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GENTZEN SYSTEMS FOR MODAL LOGIC

LOUIS F. GOBLE

Nice Gentzen formulations of the normal modal systems T and S4 have
been know for some time; see, for example, Kanger [5] or Curry [l]. A
similar formulation of S5 has also been given, but it is not so nice as the
Elimination Theorem is not provable for it. I shall present here sets of
rules for several of the non-normal modal systems which are akin to T and
S4. Each of the L-systems to be defined here has an Elimination Theorem
which may be proved by the methods of Gentzen [3]. These systems are
useful, in that each of them has a decision procedure, following, for
example, Kleene [6], §80.

1 Epistemic Systems In order to provide a decision procedure for Lewis'
system S2, Ohnishi and Matsumoto [ll] defined a system, Q2, which had the
property that a formula, A, was provable in S2 if and only if the consecution
H(p ^> p)\\- A was provable in Q2. Q2 was formed by adjoining to any
appropriate formulation of the classical propositional calculus, such as
Gentzen's LK [3], the rules:

(Nth-) Γ, Alt-Δ (IHsl) Γlh-A
Γ, NAiμ-Δ a Π NΠh-NA

where for (l(-N)Γ must be non-empty.
Here, and elsewhere, A, B, C, etc. are well formed formulas formed

from atomic formulas by means of propositional connectives, including N
for necessity; Γ, Δ, etc. are any finite sequences of (zero or more)
constituent formulas, A, B, C, etc. Consecutions a, β, etc. are expressions
ΓII—Δ. NΓ is the result of applying the operator N to each member of Γ.

Q2 is equivalent to the Hubert style system E2 introduced by Lemmon
(see, for example, [8]), in the sense that A is provable in E2 if and only if
\\-A is provable in Q2.

Besides the axioms and rules for the classical propositional calculus,
E2 has only the axioms

A.I HA =) A
A.2 H(A 3 B) => .HA ^ HB
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and the rule

' l-NA DHB

The proofs of the counterparts of A.I and A.2 in Q2 are nearly trivial. That
modus ponens is admissible is guaranteed by the Elimination Theorem,
i.e., that the rule

Πl-A, A Γ',A)f-Δ'
Γ, ΓΊμ-Δ, Δ f

is admissible in Q2. R2 is clearly admissible in Q2 given (II—M). Hence E2
is contained in Q2.

To show that Q2 is likewise contained in E2, we let the E2 counterpart
of the consecution a = Aly . . .,An\\-Bly . . ., Bm be the formula of* =
Ax =>. . 3 An 3 .~JBX 3 . . . . 3 .~ Bw_i => Bm or, in case M = 0, α* = Ax 3
. 3 .A^.i 3 ~AW. (No counterpart for the case in which n = m = 0 need
be given since the consecution II-is not provable in Q2.) If a is provable in
Q2, then a* is provable in E2. This is clear in case a is prime or if a is
the conclusion of an inference from β (βτ) by one of the non-modal rules,
supposing, for the induction, that if β is provable in Q2 in fewer steps than
a, then β* is provable in E2. If a is from β by (ihΛΓ), then

β= Alf . . .,AnH-B

α = NA b . . .,NAWII-N£

By the inductive hypothesis, ^ 2 Ax => . => .Aw => J5; so ^E2 N A I ^ N(A2 ^
. =>. Λ»=>J5) by (R.2), from which it follows that ^ 2 NAX =>. NA2 3
. z>. NAW 3 N 5 , i.e., ι i 2 α?*, by repeated applications of A.2 and transi-
tivity.

In case a is from β by the rule (Nil-), we have

β= d , . . ., Cw, A1KB1? . . ., Bm

a = d , . . ., Cw, NA ll-J?!, . . ., Bm'

So, by the inductive hypothesis ^2 d D * * * D cn ^ . A D . ^ ^ 3 . D
.~ jB«.! => J5« (or IE2 d => ' => C« => - A ) . Since ^ 2 NA => A (A.I), it
follows that £̂2 d D * * * D Cw 3 . NA 3 . - 5 χ 3 . D . " J S ^ i 3 ^ (or
^2 d D . " =>. Cw 3 -NA), which is to say, Ί2 «*•

Thus, if a = \\-A is provable in Q2, then α* = A is provable in E2, and
conversely. The two systems are equivalent, in the sense defined. Hence I
shall now call Q2 LE2.

Matsumoto [9] also presented the system Q3, to provide a decision
procedure for S3, by modifying the rule (II—M) of Q2 to

(IHN) Γlh-Nt, A NΓIί-NA
NΓIKNA

where t is any designated tautology, such as (pDp), and Γ is again
non-empty.
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Q3 is equivalent to Lemmon's E3, which results from adding the axiom
schema

A.3 NA =>N(N£=>NA)

to E2. It is easy to show that E3 is contained in Q3. To establish that Q3
is contained in E3 we use the same representation as given above. The
admissibility of the counterpart of (Nil-) follows as with E2. That the
counterpart of this (II—M) is admissible in E3 is shown as follows: Suppose
that βx* = d =>. => . Cn => . ~Nt ^ A and /32* = N d ^. - - ^ . HCn => A,
we show that if ^ 3 βx* and Ί 3 β2*, then ^ 2 of* = NCi 3. D. NCW ^NA.

