
Notre Dame Journal of Formal Logic
Volume 47, Number 1, 2006

Reflexive Intermediate Propositional Logics

Nathan C. Carter

Abstract Which intermediate propositional logics can prove their own com-
pleteness? I call a logic reflexive if a second-order metatheory of arithmetic
created from the logic is sufficient to prove the completeness of the original
logic. Given the collection of intermediate propositional logics, I prove that the
reflexive logics are exactly those that are at least as strong as testability logic,
that is, intuitionistic logic plus the scheme ¬ϕ ∨ ¬¬ϕ. I show that this result
holds regardless of whether Tarskian or Kripke semantics is used in the defini-
tion of completeness. I also show that the operation of creating a second-order
metatheory is injective, thereby insuring that I am actually considering each logic
independently.

1 Introduction

1.1 History and goals

Definition 1.1 (Countermodel completeness) For any set 0 of formulas, if 0 0 ⊥

then ∃M(M � 0).

It has been known since the 1920s that a classical metatheory can prove the coun-
termodel completeness of classical propositional logic (Bernays [1] and Post [14],
independently). Yet a strictly intuitionistic metatheory cannot do the same for its
propositional case (McCarty [13], Kreisel [8]). In fact, in McCarty [11], one finds a
proof that a strictly intuitionistic metatheory cannot prove countermodel complete-
ness for intuitionistic propositional logic even when the set 0 of Definition 1.1 is
restricted to be subfinite. (Subfinite sets are subsets of finite sets; intuitionistically,
subfinite does not imply finite.)

Thus we have an important distinction between intuitionistic and classical logic:
Classical logic can be used to prove countermodel completeness for its own proposi-
tional flavor, but intuitionistic logic cannot. This is the motivation for the work of this
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paper. It causes us to ask what other logics are in the neighborhood of classical and
intuitionistic logic and which of them can prove their own completeness theorems.

The logics that are at least as strong as intuitionistic logic (Int) and at most as
strong as classical logic (Cl) are called the intermediate logics. The main purpose
of this paper is to answer the question, “Which intermediate propositional logics
can prove their own completeness theorems?” Let us begin with some necessary
definitions.

1.2 Definitions and concepts

Definition 1.2 (Cpl) I write Cpl(L) to abbreviate “the logic L is standard-
countermodel-complete,” expressed by the formal second-order statement

∀0((0 0L ⊥) → ∃M(M � 0)).

Since this paper discusses many different logics, I subscript the derivability sym-
bol to remove ambiguity; thus `L means “provable in the logic L .” Definition 1.2
formalizes Definition 1.1 so that I can reason about completeness formally. This
is necessary because I aim to use second-order metatheories to prove completeness
theorems for some propositional logics.

It is natural at this point to ask which semantics should be used in the formal in-
vestigation of reflexivity. That is, in Definition 1.2, what sort of object must M be?
Since the syntactic symbol ` has a different meaning for each logic, one might ex-
pect that the set of models under consideration would also change with L . However,
I use Tarskian, or truth-functional, semantics for every logic and later prove that this
does not harm the results. For example, Section 4.1 proves that the classification of
which logics are reflexive is independent of whether Tarskian or Kripke semantics is
used.

Definition 1.3 (Truth function) A truth function M is a function from the set of
propositional formulas to the powerset of { 0 } satisfying the truth conditions below.
I write M � ϕ for 0 ∈ M(ϕ).

1. M � ¬ϕ ⇐⇒ M 2 ϕ.
2. M � ϕ ∧ ψ ⇐⇒ M � ϕ and M � ψ.
3. M � ϕ ∨ ψ ⇐⇒ M � ϕ or M � ψ.
4. M � ϕ → ψ ⇐⇒ if M � ϕ then M � ψ.
5. M 2 ⊥.

This notation extends to M 2 ϕ and M � 1 in the usual ways. The language for
propositional logic is defined in Definition 1.6.

The reason that it is safe to use the same semantics (the truth functions of Defi-
nition 1.3) with every logic is that the behavior of the truth functions themselves
changes based on the logic that is reasoning about them. For instance, a clas-
sical metatheory can prove that for any truth function M and any formula A,
(M � A) ∨ (M 2 A), but a strictly intuitionistic metatheory cannot prove this. Thus
the behavior of the truth functions actually depends on the metatheory, obviating the
need for any other semantics. This tactic has been used in [11] and Leivant [10], and
I will discuss it further in Section 4.1.

Definition 1.4 (Reflexive) A logic L is reflexive if and only if a simple metatheory
built from L can prove the countermodel completeness theorem for L .
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This paper classifies the intermediate propositional logics by finding a simple crite-
rion equivalent to reflexivity (Corollary 3.9). I give a more formal version of Defini-
tion 1.4 in Definition 3.1 when I prove which intermediate logics are reflexive.

It is worth noting that countermodel completeness is only one formulation of com-
pleteness. Other notable formulations are weak and strong formula completeness, but
for each of these, the question of reflexivity has a less interesting answer. Consider
first weak formula completeness, the statement that for every formula ϕ, if ϕ is not
provable, then it is not valid. (Here the syntax and semantics being compared are
contained within the words “valid” and “provable.”) Intuitionistic logic can prove
its own weak formula completeness if the semantics in question is Kripke seman-
tics. Thus formulating reflexivity in these terms would make all intermediate logics
reflexive.

Alternatively, consider strong formula completeness, the statement that for ev-
ery formula ϕ, if ϕ is valid then it is provable. Although this is the contrapositive
of weak formula completeness, we must consider them as distinct notions because
nonclassical logics do not equate contrapositives. I show in Theorem 1.5 below that
classical logic is the only intermediate logic which proves its own strong formula
completeness.

Thus when using either of these alternate formulations of completeness, the ques-
tion of which logics are reflexive has a somewhat all-or-nothing answer (i.e., “only
classical logic” or “all intermediate logics”). We will see that in the case of counter-
model completeness, the answer is more interesting.

A deeper discussion of the various formulations of completeness and the history
of their investigation in intuitionistic logic can be found in McCarty [12], which
surveys Kreisel [6], [7], [8], and [9].

Theorem 1.5 Consider a nonclassical intermediate logic L which is reflexive, as in
Definition 1.4. No metatheory built on L can prove the strong formula completeness
for L.

Proof Assume toward a contradiction that a metatheory built from L can prove the
strong formula completeness of L . Then a metatheory built on classical logic, being
stronger, could also show strong formula completeness for L . But that classical
metatheory could then prove both “ϕ is valid if and only if `L ϕ” and “ϕ is valid if
and only if `Cl ϕ.” This would then allow such a classical metatheory to conclude
that `L ϕ if and only if `Cl ϕ, a statement which is false. Since classical logic
is sound, it cannot deduce false statements, and thus we have reached the desired
contradiction. �

Proving which intermediate logics are reflexive means coming up with simple nec-
essary and sufficient conditions for reflexivity. In order to use a logic to reason about
itself, one needs to make a metatheory from the logic. That is, when I ask whether
intuitionistic logic can prove completeness for its own propositional fragment, I’m
really asking whether a standard intuitionistic metatheory that is capable of reason-
ing about propositional logic can carry out the completeness proof for a particular
propositional logic, the intuitionistic one. I use the term “metatheory” quite often in
this way throughout this paper. One might say that the work of this paper is therefore
done in a metametatheory, because the reasoning is done in ordinary English prose
using classical rules about various subclassical logics and metatheories.
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Section 2.1 shows how to create a metatheory from a propositional logic, and Sec-
tion 2.3 shows that the operation of doing so is injective, so that each propositional
logic has its own unique metatheory for reasoning about the original propositional
logic. Section 2.3 also discusses why such a property is highly desirable. Section 3
then proves that a necessary and sufficient condition for being a reflexive intermedi-
ate propositional logic is the condition of being at least as strong as testability logic.

1.3 Notation and terminology Because Kripke semantics is used in this paper, I
take a moment now to state how I use it. I use standard Kripke models, consisting
of a partially ordered set called the frame, each element of which is a node. If K is
a Kripke model and its frame is the poset P , I say that K is “on frame P .” In some
contexts, the term “frame” and “poset” may get used interchangeably, but this should
not cause any ambiguity.

