to choose so thatjv| — oco.
If zz — 1 along the real axis thenis real,u — oo, and

1 Iog(1+ m)
271 1-7;
Letz, = ¢ > 0 be small and let; = v/1— 2. Then it is elementary to show

that if (o, B8) # (0,1/2) then|v|?> — 0 or|v|?> — oo. This completes the proof.

O
ExaMPLE 2.4. (i) LetF, g, u, andv be as in the proof of Theorem 2.3. Figures
1, 2, and 3 showF, (B?) N {Imu = 0} N {Imv = 0} when(e, B) = (0, 0.495),
(1,0, and(1/2,1/2), respectively. The graphs are starlike but are not convex.
See Theorem 2.1.

2a

o = 122
|1—z2%
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1
J
-400 00

Figurel o =0, 8 =0.495

j
-10 = 10
-0.5

Figure2 a«=18=0

N
-

10
\/
-100 -50 50 100
/ \
-10

Figure3 0[=1/2,/3=1/2

(i) Next, we give an example of a mappidy = ¥, o s(f), wheref € K and
B €10,1/2], that satisfies a necessary condition for convexity; however, it is not
convex forg # 1/2.
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Letn = 2, f(zl) = Zl/(l_ z1), andﬂ S [0, 1/2] Then

Fg(2) = Wo04(f)(2) = (131&’ @ —Z121)2ﬁ>

=z + (22, 2B2122) + (23, B2B + Dz2z2) + - - -

+ (z’{“, 2pEp+ Y kl @prk-d ZIfZ2> TH

forall z = (z1, z2) € B2
Letw = (wy, w2) € C2with |w| = 1and letk > 2. It is obvious that theth
multilinear Taylor coefficien(l/k!)D"F,g (0) of Fg satisfies

kaF,g(O)(w, w)H

Kl
2BRB+1D)---2B+k—2)7?
=|w1|"—1\/|w1|2+[ A )} jwal? < 1

Hence

1
EDkF,g(O)(w, cw)

sup
llzll=1

<1 k=2 (2.5)

Now, let Ay : ]_[’;=1C2 — C? be ak-linear symmetric mapping. Using [H6,
Thm. 4], we have

Al = sup [[A;w®, ..., w®)| = sup|Ac(w,.... w)|.
||w(j)H=l lwl=1
1<j<k

Combining these equalities with (2.5), one obtains that
1 k
HD F5(0)
Thus all multilinear Taylor coefficients dfg satisfy the necessary condition for
convexity on the unit ball o€2 via [PfS4, Thm. 5.1], buFj is not convex onB?
for 8 # 1/2 by Example 1.3.

The graph ofF(B?) N {Reu = 0} N {Imv = 0} when(a, B) = (0, 0.49) is
shown in Figure 4.

<1l k>2

1

.—/_’_)¥

0.5

- 10000 -5000 5000 10000

-0.5

_

-1

Figure4 o =0, 8=0.49
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3. Growth and Distortion Theorems for Families
of the Form ¥, , 4(F)

In this section we show that the operatioy, s (¢ €[0,1], 8€[0,1/2], a + 8 <
1) preserves growth results (cf. [Gr; GrK2; GrKK]).

THEOREM 3.1. SupposeF is a subset of such that allf € F satisfy
o) < 1f(z)l <o), |zul=r,

3.1
o' <|f'z)l <¢'(r), |zl =T, 1
where

@, ¢ are twice differentiable o0, 1), (3.2)
00)=¢'(0)—1=0, ¢'(r) >0, ¢"(r) <0, (3.3)
$©0)=¢'(0)-1=0, ¢'(r) >0, ¢"(r) > 0. (3.4)

If Foy.p = Wnop(f) (@e[0,1], B€[0,1/2], o+ B < 1), then
o(r) = [ Fa,p(Dll = @(r), lzll=r. (3.5)

Furthermore, if for somef € F the lower (resp., uppey estimate in(3.1)
is sharp atz; € U, then the lower(resp., uppey estimate in(3.5) is sharp for
‘Ill‘l,a,ﬂ(f) at (Zla 07 cec 0)'

To prove this theorem, we must use the following result.