1. h N C i =>.•••=}. NCW 3 A given
2. h C ^ . =>. Cw z). ~ N t D A given

3. h-NCi & ' * ' & NC« 3 A 1, truth functional logic (TFL)
4. h N ( d & & Cw) D A 3, (h-N(A&£) Ξ N A & NJB)
5. hCi =>. ' =>. Cw 3. (Nt^NίCi & - & CJ) ^ A 2, 4, (TFL)
6. h d & & C« 3. (Nt => N(Ci & & CJ) 3 A 5, (TFL)
7. h N ( d & * * & C«) 3. N(NtDN(Ci& & CJ) 3ΛΓA 6, R.2, A.2

8. h N ( d & & CΛ) ^ N ( N t ^ N ( C ! & & CΛ)) ^ # ( d & & CJ
=)NA 7, (TFL)

9. h N ( d & & O,) 3 N(Nt ^ N ( d & & Cj) A.3
10. hN(Ci & " " & CΛ) => NA 8, 9, M, P
11. hNCi & &NCW =>NA 10, (hN(A&5) = NA & NB)
12. h NCp. Ό.NC^NA 11, (TFL)

This suffices to show that Q3 is contained in E3 and that the systems
are thus equivalent. I shall call Q3 LE3. (The equivalence of Q2 and E2
and of Q3 and E3 was observed by Ohnishi in [10].)

Lemmon's systems ET and E4 result from adding

A.4 Nt 3 NNt

and

A.5 NADNNA

respectively to E.2. Their L formulations are formed by modifying the
rule (II—M) again. LET has the rule

0, Γlh-A
0, NΓlh-NA

where θ is either empty or contains only the constituent Nt, and not both θ
and Γ are empty. LE4 has the rule

NΓIh-A

NΓIKNA

provided, again, that Γ is not empty. LET and LE4 may easily be shown to
be equivalent to ET and E4 in the same manner as before.

If the condition that Γ (Γ or θ) not be empty is dropped from the rules
(Ih-N) for LE4 and LET, we have the familiar rules for the Gentzen
formulations of S4 and T.
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2 Deontic Systems Deontic modal systems, D I , result from the system X
(= E2, E3, ET, E4, T, S4) when its axiom A.I is replaced by

A.I' NA 3 ~N~A.

This requires modification in the rule (Nil—) in their Gentzen counterparts.
Let the new rule be

(Nlh)D T,AU-
NΓ, NAlh-

where it is required that the succedent in both the premiss and conclusion
be void and that every constituent in the antecedent of the conclusion be
prefixed by an N. The systems LΌX are formed by replacing the rule (NIK)
of hX by (N11—)D In addition it is necessary to modify the rule (lh-N) of
LDE4 and LDS4 to

NΠt-NA

where Γ' is a sequence which results by prefixing zero or more members
of Γ with an N. A similar change is required for the right premiss of (II—M)
for LDE3. (These modifications would also be acceptable for LE3, LE4,
and LS4.)

Proof of the Elimination Theorem for these systems goes through
unimpeded by these changes. Hence, it is easy to show that LDE2, LDE3,
LDET, LDE4, LDT, and LDS4 are equivalent to the systems DE2, DE3,
DET, DE4, DT, and DS4, as defined, for example, in [4],

3 Lewis' S-Systems As observed above, Gentzen formulations of the
normal systems T and S4 are obtained by allowing Γ in (lh-ΛΓ) to be empty.
In [10] Ohnishi defines a Gentzen system for Lewis' system S2; it has
exactly the same rules as LT but a restriction is placed on its tree proofs
to the effect that

(R) No inference by (II—N) may occur below an
inference by (li—M) in which Γ is empty.

Thus \\-H(p ^ p) is provable in LS2, since

ρ\\-ρ
"-/> ^P ( I H D )

lhN(p/)) (It-N)

meets the condition, but lHMN(/> ^> p) is not, since its proof

p\\~P (Π-3)
U-p Ώp

lh-NN(/> 3 p) (ll-N)-invalid

violates the restriction (R).
If Γ is allowed to be empty in (11—M) for LE3 but a similar restriction
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is placed on proofs, the result is a system, LS3, equivalent to Lewis' S3.
(Cf. Ohnishi [10].)

The restriction (R) may be generalized to read, for n > 1

(R)n No more than n-\ inferences by (Ih-N) may occur below an inference
by (Ih-N) in which Γ is empty.