Associated with each node in the frame is a classical model called a world, and
between any two nodes α, β in the poset, if α ≤ β then there exists a transition
function from α to β. Transition functions in Kripke models preserve satisfaction of
atomic formulas, and the composition of the transition from α to β with that from β
to γ must be the transition from α to γ . If α < β and no other node lies between
them, I say that β is an upper neighbor of α. If a node has no other nodes strictly
larger than it in the frame, it is called a leaf.

I use the standard notation α 
 ϕ to indicate that the node α forces the formula ϕ
when it is clear to which Kripke model α belongs. If more than one model is under
discussion, I will subscript the forcing symbol, α 
K ϕ, to disambiguate.

I use the notation ϕ[x := t] to mean the formula ϕ with each free occurrence of
the variable x replaced by the term t . I use the notation [[t]] to mean the interpretation
of the term t , and I superscript it [[t]]M to mean the interpretation of the term t in the
classical model M . I write M � ϕ[a1, . . . , an] to mean that M satisfies the formula
ϕ when any of the variables x1, . . . , xn appearing free in ϕ is interpreted to refer to
the corresponding element ai of the universe of M . That is, xi is interpreted by ai
for all i ∈ { 1, . . . , n }. One can use ϕ[a] as a shorthand for ϕ[a1, . . . , an].

I often create subfinite sets using notation { A | B }, where A is an expression not
dependent on B. For example, one may write { 0 | ϕ }, meaning the set that contains
0 if ϕ holds and that contains nothing other than 0. In this manner, one can express
conveniently sets whose exact cardinality is somewhat unclear intuitionistically. For
instance, although { 0 | p ∨ ¬p } can be shown intuitionistically to be nonempty, it
cannot be shown in general to have cardinality 1.

1.4 Intermediate propositional logics

Definition 1.6 (Prop) The language I use for propositional logic is

Prop = { ∧,∨,→,⊥ } ∪ { pi | i ∈ N } .

For any formulas ϕ andψ of the language Prop, the notation ϕ ↔ ψ is a convenience
standing for (ϕ → ψ)∧ (ψ → ϕ) and the notation ¬ϕ is a convenience standing for
ϕ → ⊥.

Definition 1.7 (Propositional logic) Let us call a set L of formulas of Prop a propo-
sitional logic if it is closed under deduction, that is, under detachment. That is,
whenever

ϕ1 ∈ L , . . . , ϕn ∈ L , and (ϕ1 ∧ · · · ∧ ϕn) → ψ ∈ L ,
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then we also have ψ ∈ L .

Definition 1.8 (IProp) The collection IProp of intermediate propositional logics is
the collection of all L satisfying each of the following conditions.

1. A simple second-order intuitionistic metatheory can prove that L is a propo-
sitional logic as in Definition 1.7.

2. A simple second-order intuitionistic metatheory can prove that Int ⊆ L ⊆ Cl.
3. There is a set S of posets such that L is sound and complete over the set of

Kripke models one can build on frames in S.

Allow me to explain some of the potentially unexpected aspects of this definition.
Although conditions 1 and 2 are vague, the specific second-order metatheory I have
in mind is Meta(Int), which I define below in Definition 2.7. For now, it is enough to
note that IProp contains only logics L that are definable in a simple second-order lan-
guage and for which proving closure and Int ⊆ L ⊆ Cl requires no nonintuitionistic
principles.

Condition 3 helps us guarantee that IProp contains logics that do not have un-
usual behavior, for example, treating one propositional letter differently than all the
rest. Although I have not been so restrictive as to require the finite model property,
condition 3 gives us a semantical grounding with enough power to accomplish the
arguments of Section 2.

One can add structure to IProp by arranging the logics in a lattice. One way to do
this was investigated in Rautenberg [15]. However, the material in this paper does
not require introducing such a structure.

The collection IProp is uncountable and contains infinite ascending and descend-
ing chains. Results of this form are recorded in Gabbay [3], Chapter 4, §3. The
intermediate logic that plays the lead role in this paper is testability logic.

Definition 1.9 (Principle of testability) The principle of testability is the proposi-
tional formula (¬ϕ)∨ (¬¬ϕ), a classical tautology that is not intuitionistically valid.
Here ϕ is an arbitrary formula of Prop.

Definition 1.10 (Testability logic) Testability logic, Test, is the logic obtained by
adding to intuitionistic logic the principle of testability as an axiom schema.

2 Metatheories

2.1 The Meta operator I now proceed to create a second-order metatheory from
each logic in IProp. In Section 3, I build on these foundations to determine which
second-order metatheories can prove completeness for their underlying propositional
logics.

Given that each metatheory needs to be able to reason about propositional logic, it
is necessary that the metatheories be second-order. The statement of completeness,
for example, quantifies over sets of formulas and over propositional structures (truth
functions). To be able even to express completeness, therefore, one needs a second-
order language.

I describe a process for converting a propositional logic into a second-order
metatheory, and I write Meta(L) for the result of applying such a procedure to
L . The next few definitions, and most notably Definition 2.7, accomplish this. I
begin with a definition of the first- and second-order languages FO and SO and two
definitions that create higher-order formulas from formulas of Prop.
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Definition 2.1 (FO) The language I use for first-order arithmetic is

FO = { ∀, ∃,∧,∨,→,⊥,=, 0, S } ∪
{

f n
i | i ∈ N

}
.

Here 0 and S are the symbols for the zero and successor functions for arithmetic,
and f n

i is the function symbol for the i th primitive recursive function in a list of all
primitive recursive functions, and it has arity n. The same conventions for ↔ and
¬ apply here as in Prop, Definition 1.6. It is assumed that we also have countably
many first-order variables, which I call things like x and y.

Definition 2.2 (SO) The language I use for second-order arithmetic is

SO = FO ∪
{

Cn
i | i ∈ N

}
.

Here, Cn
i is a second-order constant of arity n. It is assumed that we also have

countably many second-order variables, which I call things like A and B. It will be
evident from the case of the variable whether quantification is over first- or second-
order objects (e.g., ∀x vs. ∀A).

Definition 2.3 (Substitution ϕψ ) Let ϕ be a formula of Prop which employs at most
the propositional letters p1, . . . , pn . Let ψ1, ψ2, . . . be a finite or infinite sequence
of formulas of SO which has at least length n. One can create a formula ϕψ of SO
by simultaneously replacing each pi with ψi , for all i ∈ {1, . . . , n}.

Definition 2.4 (Substitution 8ψ ) Given an infinite sequence ψ = 〈 ψi | i ∈ N 〉 of
formulas of SO and a set 8 of propositional formulas, define 8ψ =

{
ϕψ | ϕ ∈ 8

}
.

I use the notation ψ = 〈 ψi | i ∈ N 〉 for infinite sequences of formulas several times
throughout this paper. The symbol ψ then refers to the sequence as a whole, as a
function from N to the set of formulas of SO, and the individual formulas of the
sequence are referred to via subscripting, ψi .

Definitions 2.3 and 2.4 enable me to create second-order flavors of each logic in
IProp. The intuition being codified in this section is that second-order classical logic
should have all the rules of classical propositional logic, plus rules for quantification,
equality, and comprehension. So also, other second-order logics can be formed from
their propositional counterparts by addition of those same rules.

This is the first of two steps that end with creating second-order metatheories.
Because I wish eventually to use second-order metatheories to reason about propo-
sitional logics, my second step adds sufficient axioms so that the metatheory can
reason about propositional logic.

Definition 2.5 (Substitution operator, s) For any set 8 of formulas from Prop,
I write s(8) to mean all possible second-order substitutions of the formulas in 8.
Specifically, if 9 is the set of all formulas from SO, then

s(8) =

⋃
ψ∈9N

8ψ .

Here, 9N refers to all functions from N to 9, that is, all sequences of formulas from
9; this makes a function ψ ∈ 9N an appropriate parameter for the substitution 8ψ ,
as in Definition 2.4.

Definition 2.6 (Heyting Arithmetic, HAS) I write HAS for the set of axioms of
second-order Heyting Arithmetic, in the ordinary language for second-order arith-
metic, listed here. The variables x, y are first-order (natural number variables), and
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the symbol ϕ ranges over all second-order formulas containing no occurrences of the
second-order variable A.

