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Ramsey Theory for Countable Binary
Homogeneous Structures

Jean A. Larson

Abstract Countable homogeneous relational structures have been studied by

many people. One area of focus is the Ramsey theory of such structures. After

a review of background material, a partition theorem of Laflamme, Sauer, and

Vuksanovic for countable homogeneous binary relational structures is discussed

with a focus on the size of the set of unavoidable colors.

1 Introduction

The Rado graph, RG = (ω, ERG), is a special case of a countable homogeneous

binary relational structure of degree 2. It is named for Richard Rado who described

one construction of it in a paper published in 1964 [29] where he looked at questions

relating to larger cardinals. It is universal in the sense that every finite graph is

isomorphic to an induced subgraph. Erdős and Rényi [12] observed that a graph

obtained by choosing edges independently with probability one half is isomorphic to

the Rado graph with probability 1. So the Rado graph is frequently called the infinite

random graph.

For every n and every countable homogeneous binary relational structure

U = (U ; L) of finite degree d , Laflamme, Sauer, and Vuksanovic [26] describe

a canonical equivalence relation on the n-element subsets and write rU for the num-

ber of equivalence classes. An equivalence relation is canonical if its equivalence

classes are persistent, that is, each equivalence class has a representative in every

copy of the structure within itself, and the equivalence classes are indivisible, that

is, for every finite partition of each equivalence class, there is a copy of the structure

in itself such that all elements of the equivalence class in the copy lie in the same

cell of the partition. The canonical partition is the partition into these equivalence

classes. The work of Laflamme, Sauer, and Vuksanovic generalizes that of Erdős
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and Rado [13] who determined the canonical partitions of n element sequences of

natural numbers.

Any coloring c : [U ]n → rU which is monochromatic on the equivalence classes

and takes different colors on different equivalence classes is an example witnessing

U 9 [U]n
rU

, that is, a coloring of the n-element subsets for which there is no copy of

U whose n-element subsets receive fewer colors under this coloring. An additional

property of rU is that U → (U)n
<ω/rU

, namely, that for every coloring of the n-

element subsets, there is a copy of U whose n-element subsets receive at most rU

colors under this coloring.

In Section 2, universal relational structures are discussed to provide a context

for the result of Laflamme, Sauer, and Vuksanovic. In Section 3, connections are

made to other combinatorial questions. In Section 4, a widely applied theorem of

Milliken is reviewed, with an eye to the simplifications possible for trees of finite

sequences under extension. In Section 5, an outline is given of the proof of the

result of Laflamme, Sauer, and Vuksanovic, together with a proof of the canonization

directly from Milliken’s Theorem and their Strong Diagonalization. The goal is

to highlight the key ingredients in the proof which spans two preprints each about

twenty-five pages long. In Section 6, an algorithm is described for computing the

critical value in their partition theorem and for colorings of cliques and anticliques

in the Rado Graph.

2 Universal Relational Structures

The Rado graph is homogeneous in the sense that any isomorphism between finite

substructures can be extended to an automorphism of the entire graph. Some authors

call this property ultrahomogeneity and use homogeneity to refer to structures with

the property that for any pair of isomorphic finite substructures, there is an automor-

phism of the entire structure that sends the first finite substructure onto the second.

Thus a countable homogeneous structure is universal for the class of its finite sub-

structures.

Fraïssé [15] introduced the notion of age of a relational structure U, where the

Age(U) of a structure is the class of all finite substructures over the same language

which are embeddable in U. He proved the following theorem which is a founda-

tion of the classification of countable universal relational structures. For a general

reference, see his book on the Theory of Relations [15].

Theorem 2.1 (Fraïssé [15]) Suppose C is a class of structures for a language L.

Then C is the age of a countable homogeneous relational structure U = (U ; L) if

and only if C satisfies the following four conditions:

1. every isomorphic copy of a structure in C is in C;

2. every induced substructure of a structure in C is in C;

3. C contains only countably many nonisomorphic structures;

4. C has the amalgamation property: given B1 = (B1; L), B2 = (B2; L) ∈ C

and an isomorphism f : A1 → A2 for A1 ⊆ B1 and A2 ⊆ B2, there

is C = (C; L) ∈ C and embeddings g1 : B1 → C, g2 : B2 → C

such that for all a ∈ A1, g1(a) = g2( f1(a)). In other words, B1 and B2

are embedded in C in such a way that A1 and A2 are identified according to

the isomorphism f .
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If the four conditions above hold, then the structure U is called the Fraïssé limit of

C.

Another example of a countable binary homogenous structure is the rationals with

the usual order, (Q,<). It is the Fraïssé limit of the collection of finite totally ordered

sets.

Droste and Kuske [9] have shown that if a class of countable relational structures

contains an infinite ω-categorical universal homogeneous structure U, then U can be

constructed probabilistically.

Lachlan [24] has described a combinatorial method for determining the homoge-

neous countable structures for a finite relational language which continues to serve

as a basis for a program to explore homogeneous structures (see [6]).

Cherlin and Shi [7] have reduced the question of the existence of a universal

countable structure for a finite relational language omitting a finite set of finite rela-

tional structures to the case of {0, 1}-vertex colored finite graphs.

