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TRUTH, FALSEHOOD, AND CONTINGENCY

IN FIRST-ORDER PREDICATE CALCULUS

CHARLES G. MORGAN

In this paper it is indicated how the results obtained in [l] may be

extended to languages with the syntax of first-order predicate calculus. An

additional important result is demonstrated to the effect that there can be

no proof procedure for the set of logically contingent expressions. The

proof of this latter result depends on the undecidability of the predicate

calculus, and hence it does not apply to the sentential calculus. At this

time the existence of a proof procedure for the logical contingencies of

sentential calculus is an open question.

1. Preliminaries. Consider a formal language L with the following sym-

bols:

Predicates: P, Pι, P2, . . . (of varying degree)

Individual constants: a, cii, a2, . . .

Individual variables: x, xl9 x2, . . .

Sentential connectives: & — "and," v—-"or," — " n o t "

Punctuation: ). and (

Quantifiers: (x) —"for every x," ( :x) —"for some x"

I will assume the standard definitions of "well-formed expression of L , "

and "atomic expression of Z./' The meta-symbols E, Eχ,E2, - - - will be

used to refer to well-formed expressions of the language. I will presuppose

the standard semantical theory of such languages, including the semantical

definitions of "logically t rue" (LT), "logically false" (LF), "logically

contingent" (LC), and "logically equivalent" (LE).

Let some axiomatic system PCT for L be given (the results in this

paper apply to natural deduction systems as a special case). PCT will have

axioms TAλ, TA2, . . . , TAn and a set of transformation rules (proof rules)

TR1, TR2 TRm. Let λ be a set of expressions of L, perhaps empty.

If there is a proof of expression E from λ in the system PCT, I will write

λ \-( E. I will assume that PCT has the following properties:
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Theorem A: If E is any expression of L and hf E, then E is LT.
Theorem B: PCT is consistent in the sense that there is no expression E
of L such that both hf E and \~Γ-E.
Theorem C: The axioms TAlt . . . , TΛU are imlependent. That is, it is not
possible to prove any one of the axioms from all of the others.
Theorem D: The system PCT is complete in the sense that if E is any
expression of L that is LT, then ^ E.

The derivation of an analogous system PCF for LF expressions in L
will closely parallel the developments in [l] . We will need the following two
functions in the course of the derivation. Let F be defined as follows:

F(E) = E, if E is any atomic expression
F(-E) = -F(E), for any expression E
F(EιvE2) = F(Eλ) & F(E2), for any expressions Eι and E2

F(E1 & E2) = F(Eι)vF(E2), for any expressions Eλ and E2

F((x)E) = (Ίx)F(E), for any expression E
F((~x)E) - (x)F(E), for any expression E

Consider an expression of L, for example ((x)(P1x v -P2x)/ The F trans-
form of this expression is ί(Γx)(P1x & -P2x).' Let T be defined as follows:

T(E) = -E, if E is any atomic expression
T(-E) = -T(E), for any expression E
T{Eιv E2) = T(Ei) v T(E2), for any expressions Eλ and E2

T(E1 & E2) = T(Eγ) & T(E2), for any expressions Ex and E2

T((x)E) = (x)T(E), for any expression E
T((~x)E) = (~rx)T(E), for any expression E

Once again consider the same example expression used above. The T
transform of this expression is '(x)(- Pλxv— P2x).' The function T simply
replaces an atomic expression by its negation.

Theorem 1: Let E be any expression of L. Then E is LT if and only if
T(E) is LT. Similarly, E is LF if and only if T (E) is LF. Also, E is LC if
ami only if T(E) is LC.

Proof: Let E be an expression of L and let / be an arbitrary interpretation.
Consider an arbitrary predicate Pι in E, say of degree n. Let pit be the
set of /z-tuples of which Pι is true under /, and let p,, be the set of ^-tuples
of which Pι is false under /. Consider an interpretation V of T(E) as follows:
the domain of /' is the same as that of /; any given predicate P, in T(E) is
to be true of the ^-tuples in the set plt and false of the /^-tuples in the set
pι(, where P, is true of those in pιt and false of those in pιt under /. Clearly
T(E) takes the same truth value under V as E takes under /. Further,
every interpretation / has associated with it an interpretation V. Thus E is
true under some / if and only if T(E) is true under /'. Similarly, E is false
under some / if and only if T(E) is false under V. Hence E is LT (LF or
LC) if and only if T(E) is LT (LF or LC).