1. ∀x(S(x) 6= 0).
2. ∀x∀y(S(x) = S(y) → x = y).
3. [ϕ(0) ∧ ∀x(ϕ(x) → ϕ(S(x)))] → ∀xϕ(x).
4. For each recursive function f n

i mentioned in Definition 2.1, include here its
defining equations. For example, if f 2

9 were addition, the following two equa-
tions should be included in HAS.

∀x( f 2
9 (0, x) = x) ∀x∀y( f 2

9 (Sx, y) = S( f 2
9 (x, y)))

5. Comprehension axiom:

∃A∀x1, . . . ,∀xn(ϕ(x1, . . . , xn) ↔ A(x1, . . . , xn)).

Later I want to define some sets recursively using the axioms of HAS, and so it is
important to point out here that a recursively defined sequence of sets can be formed
using the comprehension axiom from HAS. For instance, the existence of a set A
satisfying the requirements

A(0, x1, . . . , xn) ↔ ϕbase(x1, . . . , xn)

and
∀m[A(S(m), x1, . . . , xn) ↔ ϕind(x1, . . . , xn)],

where ϕbase and ϕind are both second-order formulas with at most x1, . . . , xn free,
can be created by instantiating the HAS comprehension axiom as follows.

∃A∀y∀x1 · · · ∀xn
[
∀B

(
(B(0, x1, . . . , xn) ↔ ϕbase(x1, . . . , xn)

∧ ∀m(B(S(m), x1, . . . , xn) ↔ ϕind(x1, . . . , xn)))

→ B(y, x1, . . . , xn)
)

↔ A(y, x1, . . . , xn)
]
.

Definition 2.7 (Meta) Given a logic L ∈ IProp, create a second-order theory
Meta(L) by taking the deductive closure of s(L) ∪ HAS under second-order intu-
itionistic derivability. I use the usual closure notation s(L) ∪ HAS to express intu-
itionistic deductive closure.

I call this second-order theory Meta(L) because it is not only a theory built from L ,
but also I use it as a metatheory to reason about propositional logics like L .

Definition 2.8 (IMeta) Let IMeta be the collection of metatheories generated from
intermediate logics,

{
Meta(L) | L ∈ IProp

}
.

2.2 Capabilities of Meta-theories I have just defined how to create a metatheory
Meta(L) from each propositional logic L ∈ IProp. In Section 3, I use these metathe-
ories to reason about propositional logics. Such work requires several fundamental
facts about the capabilities of each Meta(L), and so this section is dedicated to laying
the groundwork by proving those fundamental facts.

In order prove anything about how the metatheories reason about propositional
logics like Int and Cl, we must first define the symbol ` in the language SO which
the metatheories use.
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Definition 2.9 (Derivability ` in SO) In SO, the notation 0 `L ϕ is shorthand for
the expression

∃n ∃γ1, . . . , ∃γn ∈ 0 ((γ1 ∧ · · · ∧ γn → ϕ) ∈ L).

Here, 0 is a second-order variable.

Strictly speaking, even this definition is not a formula of SO. I should instead write
something like

∃n ∃γ (Sequence(γ ) ∧ Length(γ ) = n ∧ ∀i < n((γ )i ∈ 0) ∧ · · · ),

but it is clear that this could be done, and since the meaning of the earlier notation is
clear, I use it because it is more convenient in proofs relying on this definition.

Note that embodied in Definition 2.9 is the finiteness of proofs. Furthermore, it
enables a fairly straightforward demonstration of the fact that Meta(Int) is strong
enough to show the deduction theorem for each L ∈ IProp (Theorem 2.13).

It is also important to note that the metatheory Meta(Int) clarifies conditions 1
and 2 from Definition 1.8. Those conditions required that every L ∈ IProp be such
that Meta(Int) ` (L is deductively closed) and Meta(Int) ` Int ⊆ L ⊆ Cl. What
remains for me to clarify is that one can express all of these notions in the language
SO. That is, can one express the terms Int and Cl and the deductive closure relation
in SO? I show this informally.

Using Gödel numbering to encode formulas as natural numbers, one could express
notions such as “the set of all propositional formulas of the form (ϕ ∧ ψ) → ϕ.” In
this way one could assemble all instances of the Hilbert-style axioms for Int into
a single term of SO. For a Hilbert-style axiomatization of Int, see, for example,
pp. 26–27 of [3]. Then one can define deductive closure under modus ponens recur-
sively as follows.

Definition 2.10 (Deductive closure under MP in SO) Define the relations Di and
DC in SO as follows.

D0(A) = A.

Dn+1(A) = Dn(A) ∪ { ϕ | ∃ψ ∈ Dn(A) such that (ψ → ϕ) ∈ Dn(A) } .

DC(A) = ∪n∈N Dn(A).

Definition 2.11 (The terms Int and Cl in SO) Define the SO-term Int to be DC
applied to the axiom set for Int. Let TND stand for the set of all propositional in-
stances of the schema tertium non datur, ϕ∨¬ϕ, and define the SO-term Cl to be the
application of DC to the union of TND and the Int axioms.

Now we come to our first observation regarding the capabilities of Meta(Int) with
respect to both the SO-terms Int and Cl of Definition 2.11 and the SO-relation ` of
Definition 2.9. Although this result is somewhat basic, it is important to attend to
these details because this theorem is fairly foundational as we continue.

Theorem 2.12 For any formula ϕ of the language Prop,

Meta(Int) ` (`Int ϕ) iff `Int ϕ,

and
Meta(Int) ` (`Cl ϕ) iff `Cl ϕ.
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Proof The forward direction of these implications is simply soundness for second-
order Heyting Arithmetic. The reverse direction claims that if ϕ is derivable, then
Meta(Int) knows as much. I consider only the case for Int; the case for Cl is analo-
gous.

Given that ϕ is derivable, we can conclude from the Hilbert-style axiomatization
of Int mentioned above that there exists a finite-length derivation δ1, . . . , δm such that
δm = ϕ and each δi is either an instance of an Int-axiom or is the result of applying
modus ponens to δ1, . . . , δi−1. We simply need to show that Meta(Int) is capable of
showing that Int can perform the derivation.

If we let IA stand for the SO term defining the set of Int-axioms, one can give an
inductive proof that for each i , Meta(Int) ` (δi ∈ Di (IA)). Here, Di is the i th phase
of the deductive closure operator defined in Definition 2.10.

In the case when δi is an instance of an Int-axiom, Meta(Int) simply needs to
be able to exhibit the small finite substitution function that maps metavariables to
formulas. For instance, that (x = y)∨¬(x = y) is an instance of P∨¬P is witnessed
by the function { (P, (x = y)) }. The language SO is sufficient for expressing such
small finite functions, and Meta(Int) is sufficient for performing substitutions and
verifying equality of formulas. Thus Meta(Int) ` (δi ∈ IA ⊂ Di (IA)).

In the case when δi follows from δ1, . . . , δi−1 by modus ponens, the recursive
portion of Definition 2.10 places δi ∈ Di (IA), and in order to verify this, Meta(Int)
needs only to be able to reason about the basic set theory notation used in Defini-
tion 2.10. This completes the inductive proof, and thus

Meta(Int) ` (ϕ = δm ∈ Dm(IA) ⊂ DC(IA) = Int). �

Continuing to build a repertoire of essential facts about the metatheories, I now use
the above result to show that Meta(Int) (and hence every Meta(L)) can prove the
deduction theorem for any logic L ∈ IProp.

Theorem 2.13 (Deduction Theorem in the metatheory) For any logic L ∈ IProp,
Meta(Int) is sufficient to prove the Deduction Theorem for L.

Proof The Deduction Theorem for L states that if 0, ϕ `L ψ , then 0 `L (ϕ → ψ).
I abbreviate “the Deduction Theorem holds for L” by DT(L). Working in Meta(Int),
I proceed to show DT(L) as follows.

Assume 0, ϕ `L ψ , and therefore,

∃n ∃γ1, . . . , ∃γn ∈ 0 ((γ1 ∧ · · · ∧ γn ∧ ϕ → ψ) ∈ L).