Lachlan and Woodrow classified the countable homogeneous graphs. Here Kn

stands for a complete graph on n vertices.

Theorem 2.2 (Lachlan-Woodrow [25]) Every countable homogeneous graph is iso-

morphic to one of the following:

1. the Random graph;

2. the Fraïssé limit (see Section 3) of the class of finite graphs omitting Kn , for

fixed n ≥ 3;

3. the disjoint union of m complete graphs of size n, for m, n ≤ ω with

max{m, n} = ω;

4. the complements of the graphs in the previous item.

Several other collections of countable homogeneous structures have been classified:

Schmerl [31] has classified countable homogeneous partial orders (there are count-

ably many of them); Lachlan [23] classified countable homogeneous tournaments

((Q,<) is an example; there are two finite and three infinite isomorphism types);

Cherlin [5] classified the countable homogeneous directed graphs (there are contin-

uum many).

Hrushovski [20] developed a way to build a constrained amalgamation of a class

rather than a free amalgamation of the class in the Fraïssé limit. In [14], Evans

gives an axiomatic framework for some of the ℵ0-categorical structures constructed

by Hrushovski. Baldwin [1] has a discussion of these constructions which result in

what he calls generic structures and their connections to the Rado graph, and Baldwin

and Holland [2] look at questions of model-completeness for them.

Universal structures for linear orderings have been studied for many cardinalities.

Shelah [33], for example, showed the consistency of the existence of a universal

order at ℵ1 with the negation of the Continuum Hypothesis. Kojman and Shelah [22]

show there can be a universal linear order at a regular cardinal λ only if λ = λ<λ or

if λ = µ+ and 2<µ ≤ λ. They also show that if a singular cardinal µ is not a strong

limit and is not a fixed point of the ℵ function, then there is no universal order in µ.

The study of universal graphs continues, for example, with a recent paper by

Džamonja and Shelah [10], in which it is shown consistent that there is a singular

cardinal κ of cofinality ω with 2κ+
much larger than κ++ but for which there is a

collection of κ++ graphs of cardinality κ+ such that every graph of cardinality κ+

embeds isomorphically into one of them.
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Recently, Kechris, Todorčević, and Prestov [21] explored connections between

the topological dynamics of automorphism groups, the Fraïssé theory of amalgama-

tion, and the Ramsey theory of classes of finite structures. For a discussion of finite

structural Ramsey theory, with many references, this paper is recommended.

3 Combinatorial Connections

Infinitary Ramsey theory may be regarded as the study of the relationship between

small (or well-behaved) substructures of a larger structure and what they have to say

about copies of the larger structure within itself.

Compactness and failures of compactness fit this description, matching the col-

oring or partition property of κ → (κ)2
2 for uncountable κ with weakly compact

cardinals. The arrow notation given here means that for any coloring f : [κ]2 → 2

of the (unordered) pairs from κ with two colors, there is a subset of cardinality κ

which is homogeneous or monochromatic for one of the colors.

Two cardinal models with a universe of specified size and a distinguished unary

predicate of a smaller specified size have been studied for some time. Furkhen [16]

in 1965 had an early result on compactness for such models using ultraproducts.

Shelah looked at two cardinal compactness in a paper [32] that appeared in 1971 and

developed the notion of identities as the combinatorial essence needed to build such

models. Continuing this study, Gilchrist and Shelah [17] looked at the types of color-

ings of finite subgraphs that must occur (they call them identities) when the complete

graph on κ vertices is colored with countably many colors where ℵ1 ≤ κ ≤ ℵω. This

particular example shows that singular cardinal combinatorics uses finite combina-

torics.

Henson [19] proved that the Rado graph satisfies the pigeonhole principle, that

is, every finite partition of the vertices has a block isomorphic to the whole graph.

Cameron [4] showed that the Rado graph, Kℵ0
(the complete graph on countably

many points) and its complement are, up to isomorphism, the only graphs with this

property. Bonato and Delić describe a large collection of relational structures that

satisfy the pigeonhole principle. Continuing that project, Bonato, Cameron, and

Delić [3] classify the continuum many nonisomorphic countable tournaments that

satisfy the pigeonhole principle and discuss orders, quasi orders, and oriented graphs

satisfying it.

Galvin (see [15]) gave a canonization argument to show that Q → (Q)2
<ω,2. In

his 1979 doctoral dissertation, Devlin [8] generalized the result and proved

Q → (Q)n
<ω/tn

and Q 9 [Q]n
tn
,

where tn is the nth tangent number and may be computed using the generating func-

tion tan(x) =
∑∞

1 tn
x2n−1

(2n−1)!
. In 2002, Vuksanovic [35] gave a proof of Devlin’s

result using binary trees, where Devlin’s proof used the language of category theory.

While Devlin proved a partition theorem for the rationals, a dense linear order with-

out endpoints, Laflamme, Sauer, and Vuksanovic proved a parallel partition theorem

for countable homogeneous binary relational structures. For another perspective on

the theorem of Laflamme, Sauer and Vuksanovic, the reader is referred to a paper

by Vuksanovic [36] which gives a proof of the special case for the Rado graph and

includes the computation of some small values.
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4 Milliken’s Theorem Revisited

A very useful tool in partition theory for countable structures is a Ramsey Theorem

for weakly embedded subtrees proved by Milliken [28]. It will be used in Section 5

in a discussion of partitions of n-element subsets of a countable homogeneous bi-

nary structure. Some notation and definitions are necessary before we can state Mil-

liken’s result. One purpose of this section is to update the notation to fit with that of

Laflamme, Sauer, and Vuksanovic.