LEMMA 3.2. Suppose and ¢ are functions that satisfy conditior{8.2)—(3.4)
of Theorem 3.1, and suppose [0, 1] and 8 € [0, 1/2] witha + 8 < 1. Then, for
fixedr €0, 1),

the minimum of(p(1))? + (r2 — 12 (¢(t)/1)?*(¢'(t))?# for t € [0, r] occurs

whens = r;
the maximum of(¢ (1)) + (r2 — t2) (¢ (t)/1)>*(¢'(¢))?# for t € [0, r] occurs
whent = r.

Proof. For the case € [0, 1/2], 8 [0, 1/2], the sign of the first-order derivative
of these functions o(0, r] is easily determined using the relations

20—1
Q1) <t, (@) >1 (@)H* =1 forre(0,r] and a €[0,1/2]

and

¢\ 1 \2B-1
o) > t, - <1 (@'@®) <1 for+te(0,r] and @ €[0,1/2].

For the case& > 1/2, we use the fact that'(r)r < ¢(¢) and
209" — 21(p/D** (@) * < 209" — 21(p/1)* (p')?+
= 20(p")* (@) = (¢/*H <0,
together with a similar result fag with the inequalities reversed. O
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Proof of Theorem 3.1Let ||z|| = r. Using the result of Lemma 3.2, it is easy to

deduce the lower and the upper bounds for

fz)|?
21

|fzDI? + l1211* | f'(z0)]?

= fG)IP+ (% — |z | == If/(m)lzﬂ- O

f(z)|?
21

A direct consequence of Theorem 3.1 is the following growth result.
CoroLLARY 3.3. Letae€[0,1]andB €[0,1/2]witha + 8 <1 If f €S, then

1L N2 = ”\pnaﬂ(f)(z)” =

lzll =r

r
(1+ r) (1—r)2’

If f €K, then

r r
— = an [ <—, =Tr.
irr Wn,a,p (D 1—r Izl =
These estimates are sharp.

We next present the following covering result for thedgt, 5 (F).

THEOREM 3.4. Leta €[0,1] and g € [0, 1/2] with @ + 8 < 1. Also, let the set
F C S and ¢, ¢ satisfy the hypothesis of Theorem 3.1. Then, forfadl 7, the
image of ¥, , s(f) contains the balB), wherep = lim ,_,1- ¢(r).

Proof. Sincep(r) —r is decreasing on [@), it follows thaty is bounded on [01).
Also, ¢ is increasing on [01); hence the limifo exists. O

Finally, we give the following distortion results for the skt , (F).

THeoreM 3.5. Leta > Oand g > 0, and let the functiong, ¢ satisfy the hy-
pothesis of Theorem 3.1. Also [EtC S. Then, forallf € F and ||z|]| = r,

(n=De (=D
<@> (“"(’””(””’*"s|JFa,ﬂ(z>|s(¢§_r)> (¢/ ()8,

whereJ, ,(z) = detDF, 4(z2).

Proof. Using similar arguments to the proof of Theorem 3.1, we can obtain the

minimum of
(n—Da
((py)> (') for 1[0, 7]

and the maximum of

(n—Da
<¢§_t)> (@' ()PP for €0, r]. O
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COROLLARY 3.6. Leta > 0andp > 0.

If feS,then
1- r)1+(n—1)ﬁ a1+ r)1+(n—1)ﬁ
(1+ r)3+@a+3p) =D = Uk, ()l = (1— r)3+@aF3pn-1" Izl = r.
If f €K, then
1
= Ve, (D1 = (1— r)2t@t2p)(n-1° Izl = r.

(1+ r)2+(a+2ﬂ)(n71)
These estimates are sharp.