By Theorem 2.12, Meta(Int) is then able to point out that

(γ1 ∧ · · · ∧ γn ∧ ϕ → ψ) → (γ1 ∧ · · · ∧ γn → (ϕ → ψ))

is an intuitionistic theorem and, therefore, is a member of L because Meta(Int)
knows L ⊇ Int by the definition of IProp in Definition 1.8. From the same defi-
nition, Meta(Int) also knows that L is closed under deduction, and thus we have that
(γ1 ∧ · · · ∧ γn → (ϕ → ψ)) is also in L . According to the definition of `L , this
gives us 0 `L (ϕ → ψ). �

Corollary 2.14 Since Meta(Int) ` DT(L), by weakening we have that Meta(L) `

DT(L) also. �

Using the deduction theorem in Meta(L), I can now expand Theorem 2.12 as follows.
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Corollary 2.15 For any formula ϕ of the language Prop,

Meta(Int) ` (ψ1, . . . , ψn `Int ϕ) iff ψ1, . . . , ψn `Int ϕ,

and
Meta(Int) ` (ψ1, . . . , ψn `Cl ϕ) iff ψ1, . . . , ψn `Cl ϕ.

Proof Given Theorem 2.12, I simply must show that

Meta(Int) ` ((ψ1, . . . , ψn `Int ϕ) ↔ (`Int ψ1 ∧ . . . ∧ ψn → ϕ)),

and the analogous statement for `Cl. The forward direction of this equivalence is
given by Theorem 2.13, and the reverse direction is given by Definition 2.9 together
with the fact that Int is deductively closed (Definition 1.8). �

Lastly I note that Meta(Int) is able to show that every L ∈ IProp classifies the same
sets of formulas consistent.

Theorem 2.16 Meta(Int) can prove that for any L1, L2 ∈ IProp, for any set 0 of
formulas of Prop, 0 `L1 ⊥ if and only if 0 `L2 ⊥.

Even though I am reasoning exclusively in Meta(Int), I will do this proof without
rigor. One could use the definitions in this section to rigorize it, more like the previ-
ous theorems, but it would become considerably longer.

Proof I show instead that for any set 0 of formulas of Prop, if 0 `Cl ⊥ then
0 `Int ⊥. Then given L1, L2 ∈ IProp, if 0 `L1 ⊥, then 0 `Cl ⊥ because L1 ⊆ Cl,
and so 0 `Int ⊥, giving 0 `L2 ⊥ because Int ⊆ L2. Note that Meta(Int) can do this
because of Definition 1.8.

Assuming 0 `Cl ⊥, Definition 2.9 provides us with a finite list of formulas
γ1, . . . , γn ∈ 0 such that γ1, . . . , γn `Cl ⊥. Because Cl is the deductive closure
of Int ∪ TND, there are a finite number of instances τ1, . . . , τk ∈ TND such that
γ1, . . . , γn, τ1, . . . , τk `Int ⊥. By the Deduction Theorem immediately above we
can write γ1, . . . , γn `Int τ1 ∧ · · · ∧ τk → ⊥.

Intuitionistically, p → q implies (¬q) → (¬p), and applying this principle twice
gives us that

γ1, . . . , γn `Int ¬¬(τ1 ∧ · · · ∧ τk) → ¬¬⊥.

Because `Int ⊥ ↔ ¬¬⊥ and `Int (¬¬(p ∧ q)) ↔ (¬¬p) ∧ (¬¬q), we also have
that

γ1, . . . , γn `Int (¬¬τ1) ∧ · · · ∧ (¬¬τk) → ⊥.

Yet each τi is an instance of tertium non datur, and thus its double negation is a
theorem of Int. All these intuitionistic derivations are possible in Meta(Int) by
Corollary 2.15. So by the closure of Int (condition 1 of Definition 1.8), we have
γ1 . . . , γn `Int ⊥, and thus 0 `Int ⊥, as desired. �

One final remark regarding the capabilities of the metatheories Meta(L) is neces-
sary. I plan to investigate which metatheories have the power to prove completeness
theorems, and it is important to note that any metatheory Meta(L1) can prove the
soundness theorem for any other L2 ∈ IProp, including itself. This is because the
soundness theorem for Cl with respect to truth functions is a straightforward induc-
tion proof that simply uses Definition 1.3 to verify that each Cl-axiom is valid (e.g.,
Enderton [2], pp. 124–25). Even Meta(Int) can do such a proof. It follows that
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any stronger metatheory Meta(L1) can prove the soundness theorem for any weaker
logic L2 ⊆ Cl.

2.3 Injectivity of Meta Recall that the main question this paper seeks to answer
is “Which logics can prove their own completeness?” That is, for which logics
L ∈ IProp can Meta(L) prove the completeness theorem for L? (I will formalize
this in Definition 3.1.) Since this is my eventual use for Meta, it is important to
ensure that Meta is injective. That is, the very question just mentioned seems to as-
sume that each logic has its own metatheory, and the question would lose some of
its meaning and significance if Meta were to amalgamate two different propositional
logics into one metatheory. The injectivity of Meta keeps the question sensible as it
was originally phrased; it tells us that adding an arithmetic metatheory to a propo-
sitional logic does not in any way alter or mar the logic but preserves its unique
behavior. In addition to this motivation, one of the main classification results of this
paper (Corollary 3.8) relies on the injectivity of Meta.

I prove that Meta is injective using the second-order part of each Meta(L) to
distinguish it from the others. This indeed demonstrates the result I need in order
to continue with my work, but it does have the disadvantage of leaving unanswered
the interesting question of how the first-order portions of the metatheories compare.
Such a question is interesting because it is known that some first-order logics are
identified by the addition of axioms for arithmetic, and thus one may ask if the only
way to distinguish the metatheories I created in Definition 2.7 is by their second-
order portions. This is a natural question, but this paper does not solve it.

The following basic result begins the process of showing the injectivity of Meta.

Theorem 2.17 For any two logics L1, L2 ∈ IProp,

L1 ⊆ L2 implies Meta(L1) ⊆ Meta(L2).

Proof If L1 ⊆ L2, then clearly s(L1) ⊆ s(L2), and so s(L1) ∪ HAS ⊆

s(L2) ∪ HAS. Therefore any theorem derivable from s(L1) ∪ HAS is derivable from
s(L2) ∪ HAS by weakening. Hence Meta(L1) = s(L1) ∪ HAS ⊆ s(L2) ∪ HAS =

Meta(L2). �

Given the previous theorem, it remains to show that when we have L1 $ L2, we
also have Meta(L1) $ Meta(L2). In this section I show that there are second-order
formulas that behave analogously to the propositional letters. Thus the pattern of be-
havior of the original propositional logic is preserved within a portion of the second-
order theory, and so the operation of creating the second-order theory is injective.

The following three lemmas provide us with some facts about Kripke models
and frames. I need these two facts to prove the one theorem in this section, which
establishes the injectivity of Meta by a semantic argument.

Lemma 2.18 In any first-order Kripke model K whose nodes are all decorated with
the same first-order structure M and whose transition functions are all the identity
function on the universe of M, we have K 
 ϕ ⇐⇒ M � ϕ, for any first-order
sentence ϕ.

Proof I write A for the universe of M , and thus also for the universe at each node
in K . I show by induction on ϕ that for any node α in K , and for any elements
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a1, . . . , an ∈ A, α 
 ϕ[a] if and only if M � ϕ[a]. In the case where ϕ is atomic, the
definition of forcing specifies that for any node α, α 
 ϕ[a] if and only if M � ϕ[a].

When ϕ is a conjunction or a disjunction, the argument is quite straightforward.
For example, here is the case for disjunction, ϕ = ψ1 ∨ ψ2, assuming arbitrary α.

α 
 (ψ1 ∨ ψ2)[a] ⇐⇒ α 
 ψ1[a] or α 
 ψ2[a]

⇐⇒ M � ψ1[a] or M � ψ2[a]

by the Induction Hypothesis
⇐⇒ M � (ψ1 ∨ ψ2)[a].

When ϕ = ψ1 → ψ2, again let α be arbitrary.

α 
 (ψ1 → ψ2)[a] ⇐⇒ ∀β ≥ α (if β 
 ψ1[a] then β 
 ψ2)[a]

all transition functions are the
identity functions on A

⇐⇒ ∀β ≥ α (if M � ψ1[a] then M � ψ2)[a]

by the Induction Hypothesis
⇐⇒ if M � ψ1[a] then M � ψ2[a]

no β in scope of quantifier
⇐⇒ M � (ψ1 → ψ2)[a].

When ϕ = ∃xψ , again let α be arbitrary.