Theorem 2: For any expression E, F(E) is LE to -T(E).
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Proof: The proof is by induction on the number n of connectives and
quantifiers in E. Suppose n = 0; then E is an atomic expression. Thus
F(E)=E, and T(E) = -E; clearly E is LE to - - E . Now, suppose the
theorem holds for all n less than some p. We must show that the theorem
holds for n = p.

Case 1: E = E1vE2. Then E(E) = E ( E j & E(E2). By the induction
hypothesis, F(E,) is LE to -T(Eι), and F(£ 2) is L£ to -T(EZ). Hence F(£)
is I £ to ~T(Eλ) & -Γ(E 2 ). But, -Γί^x) & -T{E2)LE~(T{E1)vT{E2)) =
-T(E1vE2). Thus, F(E) is LE to -T(E).

Case 2: E = Eλ 8z E2. This is similar to Case 1, exchanging '&' and Ύ'
throughout.

Case 3: £ = -Eλ. Then F(£) = -F(Eι). By the induction hypothesis,
F(£i) is I E to -T(Eι). Hence F(E) is LE to — T ( E 1 ) . But —Γ(Ei) =
-T(-Eλ). Hence F(F) is LE to -T(E).

Case 4: E = (x)E1. Then E(E) = (Ξx)F(Eλ). By the induction hypothesis,
F(E1) is LE to -T(E1). Further, neither F nor Γ adds, removes, nor
exchanges variables. Hence F(E) is LE to (Γλ') -T(Eι). But (ΐftf) -T(E1) is
LE to -CY)Γ(E 1 ) . Further, -(λ')Γ(£i) - -T((x)Eλ). Hence F(E) is LE to
-Γ(E).

Case 5: E = (~-,v)£i. This is similar to Case 4, exchanging <(Ξ *)' and
'(Λ*)' throughout.

We see that the theorem holds for n - p, and thus by induction it holds
for all n.

Theorem 3: For any expression E, E is LT if and only if F(E) is LF; E is
LF if and only if F(E) is LT; E is LC if and only if F{E) is LC.

Proof: By Theorem 1, E is LT (LF or LC) if and only if T(E) is LT {LF or
LC). By Theorem 2, F(E) is LE to ~T{E). But for any expression Elf we
have the following: (i) Eγ is LT if and only if -E1 is LF, (ii) Eλ is LE if and
only if -Eι is LT, and (iii) E : is LC if and only if -Eι is LC. Thus E is LT
(LF or LC) if and only if -T(E) is LF (LT or LC) if and only if F(E) is LE
(LT or LC).

Theorem 4: / ^ r <7/?v expression E, F (F (E)) =E.

Proof: The proof is by induction on the number n of connectives and
quantifiers in E. Suppose n = 0; then E is atomic. But then F(F(E)) =
F(E) = E. Hence the theorem holds for n = 0. Suppose the theorem holds
for all n less than some p; we must show that it holds for n = p.

Case 1: E = -Elm Then F(F(E)) = E(E(-£i)) - F(-F(E1)) = -FiFiEj).
But by the induction hypothesis, F(F(Eλ)) = E x . Hence F(F(E)) = -Ei = E.

Case 2: E - EλvE2. Then F(F(E)) = F(F(E1vE2)) = F(F(E,) & F(E2)) =
F(F(Eλ))vF(F(E2)). By induction hypothesis, F(F(E1)) = Eλ and F(F(E2)) = E 2 .
Thus F(F(E)) = E,vE2 = E.

Case 3: E = Eλ &. E2. This is similar to Case 2, exchanging '&' and V
throughout.

Case 4: E = (x)E,. T h e n E(F(E)) = E(E((A-)E\)) = F(('x)F(Eι)) =
(xήFlFlEj). By induction hypothesis, F(F(E,)) = E^ Hence, F(F(E)) =



TRUTH. FALSEHOOD, AND CONTINGENCY 539

Case 5: E = {' x)Eι. This is similar to Case 4, exchanging ((x)' and
'( x)y throughout.

We see that the theorem holds for n = p, and thus by induction it holds
for all n.

