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INFINITE SERIES OF T-REGRESSIVE ISOLS

JUDITH L. GERSTING

1 Introduction.* Let E denote the collection of all non-negative integers
(numbers), A the collection of all isols, Ag the collection of all regressive
isols, and A,; the collection of all cosimple regressive isols. Infinite
series of regressive isols were defined by J. C. E. Dekker in [4];
A. Nerode in [14] associated with every recursive function f(x) an extension
of f(x) to a mapping D;(X) on A. In[1], J. Barback showed that D,(Y) for f
an increasing recursive function and XeAy can be represented as an
infinite series. Universal isols were introduced by E. Ellentuck in [6].

The collection A;g of T-regressive isols was introduced in |[8]. There
a result was proved concerning an equality between infinite series of
T-regressive isols; viewing the extension of a recursive combinatorial
function to Ag in terms of infinite series, this result led to a proof that
T-regressive isols are universal. In the present paper, three further
results are obtained concerning equalities and inequalities between infinite
series of isols when T-regressive isols are involved. As applications of
Theorem 1 below, we obtain new proofs of several previously known results
concerning extensions of recursive functions to Agz. Theorem 3 below is
used by M. Hassett in obtaining his main result of [10].

2 Preliminaries. We recall from [4] the definition of an infinite series of
isols, ZT a,, where T denotes an infinite regressive isol and «, denotes a

function from E into £':
0

Z>T(ln = Req;_i(fn, V((’n))

where j(x, y) is a recursive function mapping E? one-to-one onto £, {, is
any regressive function ranging over a set in T, and for any number xn,
v(n) = {x|x <n}. By results in (4], 2ira, is an isol and is independent of the
choice of the regressive function whose range is in T. In [2], J. Barback
studied infinite series of the form ET«,, where T <*«,_,. The relation

*The author wishes to express appreciation to Professor J. Barback for some
very helpful suggestions concerning some of the topics presented here.
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T s*q,_, for T an infinite regressive isol and a, a function from E into £
implies that for every regressive function {, ranging over a set in T,
t, <*a,:,, that is, the mapping {, — «@,-, has a partial recursive extension.
It was established in [2] that

(1) if T <*aqa,, then T <*a,_,
and
(2) if T <*a,,, lthen ET a, is a rvegvessive isol, wheve
Jlte, 0), . . o, Jlle, ag = 1), j(fy, 0), . . ., Ji(ly, ay = 1), j(ty, O), . . .,
vepresents a vegvessive enwmevation of a set belonging lo ET ay.

For f an increasing recursive function, the e-difference function of f,
ey, is defined by

e,(0) = f(0)
e (n+1) = fln+1) - fln).

Since f is increasing and recursive, ¢, is a recursive function, and it
follows that for T an infinite regressive isol, T + 1 <* ¢;(n). The following
result is Proposition 2 of [1]:

Lemma 1. Let f(x) be an increasing vecursive function. Then for any
infinite regressive isol T,

D/(T) =ZTHe/(n).

A property of numbers is said to hold eventually if there is anne E
such that x has the property for every v > n. In [8] a retraceable function
a, is called T-vetraceable if it has the property that for each partial
recursive function p(x), p(a,) < a,,, eventually. An infinite regressive isol
is T-regressive if it contains a set which is the range of a T-retraceable
function. A+tr denotes the collection of all T-regressive isols. It is known
that cosimple T-regressive isols exist and that if Te Az, then T + 1€ A1g.

3 An Inequality Between Infinite Series. We use the following two lemmas,
stated here without proof, in the proof of Theorem 1 below.

Lemma 2 (Corollary 1 of [8]). Let Te A and let a, and b, be any functions
such that both T <* a, and T <* b,. Then

ZT an = ET bpy=>a, = b, eventually.

Lemma 3 (Theorem 1 of [9]). Let Te Ag - E and b, be a function such that
T <*b,. Let A be an isol such that A sET by.

(smce 207 bye Ag, it follows from results in [5] that Ae AR.> Then theve

exists a function ¢, such that

T <*c¢,

¢, <b, for all n,

A =ETC,,.
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Theorem 1. Let Te Ag and let a, and b, be functions such that both T <* a,
and T <*xb,. Lel

ET(ln §ET bn-
Then a, < b, eventually.

Proof: Denote Exa,, by A. Now using Lemma 3 there exists a function ¢,
such that T <*¢,, ¢, <0, for all n, and A = ET ¢,. Thus ET ay =27 cn. By
Lemma 2, we have

a, = ¢, cventually
and thus
(y, < by, eventually.

Corollary 1. Let Te Arg and let fand g be incveasing vecuvsive functions.,
Let D/(T) <Dg(T). Then f =g eventually,

Proof: Letting ey and ¢, denote the e¢-difference functions of f and ¢
respectively, we have from Lemma 1 that

Dy(T) :ET.I e;(n)  De(T) = ETd Co(n)
and thus
(3) Zirye,(n) = Linuy egn).

Since T+1eArg and T+ 1 *\i*cl(n), T+ 1 <*cg(n), it follows from the
theorem that

(4) e;(n) <ey(n) eventually.
It is then easy to see, using (3) and (4), that f = ¢ eventually.

We remark here that Corollary 1 has been shown by J. Barback to be
true for T any universal regressive isol; however, it is the stronger result
of Theorem 1 that is needed for the four applications below.