4. Linear-Invariant Families Generated by the Operator ¥, ¢ g

In this section we use the operatby, o 4 to generate L.I.F.s oB” and to study
the order of these linear-invariant families. For other results concerning L.1.F.sin
several complex variables, see for example [G; Pf2; PfS2; PfS3; PfS4].

Let £S, denote the set of normalized locally univalent mappings on the unit
ball B" of C". Let F C LS1. Also let g € [0,1/2] and W, o s (F) be the corre-
sponding setirC”; that is,

W04(F) = {Fp(2) = (f(z0). (f'(z0)P2) : feF}).
Let A[W, o 5(F)] denote the L.1.F. generated Wy, o 4(F), as follows:
AW, 08(F)] = {Ap(Fp) : Fge W 08(F), ¢ €Aut(B")}.

Note that even if the sef is a L.I.F., it is not clear that the s&t, ¢ s(F) is a
L.I.F.

Let U/ denote the set of unitary transformationgdf. The automorphisms of
B" (up to multiplication by unitary transformations) are the mappings

a—z
p(z5a) = ¢a(2) = Ta(l_ a*z>, z€B",

where 1

I =+—
llall?

Sa =V 1—lal?

Aut(B™) ={Vg, :aeB", Vel}.

The following lemmas will be useful in this work. The proof of Lemma 4.1 is
contained in the first part of the proof of [PfS4, Thm. 3.3], but Lemma 4.2 is new.

{(A—s.)aa* + s,llall®l}

and

In other words,

Lemma 4.1. Let F C LS, and letA[F] be the L.I.F. generated h§ on B".
Leta e U andb € B"~L Then

ord A[F]
= sup{[trace3D°A,, Ay, (F)O) (. )}| : lal <1 bl <L llyll =1 FeF},
wherep, := @4, and g, = @, p).
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Proof. We first observe thaip, o ¢, : a € U, b € B"'} is a family of automor-
phismsy of B such thaty(0) = (a, v/1— |al?b). Since this includes all oB",

we conclude that the collection of all automorphisms consists of the composition
of all unitary mappings with members of this special family. Since the trace is in-
variant under similarity, it follows that it is sufficient to consider automorphisms
of the type just described. We know thag, A,, = Ay, SiNCea andb vary in

U andB"~! (respectively), so the lemma now follows. O

LemMma 4.2. Assumef: U — C is locally univalent,g: U — C is holomor-
phic, and f(0) = 0 and f’(0) = 1 = g(0). DefineF: B* — C" by F(z) =
(f(z1), g(z1)2"), wherez = (z1, ). WithG(z) = A, (F)(z), we have
sup{|tracg D*G ) (y. )} : bl <L [yl =1
= max{n + 1, sup{|trace D’F(0)(y. )}| : ll¥ || = 1}}.
Proof. Without loss of generality, we may assume the coordinates are chosen so

thath = xe,, where 0< x < 1. We writez = (z4, z2, v), wherev € B"~2 and
Izl < 1 Of course, ifn = 2 thenv will not appear. Hence

2

vi-x )
v, O Z<ﬂ (2)e;.

(=21, 0, v)+

op(z) =

Since
—/1—x? 0 0
DF(p,(0)Dgp(0) = | —xv/1—x2%¢'(0) —(1—x?) 0 ;

0 0 —/1—x2?I
it follows that
G(z) = V(F(pp(2)) — xe2),

where
1
- 0 0
1— x2
xg'(0) 1
V= — 0
1—x2 1— x2
1
0 0 - 1

V11— x?2
Because of the form af, the trace ofD?G (0)(y, -) is

2G1 2 2 2

Gy, G2
+3 0y1+ —2 (0
( )y1 ( y2 + aZlaZZ( )y1 022 O)y2

"/ 982Gy 392G, )
+ 0)y1+ 0y );
;(azlazk( 71 BZZazk( )v2

thus the entries on the diagonal BEG (0)(y, -) are
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—V1=x2f"(0)y1+ xy2, —V1—x2g'(0)y1+ 2xy2,
—V1-x2¢'O)yy1+ xy2, ..., —V1—x2g"(0)y1+ xy2.
The trace is therefore
—V1-x%(f"(0) + (n — Dg'(0)y1+ (n + Dxy,.