Call a tree S a p-tree if all its branches have order type p.

Definition 4.1 (Definition 1.2 [28]) Suppose S is a p-tree and T is a q-tree for

0 ≤ p ≤ q ≤ ω. We say S is embedded in T provided

1. S ⊆ T , and the partial order on S is induced from T ,

2. if s ∈ S is nonmaximal in S, then for every immediate successor t of s in T ,

there is a single immediate successor of s in S which is a sucessor of t in T

(allow the possibility that s = t).

We say S is weakly embedded in T provided condition 1 above holds and condition

2 is replaced by condition 3 below:

3. if s ∈ S is nonmaximal in S and t is an immediate successor of s in T , then

there is at most one immediate successor of s in S which is a sucessor of t in

T .

We say S is strongly embedded in T provided S is embedded in T , and

4. there is an increasing function l : p → q such that for all i < p, the i th level

of S is a subset of the l(i)th level of T .

A mild generalization of the notion of weakly embedded tree is obtained by replac-

ing the requirement that S be a p-tree with the requirement that it be rooted. It is

frequently convenient to work with trees of finite sequences with entries from ω.

Let ω<N denote the tree of all such finite sequences partially ordered by ⊆, and

for 2 ≤ d < ω, let d<N denote the tree of all finite sequences with entries from

d = { 0, 1, . . . , d − 1 }. Both kinds of trees are regular, since each node has the same

number of immediate successors. There is a nice characterization of the weakly em-

bedded subtrees of d<N using meets: for any pair of incomparable elements s and

t , the meet of s and t , denoted s ∧ t , is the unique maximal length initial segment

common to both. The closure of a set A under taking pairwise meets is denoted by

A∧.

Lemma 4.2 Suppose 2 ≤ d ≤ ω and S ⊆ T = d<N is nonempty. Then S is a

(rooted) weakly embedded subtree of T if and only if S∧ ⊆ S.

Proof For the first direction, suppose S∧ ⊆ S. Since S is nonempty, it has an el-

ement of minimal length. Since it is closed under meets, there is only one element

of this minimal length and it is a subset of every other element of S, so S is a rooted

induced subtree of T . To see that it is weakly embedded, suppose s ∈ S is nonmaxi-

mal and s⌢〈δ〉 is an immediate successor of s in T . Assume toward a contradiction

that t and u are different immediate successors of s with s⌢〈δ〉 ⊆ t and s⌢〈δ〉 ⊆ u.

Then s⌢〈δ〉 ⊆ t ∧ u ∈ S, contradicting t and u being immediate successors of s in

S.

For the other direction, suppose S ⊆ T is a rooted weakly embedded subtree. Let

t and u be two different elements of S. If t ⊆ u or u ⊆ t , then t ∧ u ∈ { t, u }. So
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assume t and u are incomparable. Since S is rooted, the set of all r in S with r ⊆ t

and r ⊆ u is the intersection of S with the set of initial segments of t ∧ u. Since S is

rooted, this set is nonempty. Let r∗ be the longest initial segment of t ∧ u in S. If r∗

is a proper initial segment of t ∧ u, then for some δ, r∗⌢〈δ〉 ⊆ t ∧ u. Let t∗ ⊆ t and

u∗ ⊆ u be the shortest initial segments of t , and u, respectively, in S that properly

extend r∗. Then t∗ and u∗ are immediate successors of r∗ in S extending r∗⌢〈δ〉,

contradicting the fact that S is weakly embedded. �

The following lemma is an immediate consequence of the definition of strongly em-

bedded tree.

Lemma 4.3 Suppose 2 ≤ d < ω and T = d<N. If R is a strongly embedded sub-

tree of S and S is a strongly embedded subtree of T , then R is a strongly embedded

subtree of T .

There is a useful characterization of strongly embedded ω-trees in d<N for finite

d ≥ 2 using passing number preserving maps.

Definition 4.4 For z, x ∈ d<N with |z| > |x |, call z(|x |) the passing number of

z at x . Call a function f : T → T passing number preserving or a pnp map if it

preserves

1. length order: (|x | < |y| implies | f (x)| < | f (y)|) and

2. passing numbers: (|x | < |y| implies f (y)(| f (x)|) = y(|x |)).

Lemma 4.5 Suppose 2 ≤ d < ω and S ⊆ T = d<N. Then S is a strongly embed-

ded subtree of T if and only if there is an extension and passing number preserving

bijection h from T to S that carries levels to levels.

Proof If there is a such a map h : T → T with h[T ] = S, then S is an induced

subtree of T , every node s = h(t) in S has a unique extension of s⌢〈δ〉, namely,

h(t⌢〈δ〉), and the function l : ω → ω such that the i th level of S, which is the image

under h of the i th level of T , is a subset of the l(i)th level of T , must be increasing

because as a pnp map, h preserves length order.