If, for n ^ 1, this is applied to proofs by the LT rules for which Γ in (Ih-N)
is allowed to be void, systems LE2W are defined (where the n corresponds
to the n of the restriction) which are equivalent to the systems E2W

described by Lemmon [8] and Kripke [7]. These are formed by the addition
of the axiom Nwt (i.e., the result of prefixing t with n N's) to E2 so
formulated that modus ponens is its sole rule of inference. Thus E2° = E2;
E21 = E2 + Nt = S2; E22 = E2 + N Nt; etc.

The condition (R)n presents no impediment to the proof of the Elimina-
tion Theorem for any of these systems. Thus LE2W may be shown to be
equivalent to E2W. That E2W is contained in LE2W is clear, for all its axioms
are either provable in E2, and so provable in LE2 which is contained in
LE2W, or else the formula Nwt whose proof in LE2W is trivial. The
admissibility of modus ponens, the sole rule of E2W, is guaranteed by the
Elimination Theorem. To show that LE2W is contained in E2W we use the
same representation α* as before. The result then follows from the fact
that

for every n ^ 1, if β occurs in a proof of a which contains no more than n-\

inferences by (lh-N) which are below an inference by (II—N) in which T is

empty, then ^2nβ*

which may be proved by induction on n, making use of the fact that if
(E2«-I B, then >E2«N.B (n ^ 1). Hence, E2W is equivalent to LE2W.

A relaxation of (R) similar to the above immediately produces LS4
from LS3. I.e., if one or more inferences by (II— M) may be below an
inference by (ih-N) in which Γ is void, then the rule (Ih-N) for LS4 is
derivable:

(K^K) Γ«-Nt,Λ NΓ*II-Λ , 1 U M ,

This is as it should be, for, it is known, E3 2 = S4.
Devices similar to that used in the rule (Ih-N) for ET may be employed

to give L systems for the systems S4W which result from the extension of T
by the axiom: HnA => Hn+1A (cf. e.g., Feys [2], p. 127). For LS4* we modify
the T rule (Ih-N) to

θ, ΓiμA
θ, NΓ\h-NA

where θ is either empty or every constituent in it has the form NnB.
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Obviously, LS41 = LS4. If we required that either θ or Γ not be empty, we
would obtain rules for a family of systems LE4W which would be equivalent
to the result of adding NnΛ 3 NW+1A to ET. Thus, E472 stands to ET as S4W

stands to T.

4 The L Modal System A version of Lukasiewicz' modal system (without
variable functors), here called L, may be obtained by adjoining to E2 either
the schema:

A 3 B 3 . NA 3 NB

or the schema

NU3=> . A 3 N A

(c/. Lemmon [8]; also Kripke [7]). A Gentzen system, LL, equivalent to L
results by adding to rules for the classical propositional calculus the rule
(Nil—) as for E2 and the rule

( ι μ N ) TfNB\^A
K ' Γ, N£lh-NA

where now Γ may be any sequence, empty or not.

5 Intuitionistic Modal Systems If the modal postulates for E2-S4, etc.
were added to the intuitionistic propositional calculus for a base rather
than to the classical propositional calculus, intuitionistic variants on those
systems would be obtained. Equivalent Gentzen systems result simply by
adding the appropriate (Nil-) and (ih-N) rules to L-rules for the intuitionistic
logic.

These intuitionistic modal systems are not, however, the same as
those defined in [4] and for which semantics were provided, for in those
systems the formula NA v ~NA was provable. Gentzen formulations of
these systems IX (X = E2-S4, etc.) having this formula result by adding the
modal rules to an L-system for intuitionistic logic which allows multiple
constituents in the succedent and modifying the rule (ll—) to read

Γ,All-Δ
Γll A, Δ

where Δ is either empty or every member of it has the form NJ5.
(Ordinarily for intuitionistic negation one would require Δ to be empty.)

The proof that LIX is equivalent to IX is essentially the same as
before. The only trick is to show that the counterpart of the new rule (ll—)
is admissible in IX. We argue that if β = Cl9 . . ., Cn,A\\-NBu . . ., NBm is
provable in LIX, then by the inductive hypothesis β* = Ci 3 . 3 . Cn

 D .
A 3 . ~ N # i D . D ~NBm.i 3 HBm is provable in IX; hence, by permuta-
tion, so is Cx D . 3 . Cn =>. ~ N # ! 3 . D . A =>. NBm From this we
have f-d D . D . C n 3 . - N J B ^ . 3 . ~~A => ~~MBm by contra-
position twice, and so hC1 z>. ...=>. CΛ 3 . — A 3 . ~NBλ D . D. ~NBm-x 3

NBm again by permutation. Given that N B m v - N B w , ~ ~ N £ W 3 N # W is
provable in IX, so by transitivity it follows that α* = d 3 . . . . D . C W 3

A 3. ~NZ?! 3 . 3 . ~NJ5W_! 3 NB is also provable in IX.
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