By elementary calculus, the supremum of this quantity overO< 1, |y|| =1,
is
max{n +1, | f"(0) + (n — Dg'(0)[}.

Since trace€D?F(0)(y, -)} = (f"(0) + (n — 1)g’(0))y1, the lemma follows. [
We are now able to prove the following result.

THEOREM 4.3. Let F be a L.I.LF. onU such thatord 7 = § < oo, and letg e
[0,1/2]. Thenord A[W, o s(F)] = n, where

(n —DH(A-28)
—

Proof. Let f € F and setG = ¥, ¢ g(f). Using Lemmas 4.1 and 4.2, it follows
that

ord A[W, o s(F)]

= sup{

n=0A+m-Dp)s+

tracd DA, (G)(0)(y, -)}

':an, Iyl =1, fef}-

2
Write
f(f_fl>—fm>
f(z1;a) = —du .
—(1—lal?® f'(a)
Then 5
Ay (G _( : (f/<1a—_;zll>) 1 ,)
0(G)(2) =\ f(z1; @), @) e’ )

Now the diagonal oD?A,,(G)(0)(y, -) has

(_a—m%ﬂm)

f/(a) + 26_l> )/1

as its first entry and

f'(a)
in the remaining positions. The trace is therefore
<—(1 —lal®) f"(a)
1)
Now, we may replacg by a functiong € F so that

_ 2\ £
(ﬁa mnfm)+an

+ 2&) Q4+ -D0p)+ 1A —-28)(n —Day.
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7 _(1_ |a|2)f”(a) -
O)=—— 42
() @) +2a
(i.e.,g(z1) = f(z1; a)). Thus, we want to find
sup |2 Qa4 -1 +a-2p""2al
geF,lal<l 2 2

This is clearly

"0 1
sup ('g()'(1+(n—1>ﬁ)+<1—2ﬁ>”2 |a|)

geFlal<1\ 2

(n —D(A—2p)
—
This completes the proof. O

=A+m-DpB)s+

We now give some interesting particular cases of Theorem 4.3. The following re-
sult was obtained by Pfaltzgraff [Pf2; Pf3] and by Liczberski and Starkov [LSt].

CorOLLARY 4.4. LetF beal.l.F.onU suchthatord 7 = § < oo. Also, let®,,
be the Roper—Suffridge extension operator defindd.ty Thenord A[®,,(F)] =
d(n+1)/2.

CoroLLARY 4.5. Letg €[0,1/2]. Then

1
ord A[W,. 0 5(K)] = ”er .
Proof. It suffices to apply the result of Theorem 4.3 and then to use the fact that
ordK =1 O

REMARK 4.6. Itis well known that, ifF is a L.I.F. on the unit disc, then ofl =

1 (the minimum order) if and only i C K (see [P1, p. 134]). However, Corol-
lary 4.5 suggests that in several complex variables this result does not remain
true. Indeed, ord\[¥, o s(K)] = (n + 1)/2 whereas, fop # 1/2 andn > 2,
A[W,.0,8(K)] ¢ K(B™). For a similar conclusion, see [GrK2; PfS2; PfS3].

5. Radius of Univalence

Let 7 be a nonempty subset §fB"). Let

r*(F) =sup(r : f is starlike onB;" and f € F}
and
r.(F) =supfr : f isconvexonB, and f € F}

denote the radius of starlikeness and the radius of convexity (respectivély)rof
[GrKK] the authors obtained the exact values ¥, o 4 (S)) andr*(¥, o s(K))

wheng € [0, 1/2]. In this section we shall give some simple and interesting conse-
guences of Theorem 2.1 that are related to the radius of univalence of some subsets
of S(B™). Throughout this section we consider only L.1.F.s of finite order.
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REMARK 5.1.  We note that for some € [0, 1] andg € [0,1/2] with o + 8 <
1 and for some € (0,1), if ¥, o g(f) € S(B) then f € S(U,), too. Also, if
W, o.(f) € S*(B)(K(B}")) then f € S*(U,)(K(U,)), too. Moreover, iff e
S(Uy) thenW,, o s(f) € S9(B") fora €[0,1], B €[0,1/2], ande + B < 1, be-
cause the equality

1
“Iln,a,ﬁ(fr)(z) = ;\Iln,a,ﬂ(f)(rz)
holds onB".