For the other direction, suppose S is a strongly embedded tree and l : ω → ω is

the increasing function so that the i th level of S is a subset of the l(i)th level of T .

Define g : S → T as follows: for all s ∈ S of the i th level of S, let g(s) = s ◦ l↾i .

By induction on i , show that g maps the i th level of S onto the i th level of T .

By condition 2 of the definition of embedded tree (Definition 4.1), g is injective.

The reader may check that h = g−1 is the desired extension and passing number

preserving bijection from T to S that carries levels to levels. �

One more definition is necessary before we can state Milliken’s Theorem. It is stated

here for subtrees of d<N in which the extended order is the lexicographic order

<lex which is defined on incomparable elements a and b by a <lex b if and only

if a(|a ∧ b|) < b(|a ∧ b|).

Definition 4.6 (Definition 4.1 [28]) For any finite d ≥ 2 and any subtrees A and B

weakly embedded in S = d<N, we say A and B have the same embedding type, in

symbols, A ∼Em B , provided the following conditions hold:

1. there is an order isomorphism f : A → B , that is, a bijection satisfying

a ( a′ if and only if f (a) ( f (a′);
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2. if a is on the nth level of S, a′ is on the n′th level of S, f (a) is on the mth

level of S, and f (a′) is on the m′th level of S, then n < n′ if and only if

m < m′;

3. suppose A has an element e on the nth level of S with f (e) on the mth level

of S; further suppose a is an element of the nth level of S with some proper

extension c in A; then we require that for each δ < e, a⌢〈δ〉 ⊆ c if and only

if ( f (a)↾m)⌢〈δ〉 ⊆ f (c).

In other words, there is an extension and passing number preserving bijection

f : A → B .

Here is Milliken’s Ramsey theorem for weakly embedded subtrees of a finite regular

ω-tree. His proof uses the Laver-Pincus version of the Halpern-Läuchli Theorem.

Theorem 4.7 (Milliken’s Theorem [28]) Suppose 2 ≤ d < ω and T = d<N. For

any m < ω, any finite weakly embedded subtree P ⊆ T , any strongly embedded tree

T ′ ⊆ T , and any coloring d :
{

Q ⊆ T ′ : Q ∼Em P
}

→ M, there are k < m and

a strongly embedded subtree T ′′ ⊆ T ′ such that for all R ⊆ T ′′, if R ∼Em P then

d(R) = k.

5 Partition Theorems

This section starts with a discussion of a partition theorem for the edges of the Rado

graph and then has an overview of the proof of the Laflamme, Sauer, and Vuksanovic

theorem.

The Rado Graph RG = (ω, ERG) is a particularly nice example of a countable

homogeneous structure. Its edge relation is a binary symmetric irreflexive relation

(no loops).

For each n < ω, define un : n → 2 by un(i) = 1 if and only if {i, n} ∈ ERG.

Notice that the mapping n 7→ un is an embedding of the Rado graph in the binary

tree 2<N.

Call an edge {i, n}< ∈ ERG an “up” edge if ui 6⊆ un and ui <lex un ; call it a

“down” edge if ui 6⊆ un and un <lex ui . Here <lex is the lexicographic order on

the binary sequences. Erdős, Hajnal, and Pósa showed that every copy of the Rado

graph in itself must have both kinds of edges.

Theorem 5.1 (Erdős, Hajnal, Pósa [11]) In every copy of the Rado Graph inside

itself, there are both “up” edges and “down” edges:

RG 9 [RG]
edge

2 .

The above result appeared in 1975. In a preprint dated 2003, Laflamme, Sauer, and

Vuksanovic generalized this result to colorings of n-element subsets rather than just

edges, and to countable homogeneous binary relational structures of finite degree d .

Such structures may be embedded in the regular d-branching tree d<N, just as Erdős,

Hajnal, and Pósa embedded the Rado graph into the complete binary tree of finite

sequences of zeros and ones.

Theorem 5.2 (Laflamme, Sauer, Vuksanovic [26]) If U is a countable universal

binary homogeneous structure of degree d < ω, then there is some rn(d) such that

U → (U)n
<ω/rn (d) and U 9 [U]n

rn(d).
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The remainder of this section is a brief outline of the proof done with a broad brush.

The first step in the proof is a translation of the problem from one about relational

structures into one about subsets of a tree of sequences (see Section 7 of [26] for

further details). Suppose U = (U, R0, . . . , Rp) is a countable homogeneous binary

relational structure where the Ri s are the binary relations and for all u ∈ U and

m ≤ p, ¬Rm(u, u). Add a new binary relation < whose interpretation is a well-

order of order type ω. Thus U is isomorphic to a structure with universe ω in which

the order relation is interpreted as ∈, say U′ = (ω, R′
0, . . . , R′

p,∈). Thus without

loss of generality, assume that U has universe ω. The type of a pair i < n is the

structure τ with domain {0, 1} isomorphic to the restriction of U to {i, n}. List the

types of two element sets of U as τ0, τ1, . . . , τd−1. For each n, define un : n → d by

un(i) = c if and only if { i, n } has type τc. We call d the degree of the structure.