α 
 (∃xψ)[a] ⇐⇒ ∃a ∈ A (α 
 ψ[a, a])
⇐⇒ ∃a ∈ A (M � ψ[a, a])

by the Induction Hypothesis
⇐⇒ M � (∃xψ)[a].

When ϕ = ∀xψ , again let α be arbitrary.

α 
 (∀xψ)[a] ⇐⇒ ∀β ≥ α ∀a ∈ A (β 
 ψ[a, a])
⇐⇒ ∀β ≥ α ∀a ∈ A (M � ψ[a, a])

by the Induction Hypothesis
⇐⇒ ∀a ∈ A (M � ψ[a, a])

no β in scope of quantifier
⇐⇒ M � (∀xψ)[a].

This completes the proof, having exhausted the induction cases for ϕ. �

Lemma 2.19 For any logic L ∈ IProp, for any function g : N → N, if ϕ ∈ L,
then ϕ[pi := pg(i)] ∈ L. That is, L is closed under the operation of replacing the
propositional letters in a formula, even with g not injective.

Proof Let g : N → N and let P be a poset over whose frames L is sound and
complete, as per part 3 of Definition 1.8. Then any model built on P will force ϕ. I
show that any model built on P will also force ϕ[pi := pg(i)].

Let K be a model built on P . Create a new model K ′ on the frame P as follows.
For any α ∈ P , for any i ∈ N,

α 
K ′ pi ⇐⇒ α 
K pg(i).

One can show inductively that for any formula ψ of Prop and any node α in P ,

α 
K ′ ψ ⇐⇒ α 
K ψ[pi := pg(i)].
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The base case (when ψ is atomic) is part of the construction of K ′. The induction
steps are all straightforward, relying only on the fact that substitution commutes with
all connectives. Here is the case for the conditional, as an example.

α 
K ′ ψ1 → ψ2 ⇐⇒ ∀β ≥ α (if β 
K ′ ψ1 then β 
K ′ ψ2)
⇐⇒ ∀β ≥ α (if β 
K ψ1[pi := pg(i)]

then β 
K ψ2[pi := pg(i)])
by the Induction Hypothesis

⇐⇒ α 
K ψ1[pi := pg(i)] → ψ2[pi := pg(i)]

⇐⇒ α 
 (ψ1 → ψ2)[pi := pg(i)].

Because K ′ is built on P , we have K ′ 
 ϕ, and so K 
 ϕ[pi := pg(i)]. Thus an
arbitrary model built on P forces ϕ[pi := pg(i)], and so ϕ[pi := pg(i)] ∈ L . �

Lemma 2.20 Let L be a propositional logic and S be a set of posets such that L is
sound over the set of all Kripke models one can build on the frames in S. Then for
any second-order Kripke model K whose frame is in S, we have K 
 s(L).

Proof Enumerate all formulas of SO in a list χ = 〈 χi | i ∈ N 〉 without repetition.
Create a propositional Kripke model K ′ over the same frame as K as follows. Let
node α in K ′ force propositional letter pi if and only if formula χi is forced at node
α in K . Clearly then, when a propositional letter is forced at one node, it is forced at
all higher nodes, and so I have defined a valid propositional model K ′.

Claim 1 For any node α in the frame of K and for any propositional formula ϕ, we
have α 
K ′ ϕ if and only if α 
K ϕχ . That is, node α in the model K ′ forces ϕ if
and only if the corresponding node in K forces ϕ with each pi replaced by χi (as per
Definition 2.4).

Proof of Claim 1: By structural induction on the propositional formula ϕ, with α
arbitrary. The base case, when ϕ = pi for some i ∈ N, follows immediately from
my construction of K ′ based on K . The induction steps are nearly as straightforward;
here is the case for the conditional, as an example. Assuming ϕ = ψ1 → ψ2,

α 
K ′ (ψ1 → ψ2) ⇐⇒ ∀β ≥ α (if β 
K ′ ψ1 then β 
K ′ ψ2)

⇐⇒ ∀β ≥ α (if β 
K (ψ1)χ then β 
K (ψ2)χ )

by the Induction Hypothesis
⇐⇒ α 
K (ψ1)χ → (ψ2)χ

⇐⇒ α 
K (ψ1 → ψ2)χ .

Therefore now that the claim has been established, assume toward a contradiction
that there is an element ϕ ∈ s(L) such that K 1 ϕ. Now because ϕ is a member
of s(L), it is a substitution instance of some propositional formula ψ ∈ L , as per
Definition 2.5. That is, some map f from propositional letters { pi | i ∈ N } to the
set { χi | i ∈ N } of all formulas of SO satisfies ϕ = ψ[pi := f (pi )]. Let g be
the unique map from N to N such that f (pi ) = χg(i), which exists because the
enumeration χ is without repetition.

Claim 2 The formula ψ[pi := pg(i)] is in L , and yet K ′ does not force it.
The first half of Claim 2 is given to us by Lemma 2.19. As to the second half,

note that
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ϕ = ψ[pi := f (pi )] = ψ[pi := χg(i)] = (ψ[pi := pg(i)])[pi := χi ],

and therefore by Claim 1,

α 
K ′ ψ[pi := pg(i)] ⇐⇒ α 
K (ψ[pi := pg(i)])[pi := χi ] ⇐⇒ α 
K ϕ.

Since K 1 ϕ, we have that not all nodes of K force ϕ, and thus not all nodes of K ′

force ψ[pi := pg(i)]. Thus K ′ 1 ψ[pi := pg(i)], and so we have an element of L
not satisfied by the model K ′, whose frame is a member of S. This contradicts the
fact that L is sound over the set of models whose frames are in S. Thus we have
reached a contradiction as desired and can conclude that every member of s(L) is
forced by K . �

Now we are ready to prove this section’s main result, which leads directly to the
desired injectivity of Meta.

Theorem 2.21 For any L1, L2 ∈ IProp,

L1 * L2 implies Meta(L1) * Meta(L2).

Proof Assume L1 * L2. Then there is some ϕ ∈ L2\L1. Now because L1 ∈ IProp,
there is a set S of posets such that L1 is sound and complete over the set of Kripke
models whose frames are in S. Thus there is a model K built on one of the posets in
S such that K 1 ϕ (and yet K 
 L1). I build a second-order model K ′ on the same
frame as K by the following procedure.

1. For each node α in K , decorate α in K ′ with an SO-structure Mα , whose first-
order carrier set, which I will call A1

α , is the set N of natural numbers, and
whose second-order carrier set, which I will call A2

α , is the powerset P (N).
2. Let each transition function 〈α, β〉 in K ′ be the identity function.
3. Let the interpretations of 0, S, and f n

i in Mα be just as in the standard model
N. Let the interpretation of each unary second-order constant C1

i in Mα be
the set { 0 | α 
 pi }. (This notation is from Section 1.3.) The interpretations
of Cn

i for n > 1 are not relevant to this proof; let them be empty.

Now for any ϕ without second-order constants, Lemma 2.18 shows that K ′ 
 ϕ if
and only if N � ϕ, because the forcing of first-order formulas in no way references
the second-order parts of K ′, and so we can appeal to Lemma 2.18. But for ϕ with
second-order constants, this is not always true. The unary second-order constants in
K ′ behave (on the number 0) like the propositional letters from K , behavior which
is, in general, nonclassical.

α 
K pi ⇐⇒ 0 ∈ [[C1
i ]]

Mα ⇐⇒ α 
K ′ (0 ∈ C1
i ) .

Thus one can show K 
 ϕ ⇐⇒ K ′ 
 ϕ[pi := (0 ∈ C1
i )] by an easy structural

induction similar to the one in the proof of Lemma 2.19.
Therefore because K 1 ϕ, there is a ψ ∈ s(L2) satisfying K ′ 1 ψ , namely,

ψ = ϕ[pi := (0 ∈ C1
i )]. Furthermore, K ′ 
 s(L1), by Lemma 2.20, and K ′ sup-

ports first-order Heyting Arithmetic because N does. We also have that K ′ supports
the comprehension axiom of second-order Heyting Arithmetic because every subset
of N is available in the second-order carrier set at each node, and so certainly those
that are definable via the comprehension axiom are available.
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Thus K ′ is a countermodel to s(L1) ∪ HAS ` ψ , and yet ψ ∈ s(L2) ∪ HAS. So
we have the desired result:

Meta(L1) = s(L1) ∪ HAS * s(L2) ∪ HAS = Meta(L2) �

Corollary 2.22 For any two logics L1, L2 ∈ IProp,

1. L1 ⊆ L2 iff Meta(L1) ⊆ Meta(L2),
2. L1 = L2 iff Meta(L1) = Meta(L2), and
3. L1 $ L2 iff Meta(L1) $ Meta(L2).

Proof The first equivalence is simply the combination of Theorems 2.17 and 2.21.
The second follows from the first, and the third from the conjunction of the first
two. �

I have therefore achieved my goal of demonstrating the injectivity of Meta. This was
not only necessary because an important theorem in the next section relies upon it,
but also because it helps me ensure that an analysis of reflexivity for a logic refers
only to that logic’s unique behavior.