2. The System PCF. The system PCF is an axiomatic system for the
logical falsehoods of L. It is derived from the system PCT by taking the F
transform of the system PCT in a way that will now be explained. The
axioms of PCF are just F{TΛγ), F(TΛ2), . . . , F(TΛtι), and I will denote
them by FΛλ, . . . , FAn. In order to obtain the transformation rules of
PCF, denoted by FRγ, . . . , FRm, simply take the F transform of every
expression mentioned in the rules for PCT, being concerned only with
changes brought about in the connectives and quantifiers, and ignore 'F'
when it is applied to expression letters. For example, a typical rule of
conditional proof for PCT could be stated as follows:

At any stage of a proof, say line r, any premise Eγ may be introduced,
providing that:

(a) the premise is discharged at or before the last line of the proof
(say at line //) by writing a line of the form '-EιvE2' (where E2 is the //-lst
line of the proof) and appealing to lines r and n - 1; and

(b) if the proof proceeds past the line on which the premise was
discharged (line n) then no line past the nth may appeal to any of the lines r
through n - 1 (where r is the line at which the premise was introduced).

The F transform of this rule would read exactly the same except that in
condition (a), the expression i-E1vE2' would be replaced by ί-Eι & E2.' A
rule of substitution that does not explicitly mention any connectives or
quantifiers would remain unchanged. Let λ be a set of expressions of L,
perhaps empty. If there is a proof of expression E from λ in the system
PCF, I will write λ ^ E. Now, let Sl} S2, . . . be meta-meta-expressions.
The same connectives and quantifiers will be used below for the object
language, meta-language, and meta-meta-language expressions, but this
should occasion no confusion.

Lemma 1: An object language expression E\ has the form specified by a
meta-language expression Sι if and only if F(E\) has the form specified by
the F transform of Si, where the F transform of Sλ is obtained by taking
F(S\), being concealed only ivith changes brought about in the connectives
and quantifiers, and ignoring Ψ ' when applied to an expression tetter.

Proof: The proof is by an easy induction on the number ;/ of connectives
and quantifiers in SV Suppose n = 0; then S\ is simply an expression letter.
Thus the F transform of SL is just an expression letter. But any syntac-
tically well-formed object language expression has the form specified by a
single expression letter of the meta-language. Hence the theorem holds
for ;/ = 0. Now, suppose the theorem is true for all // less than some p.
We must show that the theorem holds for p. We will have five cases as in
the proof of Theorem 4. In each case, the theorem follows immediately
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from the induction hypothesis and the definition of F. Thus the theorem
holds for all n.

Theorem of Proof Correspondence: Let El9 . . . , Ep be a series of expres-
sions of L, ami let F{E\), . . . , F{EP) be a series of expressions of L
obtained from the first by taking the F transform of each expression in that
series. Then Eu . . . , Ep constitutes a proof of Ep in PCT if and only if
F ( E j , . . . , F{EP) constitutes a proof of F{Ep) in PCF.

Proof: Consider an arbitrary step Ei in the series. There are two cases:
Case 1: is, is an axiom. But E{ is an axiom of PCT if and only if F(E,-)

is an axiom of PCF.

Case 2: Et follows according to rule TRj from Etl, . . . , Eit. Since
the function F changes no variables, constants, or predicates, restrictions
on variables, constants, and predicates are not changed by taking the F
transform of the rules. For example, if we require for the application of
rule TRj that the variable x should not have been introduced at an earlier
stage by rule TRk, then FRj will require for its application that the variable
x should not have been introduced at an earlier stage by the rule FRk. Thus
Eι satisfies such restrictions with regard to TRj if and only if F(E,)
satisfies such restrictions with regard to FRr Now, by Lemma 1, Eh

En, . . . , Ett have the syntactical forms specified by TRj if and only if
F(Ei), F(Pn), . . . , F{Eit) have the syntactical forms specified by FRj.
Thus, E, follows according to rule TR] if and only if F(Et) follows
according to FR}.

Thus each step in the Ei series is justified if and only if each step in
the F(Et) series is justified. Thus the E1 series constitutes a proof of Ep in
PCT if and only if the F(Et) series constitutes a proof of F(Ep) in PCF.

Corollary 1: ^ E if and only if ^FF(E).
Corollary 2: Let λ be a set of expressions, ami let F (λ) be the set of
expressions ivhose members are the F transforms of the members of χ.
Thenλ ^ E if and only if F(λ) ^FF(E).

Proof: Note that step E{ in the PCT proof is a member of Λ if and only if
F(Et) is a member of F(λ). The proof is then the same as the proof for the
Theorem of Proof Correspondence.

It is now possible to prove that the system PCF has properties similar
to those of PCT. The proofs that PCF has these properties will all have a
certain similarity in that they depend on the fact that PCT has the cor-
responding properties.

Theorem A': // E is any expression of L and i~ΓE, then E is LF.