THEOREM 5.2. LetF be aL.l.F. onU such thatord 7 = y. Thenr.(®,(F)) =
¥y —¥2 =1 In particular, r.(®,(S)) = r.(®,(5*)) = 2 — /3.

Proof. Let F € ®,(F). ThenF = &,(f) for somef € F. Taking into account
[P1, Satz 2.5], one deduces thag K (U,) with p = y —/y? — 1, and this num-
ber is the radius of convexity for the sét Hence

z1f"(z1)
Sf'(z1)

and this quantity may be negative #| > p. Next, using [RS, Thm. 1], we con-

clude thatd,(f,) € K(B}); by Remark 5.1, we deduce that may fail to be

convex in any ballB;’l with p1 > p. Thereforey.(®,(F)) =y — /y2 —1 This
completes the proof. O

Re[1+ } >0, |z1] <op,

Note that, in dimensiom > 1, there is in general no such connection between
the order of a L.I.FM of B” and its radius of convexity (see [PfS3; PfS4]). On
the other hand, in [GrKK] the authors proved thatdf (n > 2), the radius of
convexity of S*(B") is strictly less than 2- /3.

THEOREM 5.3. Let F be a L.I.F. onU such thatord 7 = y. Also leta € [0, 1]
and g € [0, 1/2] be such thatr + 8 < 1. ThenW, o s(F) < S*(B}), wherep =
1/y.

Proof. Let Fy g € W, o g(F). ThenF, g = ¥, o g(f) for somef € F. Because
ord7 = y, we may deduce from [P1, Folgerung 2.5] thiae S*(U,) for p =
1/y. Using Corollary 2.2, we conclude thé, , s(f) € S*(B}). This completes
the proof. O

Another radius problem is presented in the following.

THEOREM 5.4. r* (W, q,4(S)) = tanh(zr/4) for all « € [0,1] and 8 € [0,1/2]
witha +8 <1

Proof. LetF e W, , 4(S). ThenF, g = ¥, o g(f) for somef € S. Itfollows that

f € 8*(U,), wherep = tanh(sr/4), and this number is the radius of starlikeness
for the setS (see [P2]). Again using Corollary 2.2 and Remark 5.1, we deduce
that F;, 4 € S*(B}) and also tha¥, g may fail to be starlike in any baﬂ?g‘l with

p1 > p. This completes the proof.
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Note that Theorem 5.4 generalizes a previous result obtained in [GrKK].
Our final result relates;, the radius of univalence of the s&f , g(F) with F
a L.I.F. onU, with rq, the radius of nonvanishing of the s&t Let

ro=suplr: f(¢) #0, |¢| <1, feF}
and
r1=sup(r : F, g is univalentonB,, Fy g €Y, o s(F)}.

THEOREM 5.5. Letwo €[0,1] and B €[0,1/2] witha + 8 < 1 Also letF be a
L.LF.onU. Thenry = ro/ (14 v1—rg).

Proof. Taking into account [P1, Lemma 2.4], we deduce that e&ehF is uni-
valent onU,, with r1=ro/(1++/1—r); in fact, this number is the radius
of univalence of the sef. By Theorem 2.1 and Remark 5.1, we deduce that
WV, qp(f) € SO(B,”I) and that¥, ., s(f) may fail to be univalent in any baB”,
with r, > r1. Thereforey, is the radius of univalence o, o 3(F). This com-
pletes the proof. O

We note that a similar result, in the general context of linear-invariant families on
the unit ball ofC", was obtained in [PfS4].
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