3 Propositional Reflexivity

3.1 Reasoning about members of IProp We are now in a position to use the
metatheories I have constructed to reason about propositional logics. This accom-
plishes the main goal of the paper, analyzing reflexivity. I formalized this goal a bit
in Definition 1.4, which introduced the term “reflexive.” Yet Definition 1.4 remained
largely informal. I can now give a formal definition of reflexivity.

Definition 3.1 (Reflexive) A logic L ∈ IProp is reflexive if and only if

Meta(L) ` Cpl(L),

where Cpl was defined in Definition 1.2.

In Section 1.1, I introduced the important difference between Int and Cl which mo-
tivates the work of this paper: A classical metatheory can prove the completeness of
classical propositional logic, but a strictly intuitionistic metatheory cannot prove the
completeness of intuitionistic propositional logic. Using the notation from Defini-
tion 3.1, I can write these two facts more formally.

Meta(Cl) ` Cpl(Cl).

Meta(Int) 0 Cpl(Int).

Thus one can say that Cl is reflexive and Int is not.

Definition 3.2 (RProp) For the set of reflexive propositional logics, I write RProp.
That is, L ∈ RProp if and only if L ∈ IProp and Meta(L) ` Cpl(L).

So I can write Cl ∈ RProp and Int /∈ RProp. It is natural to ask whether the elements
of RProp are not simply scattered about IProp, but perhaps a boundary line exists
between Int and Cl delimiting RProp. Indeed it does, and the following theorems
find that boundary line explicitly.
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I do the work of this section using ordinary mathematical notation, but all of it
could be formalized in any metatheory whose language is SO. For instance, when I
write f : A → B, I could instead have written

( f ⊆ A × B) ∧ ∀x ∈ A ∃y ∈ B (〈x, y〉 ∈ f )

∧ ∀x∀y∀z(〈x, y〉 ∈ f ∧ 〈x, z〉 ∈ f → y = z),

provided that I had defined A × B formally. As another example, a sequence
{ Bi | i ∈ N } of second-order objects can be thought of as a single second-order
object B with higher arity such that Bi (n) if and only if B(i, n). Workarounds
such as these are common, and there are several textbooks that use such tactics
extensively for advanced work (e.g., Simpson [16], pp. 69, 76, etc.). I shall feel free
to use ordinary notation below without converting to a more cumbersome method
simply to demonstrate more clearly that the work is doable in SO.

3.2 Testability logic and maximal consistent sets Testability logic (Test, Defini-
tion 1.10) now takes center stage, because I show below that RProp is the collection
of logics in IProp that are at least as strong as Test. The principle of testability has
noteworthy qualities besides its being central to the work of this paper. It is intuition-
istically equivalent to the De Morgan law rejected by intuitionists, and two papers
by Johnstone demonstrate that this holds true in arbitrary topoi as well ([4], [5]). He
further shows more than a dozen other interesting properties that are equivalent, in
topos logic, to the principle of testability.

I proceed toward showing Test ∈ RProp by first performing a construction that
is useful in a completeness proof and then proving some essential facts about it.
The construction is performed and the related results proven using only testabil-
ity logic as the metatheory, so they are available later when trying to establish that
Meta(Test) ` Cpl(Test).

Central to the arguments below is the fact that the consistency of a set of formulas
is itself expressed through a negative formula. That is, the statement “0 is consistent
in testability logic,” written 0 0Test ⊥, is formulated

¬∃n ∃γ1, . . . , ∃γn ∈ 0 ((γ1 ∧ · · · ∧ γn → ⊥) ∈ Test)

by Definition 2.9. Because this formula begins with a negation, the Law of the
Excluded Middle holds for it in Testability Logic. That is, Meta(Test) derives
(0 0Test ⊥) ∨ ¬(0 0Test ⊥), because it is an instance of the principle of testability,
(¬ϕ) ∨ (¬¬ϕ). We see below that this is essential to the construction of maximal
consistent sets.

Definition 3.3 (Construction of 6n, 6) Given any set of formulas 1 that is con-
sistent in Test, I construct a sequence of sets 6n as follows.

1. Let 〈 ϕi | i ∈ N 〉 be an enumeration of all formulas in Prop.
2. Define the sequence 6n recursively by

60 = 1, and

6n+1 = 6n ∪

{
ϕn

∣∣∣ 6n ∪ { ϕn } 0Test ⊥

}
.

3. Lastly, let
6 =

⋃
n∈N

6n .
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The notation used in the recursive case is from Section 1.3. I’ll be a bit more rigorous
than usual in the following proofs because I’m working in only Meta(Test), and I
want to make it clear that I’m obeying that restriction.

Lemma 3.4 Given a set of formulas 1 that is consistent in testability logic and an
extension 6 constructed as in Definition 3.3, Meta(Test) is sufficient to show each of
the following.

1. 1 ⊆ 6.
2. 6 is consistent: 6 0Test ⊥.
3. ϕm ∈ 6 iff 6m ∪ { ϕm } 0Test ⊥.
4. 6 is closed under derivability: 6 `Test ϕ ⇒ ϕ ∈ 6.
5. For any formula ϕ, either ϕ ∈ 6 or (¬ϕ) ∈ 6.

Proof

1 The first claim is trivial:

1 = 60 ⊆

⋃
n∈N

6n = 6

because 0 is a natural number.

2 To establish the second claim, I first show that every 6m is consistent, by induc-
tion on m. The base case is done, because the consistency of 1 = 60 is a premise.

The induction step requires care to use only reasoning allowed in testability logic.
We have two cases,

(6n ∪ { ϕn } 0Test ⊥) and ¬ (6n ∪ { ϕn } 0Test ⊥) ,

recalling that Meta(Test) derives their disjunction because consistency is a negative
formula. In the case where 6n ∪ { ϕn } 0Test ⊥, clearly 6n+1 0Test ⊥ because
6n+1 = 6n ∪ { ϕn }. In the other case, 6n+1 = 6n and so consistency comes from
the induction hypothesis. This completes the induction step, and thus all 6m are
consistent.

If we assume toward a contradiction that 6 `Test ⊥, then by Definition 1.7 we
have

∃n ∃γ1, . . . , ∃γn ∈ 6 [(γ1 ∧ · · · ∧ γn → ⊥) ∈ Test].
Now each γi was introduced to 6 at some phase 6 j ; that is, γi ∈ 6 = ∪ j∈N6 j
implies ∃ j (γi ∈ 6 j ). Let m be the largest such j , so that 6m contains all the γi .
Therefore 6m `Test ⊥, contradicting my induction proof above. Thus 6 0Test ⊥.

3 (⇒) If ϕm ∈ 6 then 6m ∪ { ϕm } ⊆ 6, and so it is consistent because I have
shown 6 to be consistent.

(⇐) If 6m ∪ { ϕm } 0Test ⊥ then by the construction in Definition 3.3, we have
that 6m+1 = 6m ∪ { ϕm }, and so ϕm ∈ 6m+1 ⊆ 6.

4 To show that 6 is closed under derivability, first assume that 6 `Test ϕ. Let
m ∈ N such that ϕ = ϕm , and assume toward a contradiction that6m∪{ ϕm } `Test ⊥.
From this assumption, I can use the Deduction Theorem (as per Theorem 2.13) to
achieve that 6m `Test (ϕm → ⊥) and weakening to show that 6 `Test (ϕm → ⊥).
But because we already have 6 `Test ϕ, modus ponens gives us 6 `Test ⊥,
contradicting my earlier proof of the consistency of 6.