Let T be the regular d-branching tree of finite sequences with entries from

{ 0, 1, . . . , d − 1 }. The mapping σ : ω → d<N defined by n 7→ un is an embedding

into a cofinal subset of the regular d-branching tree of finite sequences whose entries

come from d = { 0, 1, . . . , d − 1 }. It is cofinal, that is, for every s ∈ d<N, there is

some t ∈ d<N with s ⊆ t , by the homogeneity property.

Information about the type of a two element structure { i, n } ⊆ ω inside U is

coded in the value un(i) = un(|ui |). The theorem quoted below appears in Section

7 of [26].

Theorem 5.3 (Translation Theorem) A function G : ω → ω is an isomorphism of

U into itself if and only if σ ◦ G ◦ σ−1 is a pnp map of σ [ω] to σ [ω].

The second step in the proof is an examination of tree structure. In the proof of the

Erdős-Hajnal-Pósa result, the lexicographic order on incomparable elements of 2<N

played an important role. Call a subset A ⊆ d<N an antichain if its elements are

pairwise incomparable. A subset D is diagonal if it is an antichain, (D∧,⊆) is a

binary tree, and different elements of D∧ have different lengths.

We have already defined lexicographic order on incomparable pairs, <lex. The

subset relation, ⊆, is another partial order on d<N, and it is the tree order.

Definition 5.4 Call a bijective pnp map f : R → S a similarity if it satisfies the

following conditions for all x, y, u, v ∈ R:

1. x ∧ y ⊆ u ∧ v if and only if f (x) ∧ f (y) ⊆ f (u) ∧ f (v);

2. |x ∧ y| < |u ∧ v| if and only if | f (x) ∧ f (y)| < | f (u) ∧ f (v)|; and

3. if x <lex y, then f (x) <lex f (y).

Call R and S similar and write R ∼ S, if there is a similarity f : R → S. Then

similarity is an equivalence relation on T . A similarity f : R → S extends via

f (x ∧ y) = f (x) ∧ f (y) uniquely to a bijection f ∗ of R∧ to S∧. Note that f ∗

preserves the tree order (extension) and length order, but may fail to be a similarity

by failing to preserve passing numbers. If f ∗ does preserve passing numbers, then

R∧ ∼Em S∧.

The next theorem, a consequence of Theorems 4.1 and 5.1 of [26], says that every

similarity type of diagonal set occurs in the image under σ of every copy of U inside

itself. Section 4 of [26] devoted to this result is about two and a half preprint pages.

Theorem 5.5 (Persistence Theorem) For any diagonal set D ⊆ T and any pnp map

f : σ [ω] → σ [ω], there is a diagonal set E ⊂ f [σ [ω]] with D ∼ E.
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With these definitions and theorems in hand, the square bracket partition relation

can be proved. This consequence of the cited theorem was chosen since it does

not require additional definitions to state. Also the color classes of the coloring

defined in the proof sketch is the canonical partition defined by Laflamme, Sauer,

and Vuksanovic and alluded to in the introduction.

Theorem 5.6 (Representation Theorem, 7.6 [26]) U 9 [U]n
r where r = rn(d) is

the number of ∼-equivalence classes of n-element diagonal subsets of T .

Proof Sketch Since the meet closures of the n-element diagonal sets have size

2n − 1, there are only finitely many similarity classes. Enumerate them as

[E1]∼, [E2]∼, . . . , [Er ]∼.

Define a coloring of [ω]n by c(A) = j if σ [A] is diagonal with σ [A] ∼ E j , and

c(A) = 0 otherwise. By the Representation Theorem 5.6 and the Persistence Theo-

rem 5.5, no color is omitted in any subcopy of U. �

The above theorem places a lower bound on the number of colors realized in every

copy of U in some coloring of its n-tuples. For the Rado Graph, (RG, ERG), the

critical or canonical partition of 2-element sets into equivalence classes of diago-

nal similarity described in the proof above, is into “up edges”, “down edges”, “up

nonedges”, “down nonedges”.

Next turn to the question of an upper bound. That is, we seek a fixed number of

colors, so that every coloring of the n-element subsets of U with finitely many colors

has a copy in which no more than the fixed number of colors are realized.

For a diagonal set D, the passing numbers of longer elements of D at shorter

elements of D are important, but it is not clear at first glance exactly what other

information from the embedding into the tree is important when looking at copies of

the structure into itself and their images under the embedding σ .

Definition 5.7 Sauer [30] singles out for special attention the strongly diagonal

sets, which are diagonal subsets F of d<N with two additional properties for all

x, y, z ∈ F with x 6= y:

1. |x ∧ y| < |z| and x ∧ y 6⊆ z implies z(|x ∧ y|) = 0;

2. x(|x ∧ y|) = 0 or x(|x ∧ y|) = 1.

Observe that every subset of a strongly diagonal set is strongly diagonal. Also, simi-

lar strongly diagonal sets have the same embedding type. The next lemma is proved

in [30], which phrases it as follows: “If f is a similarity of the strongly diagonal set

F to the strongly diagonal set G, then f is a strong similarity.”

Lemma 5.8 For any strongly diagonal sets A, B ⊆ T , if A ∼ B, then A∧ ∼Em B∧.

