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A RECURSIVE MODEL FOR THE EXTENDED SYSTEM of
OF B. SOBOCINSKI

VLADETA VUCKOVIC

In this note we construct a model in the recursive arithmetic of words
over the alphabet J, ={S,,S,} for the extended system of, which was
introduced by B. Sobocinski in [1], as a complete extension of author’s
original system A from [2]. With this, an error which appeared in [2], as
pointed by B. Sobocinski in [1], will now be eliminated.

As Sobocinski’s system of is not covered by I. Thomas’s general
construction in [4], we have to construct the model for of differently as in
[3]. However, the principle is the same.

Presupposing the knowledge of our paper [3], we construct the model
as follows. Interpret

(1) Cpq as [12a(X)] - Y;
(2) Np as S,:-X;
(3) Kpg as a(S, = X) - (X+¥)+[1 = alS, = X)] - S,

and

(4) Apq as
1o =X)] {[12a@=D)] -S1+[1=al: = 7)) S}
+[1:a(S = X)]{[1all = V)]"S+[1=alS, = Y)]-S}.

We show that under this interpretation all axioms of /2 become prov-
able equations of RAW; as to the rules of inference of &, RI is the rule of
substitution of RAW and RII is interpreted as (2.22) of [3], i.e. is provable
in RAW.

We now interpret every axiom. The numeration of axioms is the
numeration of [1]; primed numbers denote equations of RAW corresponding
to axioms of (/2 with the same unprimed number.

(F1). The corresponding equation in RAW is the equation (3.3) of [3], and
was proved there.

(F2) CNpCpq.
(F2)' [1 = a(S,=X)]+[1=aX)]-Y=0.

The easy proof of this equation is by recursion in X.
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(F3) CCNppNNp ‘
(F3){1=[12a(S=X)]: * )} -[S1+(S=X)]=o0.

(We have used the obvious equations
(6) aX - 7) = a(X) - o(Y)

and

(6) o[ 1 = a(X)] =1+ alX)

to simplify (F3)!). To prove (F3)' denote its left side by F(X). Then
F(0)=S,+S,= 0, F(SX)=8,+S =0 and F(SX)=( +1)-S,= 0. So
F(X)= 0 for all X.

(F4) CpPCNgNCpq.
(F4)* [1+aX)]-[1+a@>Y)] {S1=[1=aX)].Y}=0.

F(o,Y)={1+a(S,= Y)}-[S,+ Y]= 0 by the formula (2.20) of [3].
F(SuX,Y)= 0 as 1 = a(SpX) = 0 for p= 0,1.

(F5) CNCpgNg.
(F5)' (I +afS;+[1+aX)] YD (S +Y)=o0.

To shorten the proofs for equations corresponding to the axioms for
conjunction we introduce the function

() KX, Y)=a(S, - X)) X+Y)+[1 = a(S;=8)]- S,
We note that

K(0,Y)=7Y,
(8) K(SX,Y) = SeX+Y,
K(SX,Y) = S,.
(F6) CKpgp.
(F6)' [1:a&X,Y))] -X= 0.
F(0,Y) = 0 as the second factor is 0; F(SeX,Y) = [1 + a(SeX + ¥)] + SoX.
Let W(Y) = [1=a(SeX + ¥)] - SeX. Then (0) = 0, Y(SuY) = [1+alS, -
(SoX + )} " SoX = 0. So F(SeX,Y)= 0. At last, F(SX,Y)=[I + a(S)]:
$X = 0.
(F7)  CKpaq.
(F7)r [1+ oKX, )] -Y=0.
Here, F(0,Y)=[I1 - a(Y)] - Y = 0. Other cases as for (F6)".
(F8) CpCqKpq
(F8)' [1=aX)]-[1=+a(¥)]- KX,Y)= 0.
F(o,Y)=[1+alY)] Y= 0, F(S,X,Y)= 0as 1= a(SuX)= 0.
(F9) CNpNKpq.
(FQ)' [1 = (S, = X)] * [Sl = K(X, Y)] = 0.
F(0,Y) = F(S,X,Y) = 0 as the first factor is 0. F($,X,Y)= S, S, = 0.
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(F10) CNgNKpq.
(F10)* [1 =+ S+ V)] - [S:+ KX, Y)]= 0.

F(O,Y)=[1=0a(S1=Y)] [Si=Y]=0; F(SX,Y)=[1=*a(S,=Y)- [S:=
(SeX + Y)] = YY). Now y(0)=yY(S,¥Y)= 0 as the first factor is 0, and
Y(S,Y)= 0 as the second factor is 0. At last, F(5:X,Y)= 0 as the last
factor is S; = S; = 0.

(F11) CNNpCNNqNNKpq.

(F11)r 1 = oSy = [S1= X1 - (2 = oSy = [S1= Y]P) - {S. = [S1 = KX, V)]}= 0.
F(O,Y)=[1=afS1= (S1= )} * [S1=(S1= V)] = 0 F(SX,Y)=[1 = ofS; =

(S1 = V) - {S1 = [S1 = (SX + V) = w(Y).

Now Y(0)=S;+ (S1 = SeX)=S,=8,=0, Y(SY) = 0 as the last factor is 0,

and (S.Y) = 0 as the first factor becomes 1 = a(S1)= 0. So F(S,X,Y) = 0.