Thus we have 6m ∪ { ϕm } 0Test ⊥, which gives ϕ = ϕm ∈ 6 by part 3.
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5 That (¬ϕ) ∈ 6 implies ϕ /∈ 6 is immediate by the consistency of 6, proven
above. The other direction requires more work. Assume ϕ = ϕm .

I have just shown that ϕm ∈ 6 holds if and only if the negative statement
6m ∪ { ϕm } 0Test ⊥ holds, which means that membership in 6 is a negative state-
ment. Thus for any formula ϕ, the statements ϕ ∈ 6 and ¬¬(ϕ ∈ 6) are equivalent.
This enables us to show the other direction, that ϕ /∈ 6 implies (¬ϕ) ∈ 6.

ϕ /∈ 6 ⇐⇒ ϕm /∈ 6 ϕ = ϕm

⇐⇒ ¬(6m ∪ { ϕm } 0Test ⊥) part 3 of this lemma
⇐⇒ ¬¬(6m `Test ¬ϕm) Theorem 2.13
⇒ ¬¬(6 `Test ¬ϕ) 6m ⊆ 6, ϕ = ϕm

⇐⇒ ¬¬((¬ϕ) ∈ 6) part 4 of this lemma
⇐⇒ (¬ϕ) ∈ 6 previous paragraph �

Lemma 3.5 Given 6n, 6 constructed from 1 as in Definition 3.3, testability logic
is sufficient to show that6 is truth-functional. That is, defining M(ϕ) = { 0 | ϕ ∈ 6 }

makes M a truth function as per Definition 1.3. This notation { 0 | ϕ ∈ 6 } is from
Section 1.3.

Proof

1 To show M � ¬ϕ ⇐⇒ M 2 ϕ, one needs only to show (¬ϕ) ∈ 6 ⇐⇒ ϕ /∈ 6,
which has been done in Lemma 3.4.

2 To show that M � ϕ ∧ ψ ⇐⇒ M � ϕ and M � ψ , note that both directions
of the equivalence (ϕ ∧ ψ) ∈ 6 ⇐⇒ ϕ ∈ 6 and ψ ∈ 6 are immediate from the
closure of 6 under derivability.

3 To show that M � ϕ∨ψ ⇐⇒ M �ϕ or M �ψ , I show (ϕ∨ψ) ∈ 6 ⇐⇒ ϕ∈6
or ψ ∈ 6 as follows.

(⇐) This direction is immediate from the closure of 6 under derivability.
(⇒) Assume (ϕ ∨ ψ) ∈ 6. Further assume that ϕ /∈ 6. Recall from

above that ϕ /∈ 6 implies ¬ϕ ∈ 6.

The deduction ϕ ∨ ψ,¬ϕ ` ψ is intuitionistically valid, as the derivation below
demonstrates. Meta(L) is aware of it by virtue of Meta(L) ⊇ Meta(Int), together
with Corollary 2.15.

ϕ ∨ ψ

��ϕ
1©

¬ϕ

⊥
MP

ψ
EFQ

��ψ
1©

ψ
∨E 1©

Since (ϕ ∨ ψ) ∈ 6 and (¬ϕ) ∈ 6, we therefore have 6 `Test ψ , and thus ψ ∈ 6
by the closure of 6 under derivability. Thus when (ϕ ∨ψ) ∈ 6, we have that ϕ /∈ 6
implies ψ ∈ 6.

Now membership in6 is a negative formula, as per part 3 of Lemma 3.4. Thus we
have the disjunction (ϕ ∈ 6) ∨ (ϕ /∈ 6) to work with in Meta(Test), as an instance
of the principle of testability. From the implication shown immediately above, from
(ϕ ∈ 6) ∨ (ϕ /∈ 6) we can conclude (ϕ ∈ 6) ∨ (ψ ∈ 6), as desired.
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4 To show that M � (ϕ → ψ) ⇐⇒ if M � ϕ then M � ψ , I show

(ϕ → ψ) ∈ 6 ⇐⇒ if ϕ ∈ 6 then ψ ∈ 6

as follows.
(⇒) This direction is immediate by the closure of 6 under derivability.
(⇐) Assume that ϕ ∈ 6 implies ψ ∈ 6.

If we have (ϕ → ψ) /∈ 6, then by part 1, we must have (¬(ϕ → ψ)) ∈ 6. Then we
have ¬¬ϕ ∈ 6 by the following derivation and the fact that 6 is deductively closed.

¬(ϕ → ψ)

��ϕ
1©

�
��¬ϕ 2©

⊥
MP

ψ
EFQ

ϕ → ψ
→ I 1©

⊥
MP

¬¬ϕ
¬I 2©

Applying part 1 of this Lemma twice to (¬¬ϕ) ∈ 6 gives us ¬¬(ϕ ∈ 6), which is
equivalent to ϕ ∈ 6 because membership in 6 is negative, as established earlier.

My original assumption then gives us ψ ∈ 6, and the closure of 6 under de-
duction gives (ϕ → ψ) ∈ 6. This contradicts my original assumption, yielding
¬((ϕ → ψ) /∈ 6). Again because membership in 6 is negative, this is equivalent to
(ϕ → ψ) ∈ 6.

5 M 2 ⊥ because ⊥ /∈ 6, as per the consistency of 6 established in Lemma 3.4.

The above parts together demonstrate that6 is truth-functional as per Definition 1.3.
�

Note that because the construction in Definition 3.3 and all the results that followed it
can be proven in Meta(Test), they can also be proven in Meta(L), for any L ∈ IProp
such that L ⊇ Test.

3.3 Classifying reflexive propositional logics We now have the tools to character-
ize RProp explicitly. I first show that, for any L extending Test, L ∈ RProp. I will then
use a simplified version of a proof from [11] to show that Meta(L) ⊇ Meta(Test) is
a necessary condition for membership in RProp. I then conclude from the injectivity
of Meta that this condition can be simplified to L ⊇ Test. The combination of these
results establishes that L ∈ RProp if and only if L ⊇ Test.

Theorem 3.6 For any L ∈ IProp, if L ⊇ Test then L ∈ RProp.

Proof Let 1 be a set of formulas of Prop that is consistent in L , and I show (using
only Meta(L)) that it has a model. From 1 construct an extension 6 as in Defini-
tion 3.3. By Lemma 3.5, I can create a truth function M by M(ϕ) = { 0 | ϕ ∈ 6 }.
So we have a structure M � 6, and therefore M � 1, and each step was performed
using only Meta(L) to do its work.

So I have shown in Meta(L) that, for any set1 of formulas from Prop, if1 0L ⊥

then ∃M(M � 1). This places L ∈ RProp by Definition 3.2. �

As I have mentioned, the converse of this result comes easily by tailoring a theorem
of [11] to suit our needs. I show that proof here, and then a straightforward corollary
establishes the desired converse.
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Theorem 3.7 (McCarty [11]) If T is a metatheory that is at least as strong as
Meta(Int), and T is sufficient to prove completeness for an intermediate proposi-
tional logic L, then T derives every instance of the principle of testability.

The original theorem differs from this in two noteworthy ways. It is stronger in that it
assumes only that completeness with respect to subfinite sets of formulas is provable
in T , and it guarantees that every negative instance of every classical tautology is
provable. This proof’s argument is a bit simpler, because it has the freedom to deal
with a specific classical tautology, the principle of testability. The original theorem
is only weaker in that I have replaced Int with L throughout, noting that there is no
problem in doing so.

Less substantive differences include that McCarty did not use the notation
Meta(Int) to refer to a strictly intuitionistic metatheory, and there are some small
alterations which make evident the uses of the results from Section 2.2.

Proof Assume that T ` Cpl(L). Given an instance ¬ϕ ∨ ¬¬ϕ of the principle of
testability, I show that T ` ¬ϕ ∨ ¬¬ϕ. Define two sets of formulas 8 and 9 as
follows.

9 = { p | ¬ϕ } ∪ { ¬p | ¬¬ϕ } .

8 = 9 ∪ { p ∨ ¬p } .

The notation used in defining 9 is from Section 1.3.
I show that T ` (8 0L ⊥). Working in the metatheory T , assume toward a

contradiction that 8 `L ⊥. Then we would have 8 `Cl ⊥, because L ⊆ Cl. The
deduction theorem for L in T (Corollary 2.14) together with the definition of8 gives
us that 9 `Cl p ∨ ¬p → ⊥. The metatheory T is aware of the classical deduction
`Cl p ∨ ¬p because Meta(Int) is, by Corollary 2.15. Therefore T can use the fact
that L is deductively closed (Definition 1.8) to obtain 9 `Cl ⊥.