Proof Suppose A, B ⊆ T are strongly diagonal subsets which are similar and

f : A → B is the witnessing similarity. Define f ∗ : A∧ → B∧ extending f

by f ∗(x ∧ y) = f (x) ∧ f (y). As noted in the discussion following the definition

of similar, f ∗ preserves extension and length order. Thus to show A∧ ∼Em B∧, it is

enough to show f ∗ preserves passing numbers.

By the definition of similarity, f and hence f ∗ preserves passing numbers for

elements of A. It suffices to show that for all x, y, z ∈ A, if |x ∧ y| < |z|, then

f (z)(| f (x) ∧ f (y)|) = z(|x ∧ y|).
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Suppose x, y are two different elements of A, and by renaming if necessary, as-

sume x <lex y. Then x(|x ∧ y|) = 0 and y(|x ∧ y|) = 1, by definition of strongly

diagonal. Consequently, f (x)(| f (x) ∧ f (y)|) = 0 and f (y)(| f (x)g f (y)|) = 1,

since f preserves the lexicographic order.

If z is an element of A with |x ∧ y| < |z| and x ∧ y ⊆ z, then since A∧

is binary, one of (x ∧ y)⌢〈0〉 and (x ∧ y)⌢〈1〉 is an initial segment of z, so

x ∧ y = x ∧ z or x ∧ y = z ∧ y. Thus by the argument of the above paragraph

f (z)(| f (x) ∧ f (y)|) = z(|x ∧ y|).

If z is an element of A with |x ∧ y| < |z| and x ∧ y 6⊆ z, then z(|x ∧ y|) = 0, since

A is strongly diagonal. Consequently, f (z)(| f (x) ∧ f (y)|) = 0 since f preserves

extension and B is strongly diagonal. �

The theorem below (which is proved in [30] and quoted in [26]) says that the entire

tree T can be embedded in σ [ω] via an injective pnp map whose image is strongly

diagonal and carries diagonal sets to similar diagonal sets. The latter property is

listed last in the statement below and follows from the fact that the mapping f is a

pnp map satisfying conditions 1 – 3. Section 4 of [30] devoted to the proof of this

theorem is about six preprint pages long.

Theorem 5.9 (Diagonalization Theorem) For any cofinal set S ⊆ T there is an

injective pnp map g : T → S such that

1. the image, g[T ], is strongly diagonal;

2. g preserves lexicograpic order of incomparable elements;

3. for all x, y, u, v ∈ T , |x ∧ y| < |u ∧v| implies |g(x)∧g(y)| < |g(u)∧g(v)|;

and

4. for all diagonal D ⊂ T , the image g[D] is diagonal and D ∼ g[D].

Call such a mapping a strong diagonalization of T into S.

The next theorem corresponds to Corollary 5.3 of [26] but is slightly stronger and is

stated without the notation of that result. For completeness, a proof is given using

results quoted above.

Theorem 5.10 (Indivisibility) Suppose S ⊆ T is a cofinal subset and d ′ : [S]n → m

is any coloring. Then there is a strong diagonalization f : T → S such that for all

A, B ∈ [ f [T ]]n, if A ∼ B, then d ′(A) = d ′(B).

Proof Let g : T → S be a strong diagonalization obtained from Theorem 5.9.

Define e : [T ]n → m by e(A) = d ′(g[A]). Let [E1]∼, [E2]∼, . . . , [Er ]∼ list the

∼-equivalence classes of diagonal subsets of T . Without loss of generality, we may

assume that each Ei is strongly diagonal.

Apply Milliken’s Theorem (Theorem 4.7) to e and (E1
∧,⊆), (E2

∧,⊆),

. . . , (Er
∧,⊆) to get a decreasing sequence of strongly embedded trees

T0 ⊇ T1 ⊇ · · · ⊇ Tr and a list of colors k1, k2, . . . , kr such that if R ∈ [Ti ]
n

is diagonal and R∧ ∼Em Ei
∧, then e(R∧) = ki .

Since Tr is a strongly embedded subtree of T , there is an extension and passing

number preserving map h : T → T with Tr = h[T ].

Let f = g ◦ h ◦ g. Then f is an injective pnp map, since the composition of

injective pnp maps is also an injective pnp map. Note that f [T ] is strongly diagonal

since it is a subset of a strongly diagonal set, g[T ]. Observe that f preserves the

lexicographic order of incomparable elements since both g and h do.
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Since h is an extension and passing number preserving bijection from T to Tr , it

preserves meets: for all z, w ∈ T , h(z ∧w) = h(z)∧h(w). Consequently h[g[T ]] is

strongly diagonal, since g[T ] is strongly diagonal. Moreover, the function h satisfies

condition 3 of Theorem 5.9 since it is a pnp map and its image is closed under meets.

To see that f satisfies condition 3 of Theorem 5.9, suppose x, y, u, v ∈ T

are such that |x ∧ y| < |u ∧ v|. Then |g(x) ∧ g(y)| < |g(u) ∧ g(v)| by con-

dition 3. Since h is a pnp map that preserves meets, |h(g(x)) ∧ h(g(y))| =

|h(g(x) ∧ g(y))| < |h(g(u) ∧ g(v))| = |h(g(u)) ∧ h(g(v))|. Since g satisfies

condition 3, it follows that f = g ◦ h ◦ g satisfies condition 3.