At last, F(S,X,Y) =0 as then the first factor in (F11)' becomes I = a(S;) = 0.

To shorten the proofs for equations corresponding to axioms for
disjunction, we introduce the function

(9 AX,Y)=[12a(1 =X)]-{[12a@ 7)) S +[1=alS:*V)]}+
+[1:aS, = X)) {[1=al=V)]+[1=alS=:7T)" S}
We note:
A(0,Y) = 0
(10) AKX, Y)=[12a(1=Y)]+S +[1+alS;+7Y)] ;
ASX,Y)=[1 a1 = V)] +[1=alSi* V)] S ;
(11) AX,0)=0.
(F12) CpApgq.
(F12)' [1:aX)]:-AX,V)=0
F(0,Y)=A(0,Y)=0- F(S,X,Y) = 0 as the first factor is 0 for p= 0,1.
(F13) CqApq
(F13)* [1 + a(Y)] * AX,Y) = 0.
The easy proof by recursion in Y is omitted.

(F14) CApqCCprCCqrr.
(F14)' {1+ of A, V)]}- {1 = o[ * axX)) - Z]}-
A1+ o[l = alv)) - 2} - Z=0.

or, using (5) and (6),

(F14)" {1 = oA, D)} - {1 = [1 + alX)] * a(2)} -
112y ca@)}-z=0.

First, we have F(0,Y,Z2)={1 = a(Z)} - {1 = [1 = a(V)] * a(2)}- Z=y(¥,2).
Now (Y, 0) = 0, as the last factor is 0, and Y(Y,S,Z) = 0as 1 + a(SpZ)= 0.
Therefore, F(0,Y,Z) = 0. Also, F(SX,Y,Z)={1 + of ASX, ]} - {1 = [1 + @
(V)] - a2)} - Z=yu¥,Z). Now ¥i(0,Z) = {1 = ofS,]} - {1 - a(2)}- Z = 0,
Yi(SoY,Z2)= {1 + a(S)} - Z = 0 and ¢y(S,Y,2) = {I = a(l)} - Z=0. So
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F(SX,Y,Z)= 0. At last F(SX,Y,Z) = {1+ ofA(SX, )]} {1+ [1:a(¥)]-
a(Z)} + Z = ¢(Y,Z). Further, ¢(0,Z2) = {1 =[1+0]-a(Z2)}-Z=(1 = alZ))-
Z =20 ¢S¥2z) = {1-a)}- {...} + Z2=0and ¢(5,7,2)={1 = a(S))} -
{...}+Z=0. Therefore F$X,Y,Z)= 0.

(F15) CNApqCNpNq.
(F15)' {1 = a[S; = ACLV)}- {1 = a(S, = X } (S:=Y)=0

F(0,7) = {1 = o[Su]}+ {1 = a(S)} + (S1+ ¥) = 6 F(SoX,Y) = {I = oS;*
ASX, ) - {1 = alS; = SX)} - (S, = Y) ={...} {1z} (L00)=0
FSX, V)= (1 = a[S; {12 = V)] +[1=alS;= V)] -SL]) - (S, = Y)=y(Y).
Then ¥(0) = (I +a[Sy]) « S1 = 0, Y(SY) = (1= o[S;={0}]) - S, = 0 and
Y(SY)=()+ (S, = S;Y)= 0. Therefore F(SX,Y)= 0 too.

(F16) CNApqCNgNp.
(F16)' {1 = a[S; = AKX, V)]}-[1 = a(Si> V)] (S,=X)=0

The proof is similar to the proof of (F15)',

(F17T)  CNpCNgNApq.
(F17)' [1+a(S1=X)]-[1+a(S,= V)] [S+ AKX, T)]=0.

Fo,)=[1+a(S)]*[...]-[--.]=0;
F(SeX,Y) = [1 = a(S))] - [- Y N P R
F(SX,Y)=[1+a(S,+ V)]-[S,* ASX, Y)] v[Y]

Now Y(0)=[1 = a(Sy)] - [...]=0, ¥(Se¥)=[1* a(Sy)]+[...]=0 and at
last Y(S,Y) = S;+ A(SX,S:¥) =S, S, = 0. So F(S,X,Y) = 0 too.

(F18) CCpNpCCqNqCNNPpCNNgNApq.
Using (5) and (6) we can write the corresponding equation as

(F18)' {1 = [1 = a(X)] * a(Sy = X)} - {1 = [1 = a(¥)] - (S, = Y)}
A = oS = Sy = X))} {1 = oS = (S, = V]}-[S:= A, Y)] = 0.

First, F(0,Y) = {12 a(S))} - {.. .} - { ..} {..}-[...] =0. Secondly,
F(S,X, ¥ {1—[1-a(Y] oSy = Y)} - {l-asl-(sl— )J} [S1+ A(SoX, ¥)]=
(Y) Now Poy= {1 = aS} - { . - [ . .]= 0, Y(SoY) = 1 = A(SX, oY) =
=8, =0and Y(S$,Y)={1 = 0} - {1 = o[Si]} - [. . .] = 0. Therefore F(S,X,Y)=
0 At last F(S.X,Y) = 0 as the third factor in (F18)' becomes 0 in this case.
This brings to the end the proof that all axioms (F1)-(F18) become
provable equations in the model. Therefore, every thesis of the system A
is verified in the model.
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