Proof: Suppose for some E, )-FE and E is not LF. Then by Theorem 4,
y-ΓF(F(E)). By Corollary 1, ^ F(E). By Theorem 3, F(E) is not LT. But
this contradicts Theorem A. Hence E must be LF.

Theorem B': PCF is consistent in the sense that there is no expression E
of L such that ^ E ami ^~F-E.



TRUTH, FALSEHOOD, AND CONTINGENCY 541

Proof: Suppose that for some E, ^ E and ^ -E. Then \-FF(F(E)) and
t-FF(F(-E)). This latter means that \-FF(-F(E)). Thus, ^F(E) and
^ τ -F(E). But this contradicts Theorem B. Hence there is no such E.

Theorem C': The axioms FAi, . . . , FAn are independent. That is, it is not
possible to prove any of the axioms from all of the others.

Proof: Suppose it were possible to prove FAi from the other axioms. Then
by taking the F transform of the proof we would have a proof of TAi from
the other axioms in PCT. But this would contradict Theorem C. Hence it
is not possible to prove FAt from the other axioms.

Theorem D f: The system PCF is complete in the sense that if E is any
expression of L that is LF, then ̂ ~rE.

Proof: Let E be any expression of L that is LF. Then F(E) is LT. But
then *-TF(E). Hence \~FF(F(E)). But then \-FE.

3. The Impossibility of a System PCC. It is a well known fact due to Church
that there is no decision procedure for first-order predicate calculus.
That is, there is no effective procedure such that given any arbitrary
expression E, the procedure will tell us in a finite number of steps whether
or not E is LT. Using this result, it is possible to prove that there can be
no system PCC such that (a) all and only logically contingent expressions
are provable in PCC, and (b) given an arbitrary series of expressions of L,
there is an effective procedure for determining whether or not the series
constitutes a valid proof in PCC. The plan of attack is to show that if there
were such a system, then it would be possible to given an effective decision
procedure for L. I will assume throughout that systems PCT and PCF are
given satisfying conditions (a) and (b) for LT and LF expressions,
respectively.

Theorem 5: There is no system PCC such that (a) all and only the logically
contingent expressions of L are provable in PCC, and (b) given an arbitrary
series of expressions of L—Eγ, E2, . . . , Ep—there is an effective proce-
dure for determining whether or not the series constitutes a valid proof in
PCC of Ep.

Proof: Suppose there were such a system. As before, if an expression E
is provable in PCC, I will write \-( E. Let some Godel numbering be given
for expressions and sequences of expressions in /.. Then given any two
arbitrary positive integers nλ and n2, there is an effective procedure for
deciding whether:

(i) Hi is the number of an expression of L
(ii) n2 is the number of a sequence of expressions of L, the last member

of which, say E, is the expression numbered HL

(iii) The sequence of expressions of which n2 is the number is either:
(iii.a) a valid proof in PCT of E, (iii.b) a valid proof in PCF oiE, or
(iii.c) a valid proof in PCC of E.
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Let an arbitrary expression E be given, and determine its Gδdel number,
nλ. Now, no matter what positive integer n2 we choose, the answer to (i)
will be 'yes.' Clearly either ^E, y-fE, or u

r E. Beginning with 1 and
stepping through the positive integers in order, we will eventually find an
n2 such that the answer to (ii) is 'yes' and the answer to one of (iii.a)-(iii.c)
is 'yes.1 If the answer to (iii.a) is 'yes,1 then E is LT; if the answer to
(iii.b) is 'yes,1 then E is LF; if the answer to (iii.c) is 'yes,' then E is LC.
Thus there is an effective decision procedure for L. But this contradicts
Church's results. Hence there can be no such system PCC.

There is no way to restrict the proof of the above theorem to sentential
calculus, since there is a decision procedure for languages with that
syntactical structure.

4. Further Comments. There are several problems for research that
remain open. I will list only a few here:

1. I still have no proof or disproof of the existence of a system SCC
for logical contingencies.

2. The semantical theory of LF type languages has yet to be examined,
although it appears to be exactly parallel to the traditional theory.

3. It is possible using the techniques outlined above to derive systems
in which various combinations of LT, LF, and LC expressions are
theorems. The various properties (especially semantical properties) of
such systems should be interesting.

4. Another interesting area of research involves the use of a meta-
language for LF expressions to describe other formal languages; at least
until now, meta-languages have always been of the LT variety.

5. In a slightly different vein, LF languages have some nice applica-
tions to problems in philosophy of science and artificial intelligence,
especially in the realm of scientific discovery (see [2]).
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