As noted above, an injective pnp mapping which satisfies the first three conditions

of Theorem 5.9 also satisfies the fourth, so f is a strong diagonalization of T into S.

To complete the proof of the theorem, consider an n-element subset F ⊆ f [T ]

with F = f [C] for some n-element set C . Let Ei be such that F ∼ Ei . Since F and

Ei are both strongly diagonal, their meet closures have the same embedding type,

F∧ ∼Em Ei
∧.

Now D := h[g[C]] is strongly diagonal as a subset of a strongly diagonal set.

Since D ⊆ Tr and h preserves meets, the meet closure, D∧, is also a subset of

Tr . Moreover, D ∼ F since g is a strong diagonalization. Thus their meet clo-

sures have the same embedding type, D∧ ∼Em F∧ ∼Em Ei
∧. It follows that

e(D) = ki = d ′(g[D]), so d ′(F) = ki .

Since any two similar subsets of f [T ] are both similar to some Ei , the theorem

follows. �

Theorem 5.11 (Limitation on Colors) Let r = rn(d) be the number of similarity

types of n-element diagonal subsets of T . Then

U → (U)n
<ω/r .

Proof Suppose c : [ω]n → m is an arbitrary coloring. Let S = σ [ω]. Then S is

cofinal. Define d ′ : [S]n → m by d ′(A) = c(σ [A]).

Let f : T → S be the strong diagonalization of Theorem 5.10. Then there are at

most rn(d) colors realized by n-element subsets of f [T ] ⊆ S. Let U = σ−1[ f [T ]]

and set G = σ−1◦ f ◦σ . Then G maps ω to U and by the Translation Theorem 5.3, G

is an isomorphism of U into itself. The number of colors realized by c on n-element

subsets of U is the same as the number of colors realized by d ′ on σ [U ] = f [T ]. �

Now Theorem 5.2 follows from Theorems 5.6 and 5.11.

6 Counting Similarity Classes

This section discusses an approach to counting the number of similarity classes of

n-element diagonal subsets of the regular d-branching tree T . By Theorem 5.10 and

the proof of Theorem 5.6, there is a strongly diagonal set in each similarity class of

n-element diagonal subsets of T .

If A is an antichain and l is the increasing enumeration of
{

|t| : t ∈ A∧
}

, then

let clp(A) be the downward closed tree whose leaves are { s ◦ l : s ∈ A }. Note that

(Alev,⊆) and (clp(A),⊆) are isomorphic via a pnp map that takes levels to levels.

Observe that clp(A) is a finite subtree closed under initial segments with the addi-

tional property that each level contains at least one node that is either a meet of two

nodes of the tree or a leaf of the tree. Call any P ⊆ T with these properties a (strong)
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Figure 1 A sample similarity tree with meet indicator sequence.

similarity tree. This name is motivated by the fact that if A and D are similar strongly

diagonal subsets of T , then clp(A) = clp(D).

Thus to compute the number rn(d) of similarity classes, it is enough to compute

the number of similarity trees whose set of leaves is an n-element strongly diagonal

set. Call such trees strongly diagonal similarity trees. Figure 1 is a drawing of a

strongly diagonal similarity tree with three leaves, where the leaf nodes are indicated

by open circles, the meets by solid circles, and restrictions to these lengths by open

boxes. Since a strongly diagonal set D with n-elements has binary meet closure, one

can show that |D∧| = 2n − 1.

For the purposes of counting strongly diagonal similarity trees, it turns out to be

useful to define a statistic called a meet indicator sequence: if D is a diagonal set

and x0, x1, . . . , x2n−2 enumerates its meet closure in decreasing order of length, then

µ = µD is defined by µ(i) = +1 if xi ∈ D, that is, it is a leaf of D∧ and µ(i) = −1

if xi ∈ D∧ \ D, that is, it is a meet of D. For the tree R pictured in Figure 1, the

meet indicator sequence of its set of leaves is µR = 〈+1,+1,+1,−1,−1〉. For any

sequence ν : m → {+1,−1}, the tally of ν is the function τ = τν : m → ω defined

by τ (0) = 0 and for j > 0, τ ( j) =
∑

i< j ν( j).

For the tree R pictured in Figure 2, the tally of its meet indicator sequence is

〈0, 1, 2, 3, 2〉. Starting from the top, the i th value is the number of elements on

the level of the tree one higher than that of xi . This connection holds in general

for a strongly diagonal similarity tree S with leaves D, since the size of each level

is increased or decreased by one, depending on whether the node on that level in

D∧ is a leaf or a meet. Hence for meet indicator sequences, their partial sums are

all positive and the sum of the entire sequence is one. Such sequences have been

studied.

A sequence ρ : (2n + 1) → {−1,+1} is a 2-Raney sequence of length 2n + 1 if

all of its partial sums are positive and its total sum is +1. Let R(n) denote the set

of 2-Raney sequences of length 2n + 1. For all n < ω, the number of sequences in

R(n) is a Catalan number:

|R(n)| = C(n) =

(

2n

n

)

1

n + 1
.
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Figure 2 Ingredients from which to build a similarity tree.