Now if ¬ϕ were to hold, then we would have 9 = { p }, which is certainly a
consistent set. This contradicts the fact that 9 `Cl ⊥, and so I conclude ¬¬ϕ.
However, this gives us that 9 = { ¬p }, which is also a consistent set. This, too,
contradicts 9 `Cl ⊥, allowing us to conclude that our assumption from the previous
paragraph is false, giving 8 0L ⊥. Because T has just shown 8 0L ⊥ and we have
assumed that T ` Cpl(L), we can conclude in T that ∃M(M � 8).

Now working again in T , assume that M � p, and assume further that ¬¬ϕ holds.
We then have that (¬p) ∈ 8 by the definition of 8 and 9, giving us M � ¬p. This
contradiction demonstrates that M � p implies ¬ϕ. By an analogous argument, T is
also sufficient to show that M � ¬p implies ¬¬ϕ.

From these implications, T can show that M � p ∨¬p implies ¬ϕ∨¬¬ϕ. Since
the antecedent is true by M � 8, so must the consequent be, and therefore T derives
the desired instance of testability. �

Corollary 3.8 For any L ∈ IProp, if L ∈ RProp, then L ⊇ Test.

Proof Given Meta(L) ` Cpl(L), I can use Theorem 3.7 with T = Meta(L) to
obtain Meta(L) ⊇ Meta(Test). From Corollary 2.22 one can conclude that L ⊇ Test.

�

Corollary 3.9 For any L ∈ IProp, L ∈ RProp if and only if L ⊇ Test.

Proof Theorem 3.6 and Corollary 3.8. �
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The equivalence established in Corollary 3.9 is satisfying because it demonstrates
that in IProp, the predicate “is a reflexive propositional logic,” whose complexity
comes from its reliance on the complex definitions of Meta and Cpl, is equivalent to
the simple characterization “is at least as big as Test.” Therefore the natural and in-
teresting concept of propositional reflexivity is also seen to have a pleasantly elegant
representation.

4 Related Notes

4.1 Using Kripke semantics One may ask why I used a Tarskian semantics (one
lone truth function) for all intermediate logics. Is it not the case that no logic be-
sides Cl is complete for such a semantics? I began to address this question in Sec-
tion 1.2, saying that truth functions do not always behave classically in a nonclassical
metatheory. For example,

Meta(Int) 0 ∀M∀ϕ(M � ϕ ∨ ¬ϕ).

One can show this using an argument like the one in Theorem 3.7.
Although one might use, for example, Kripke semantics in an attempt to ensure

that all logics have ample opportunity to find needed countermodels, one would then
be putting Kripke semantics in a nonclassical context. Kripke semantics (and Beth
semantics and realizability models) behave constructively when the reasoning about
them is done classically. Since I am not reasoning classically about these structures,
I need no such assistance from within the structures themselves. The logic that is
reasoning about the structure provides constructivity, or classicality, or anything in
between. This tactic has been used in [11] and [10].

To ensure that this reliance on the metatheoretic context indeed accomplishes
what I claim it does, I now show that the classification of RProp in this chapter does
not change if one uses Kripke semantics rather than Tarskian semantics.

It is clear that countermodel completeneg (what I’ve been using so far) implies
Kripke countermodel completeness, because every classical model is also a Kripke
model. That is, because we know that

∃M(M � 0) implies ∃K (K 
 0),

then Cpl(L), or
(0 0L ⊥) → ∃M(M � 0),

implies CplKr(L), or
(0 0L ⊥) → ∃K (K 
 0).

Thus if Meta(L) ` Cpl(L) then Meta(L) ` CplKr(L), so using Kripke semantics
gives at least as large a set of reflexive logics.

Conversely, consider the proof of Theorem 3.7. Note that nowhere therein were
the properties of a classical structure exploited. That is, the one situation in which
the structure M behaved classically (the case of the particular propositional letter p)
was guaranteed not by the structure M itself, but by the set 8. One could therefore
repeat the proof of Theorem 3.7 using Kripke completeness and Kripke semantics,
and the model K created would behave classically in the one instance required by8,
just as M does. Thus Meta(L) ` CplKr(L) implies L ⊇ Test, and thus it also implies
Meta(L) ` Cpl(L). Thus Meta(L) ` Cpl(L) is equivalent to Meta(L) ` CplKr(L),
and so using Kripke semantics would give the same set of reflexive logics as Tarskian
semantics.
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One might consider instead appealing to a technique like lawless sequences to
prove this converse. That is, if Meta(L) plus axioms for lawless sequences could
prove that CplKr(L) → Cpl(L), then perhaps a theorem on eliminability of lawless
sequences (e.g., p. 33 of Troelstra [17]) could show that Meta(L) proves the same
result. However, axioms for lawless sequences are incompatible with classical logic,
so such a technique cannot work for all L ∈ IProp. Thus I am content with the
argument in the previous paragraph.

4.2 Zorn’s Lemma In the work of Section 3.3, I only needed the principle of
testability for the proof that the set 6 I constructed was maximal consistent. The
existence of maximal consistent sets would be guaranteed by Zorn’s Lemma, so one
might naturally inquire as to the relationship between Zorn’s Lemma and Testability.
(Note that intuitionistically, Zorn’s Lemma is not equivalent to the Axiom of Choice.)

If Meta(L) contained Zorn’s Lemma, then Theorem 3.6 would be sufficient to
show Meta(L) ` Cpl(L), simply replacing Lemma 3.5 with Zorn’s Lemma to create
6. Therefore Zorn’s Lemma is at least as strong as Test, because if a logic supports
Zorn’s Lemma then it is in RProp, and therefore supports Test. But the converse is
not true, because no metatheory Meta(L) for L ∈ IProp can contain Zorn’s Lemma,
because Meta(Cl) does not contain it.

4.3 Broader implications Although the work of this paper has focused on inves-
tigating the power of metatheories reasoning about their underlying propositional
logics, I have built up enough machinery to also settle the question, “When can
Meta(L1) ` Cpl(L2), for L1, L2 ∈ IProp?” The change here is that now the metathe-
ory Meta(L1) need not be reasoning about its own underlying propositional logic L1,
but rather any other logic L2 ∈ IProp.

The answer to the above question turns out to involve testability logic in much the
same way as my original question about reflexivity. The following theorem answers
this question, building on Theorem 2.16.

Theorem 4.1 The following are equivalent for a logic L1 ∈ IProp.

1. L1 ∈ RProp (i.e., Meta(L1) ` Cpl(L1)).
2. For some L2 ∈ IProp, Meta(L1) ` Cpl(L2).
3. For every L2 ∈ IProp, Meta(L1) ` Cpl(L2).

Proof It is clear that (1) implies (2) by taking L2 = L1. It is also clear that (3)
implies (1) by taking L2 = L1 again.

To see the remaining direction, that (2) implies (3), first assume that for some
L2 ∈ IProp, Meta(L1) ` Cpl(L2). Now let L3 be an arbitrary member of IProp and
note that Theorem 2.16 gives us that

Meta(Int) ` (0 `L2 ⊥) ↔ (0 `L3 ⊥).

Thus the statement Meta(L1) ` Cpl(L2), which is defined to be

Meta(L1) ` ∀0 (0 0L2 ⊥ → ∃M(M � 0)),

is equivalent to

Meta(L1) ` ∀0 (0 0L3 ⊥ → ∃M(M � 0)),
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or Meta(L1) ` Cpl(L3). Because L3 was chosen arbitrarily, this gives us that for
any L3 ∈ IProp, Meta(L1) ` Cpl(L3). This differs only from part 3 in the choice of
the dummy variable. �

This gives a nice broadening of the earlier results regarding testability logic as the
boundary of RProp. Not only is it the case that L ⊇ Test if and only if L can
prove its own completeness, but L ⊇ Test if and only if it can prove anybody’s
completeness, if and only if it can prove everybody’s completeness. In particular,
Meta(Cl) can prove the completeness of Int with respect to Tarskian semantics but
Meta(Int) cannot reciprocate, that is, prove Cpl(Cl).
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