For more information on 2-Raney sequences, see Concrete Mathematics [18],

pp. 345–47. They are closely related to the ballot sequences discussed in Enumer-

ative Combinatorics, Vol. 2 [34] (see p. 173 for a definition). One can show (see

Proposition 9.3 [27]) that for any ν : (2n + 1) → { −1,+1 }, there is some diagonal

set D with meet indicator sequence ν if and only if ν is a 2-Raney sequence.

To illustrate the counting technique, suppose we are given the 2-Raney sequence

ν = 〈+1,+1,+1,−1,−1〉. Imagine setting the stage (see Figure 2) with five sticks

of lengths 4, 3, 2, 1, 0 where the i th one is topped with open circles if ν(i) = +1 and

a solid circle otherwise.

Stage 0: there is nothing to be done, since there are no elements longer than

x0.

Stage 1: there is a single element one longer than x1 and x1 is a leaf, so we get

to choose a passing number for x0 at x1. There are d1 ways to do so.

Stage 2: there are two elements one longer than x2 and x2 is a leaf, so we get

to choose a passing number for x0 at x2 and for x1 at x2. There are

d2 ways to do so.

Stage 3: there are three elements one longer than x3, and we get to choose

one, say x2, to be the sucessor of x3 with passing number 0 at x3 and

another, say x0↾2, to be the sucessor of x3 with passing number 1 at

x3. There are 3 · 2 ways to do so. With our specified choices, the

scene changes as illustrated in Figure 3, where most of the passing

numbers are omitted.

Stage 4: there are two elements one longer than x4, and we get to choose one,

say x1↾1, to be the sucessor of x4 with passing number 0 at x4 and

another, say x3, to be the sucessor of x4 with passing number 1 at x3.

There are 2 · 1 ways to do so. The completed tree we constructed is

illustrated in Figure 4.

Now let us count the ways that such a tree can be built using

ν = 〈+1,+1,+1,−1,−1〉 as a guide. For j > 0 with ν( j) > 0, we choose dτν( j )
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Figure 3 Stage 3 of the construction.
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Figure 4 Stage 4 of the construction.

passing numbers; for j > 0 with ν( j) < 0, we choose in one of τν( j)(τν( j) − 1)

ways, the extensions of the meet at that level. Altogether there are dτ (0)+τ (1)+τ (2) = d3

ways to choose the passing numbers of leaves and [τ (3)(τ (3) − 1)][τ (4)(τ (4 − 1)]

ways to choose the extensions for a total of [3 · 2][2 · 1] = 12. Altogether we have

12d3 choices.

Theorem 6.1 (See Theorem 9.4 [27]) For positive n < ω, d with 2 ≤ d < ω, and

Q(µ) :=
∑

j<2n∧µ( j )>0 τµ( j), the number of similarity classes of diagonal sets is

αn+1(d) =
∑

µ∈R(n)

d Q(µ)
∏

j≤2n

µ( j )<0

τµ( j)(τµ( j) − 1)

=
∑

µ∈R(n)

∏

j≤2n

θµ( j),
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where θµ( j) = dτµ( j ) if µ( j) > 0 and θµ( j) = τµ( j)(τµ( j) − 1) if µ( j) < 0.

Here are some small values:

(i) r2(d) = 2d;

(ii) r3(d) = 12d3 + 4d2;

(iii) r4(d) = 144d6 + 72d5 + 48d4 + 8d3;

(iv) r5(d) = 2880d10 + 1728d9 + 1723d8 + 1008d7 + 432d6 + 144d5 + 16d4.

Corollary 6.2 (Corollary 9.9 [27]) The polynomial rn+1(d) has the following prop-

erties:

(i) the degree of rn+1(d) is n(n+1)
2

;

(ii) the leading coefficient of rn+1(d) is n!(n + 1)!;

(iii) the lowest degree term is 2ndn; and

(iv) n!(n + 1)!dn(n+1)/2 ≤ rn+1(d) < (2n)!dn(n+1)/2.

Example 6.3 The procedure for computing rn(d) can be turned into a Maple pro-

cedure. Using it, we find the number of equivalence classes of the canonical partition

of the Rado graph, namely, the values of rn(2) for n = 1, . . . , 10:

1 : 1

2 : 4

3 : 112

4 : 12352

5 : 4437760

6 : 4686103552

7 : 13624250626048

8 : 104218697796173824

9 : 2028257407393613676544

10 : 97849915247810309454561280

There is a connection with Devlin’s Theorem mentioned in Section 3:

Q → (Q)n
<ω/tn

and Q 9 [Q]n
tn
.

Namely, rn(1) = tn is the nth tangent number for all n ≥ 2. Recall that a clique

is a set of vertices all of whose pairs are joined. Such an induced subgraph is also

called a complete graph, denoted Kn if the subgraph has n vertices. Moreover, one

can show that for colorings of the n-element cliques of the Rado graph, the critical

value is again tn , and the same result is true with anticliques or independent sets in

place of cliques.

RG → (RG)
Kn

<ω/tn
and RG 9 [RG]

Kn
tn

.
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