Theorem A (Barback, [1)). Lel/ f be a recursive function such that D, (Y)
maps Ag into Ag. Then [is cventually increasing.

Proof: Let f and f~ denote recursive combinatorial functions such that
fx)y=f(x) -f7(x) for all velZ. Then f'and f~ are increasing recursive
functions; let ¢;+ and ¢, - denote their respective e-difference functions.
Let Te Arr. By Corollary 3 of [1],

D,(T) =27,y e,.(1) - 2ig.y €= (n).
Since D/(T) is a member of Ag, it follows that
Ly ep-0n) = Loy ey (),
Now by Theorem 1 we have

e/_()z) < z’/‘(n) eventually
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which implies
e/+(n) - e/-(n) 2 0 eventually, ej(n) =0 eventually, f is eventually incveasing.

The proof of Theorem B will be omitted; it follows that of Theorem A,
with T taken to be a cosimple T-regressive isol.

Theorem B (Catlin, [3])). Lel f be a vecursive funclion such that D;(X) maps
Azg into Ayg. Then fis eventually increasing.

Theorem C (Sansone [15]). Letf f be an increasing recuvsive function such
that D(X) (s ultimately ovdev-presevving on Ag. Then ¢; is eventually in-
creasing.

Proof: Let TeApzr. Then T -1<T, so that, since D;(X) is ultimately
order-preserving,

D/(T - 1) sDy(T).
By Lemma 1,
ET e(n) < Z\/TH e;(n).
Let the recursive function @, be defined by

d(O) =0,
dn + 1) = ej(n).

Then
ET ef(n) = ZT‘ Ldn)

and thus

27»1 dn) < ET~1 es(n).
Applying Theorem 1,

d(n) < e;(n) eventually
or

e/(n -1) < e/(n) eventually

which says that the function ¢; is eventually increasing.

Again by taking T to be a cosimple T-regressive isol, the proof of
Theorem C yields the following result:

Theorem D. Let f be an increasing vecuvsive function such that Dj(X) is
ultimately ovder-presevving on Azg. Then e; is eventually incveasing.

We note here that the proofs of these four theorems actually yield
stronger results than those stated. For example, in the proof of Theorem
A, the hypothesis may be weakened to f being a recursive function such that
D/(T)e A for some T-regressive isol T. Theorems B, C, and D may be
similarly strengthened. These strengthened forms of the theorems may
also be obtained by using the property that every T-regressive isol is
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strongly univevsal (see Ellentuck, [7]). We note also that in the cited
references for Theorems A, B, and C the results given are both necessary
and sufficient conditions, so it is only one direction of each of these results
which is obtained here.

4 Two Equalities Between Infinite Series.

Theorem 2. Let T, Se Ay and let a, and b, be functions such that 1 <a,
and 1 <b, for all neE, and also T <*a, and S <*b,. Let ET(Z" = Zs b,.
Then theve exists a number m € E and an integev k =1 - m such that

nZ2m=>a, = by..

Proof: Lett, and s, be T-retraceable functions ranging over sets in T and
S, respectively. By (2),

j(to, O)> .. -,j(tOy ay - 1),.i(t17 O)y .. "j(tb a, - 1),j(i2, 0), c e ey
j(soa O)y .. -,j(so, bo - 1),](81, O)y .. "j(sl, by - )7.j(32’ 0)7 CEEEES)

represent regressive enumerations of sets belonging to ET(I,, and Esb,,,
respectively. Let g, and £, denote the respective regressive enumerations
determined above. Since 2ira, = 2usb,, it follows from results in [5] that
there exists a one-to-one partial recursive function p(xr) such that
(vn)[p(g,) = &,). Because T <*a,and S <* b,, there will be partial recur-
sive functions £, and f, such that (vn){ f4(¢,) = @, - 1] and (Yn)[f,(s,) = b, - 1].
It follows that the mapping

a(x) = kpTj(Rpj(x, ful)), 10i (¥, folx) + 1)

is a partial recursive function. Because /, is a T-retraceable function,
there exists a number % such that for # =%, ¢(/,) < {,,,. Consider a number
n =1 and let pj(t,, a,- 1) be denoted by j(s, v). If v # b, - 1, then ¢(¢,) = ¢,.,,
which is a contradiction. Thus for every n =n, pj(t,, a, - 1) is a number of
the form j(s,, b. - 1). Because s, is a T-retraceable function, we can use a
similar argument to prove that there exists a number 1 such that for every
n=n, p lj(sy, by - 1) is a number of the form j(f,, v - 1). Let m be a
number such that

m > 1 and (Ya)(n = m and pj(t,, 0) = j(s,, 0)=>x =n).

Thus for n =m, the ‘‘blocks’’ of length @, in the enumeration g, will be
mapped by p into ‘‘blocks’’ of length b,., in the enumeration g,, where
k=1 - m since dn = by .pwith i + &k = 1. This completes the proof.

Corollary 2.1. Lel T, Se Arg and lel fand g be strictly increasing vecuv-
sive functions. Let Dj(T) = Dy(S). Then theve exists a munber m e E and an
integer k =21 - m such that

nzm=>e/n) =ex(n+k,
i.e., the rvate of growth of f and g is “‘pavallel.”

Proof: By Lemma 1,
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D/(T) = Dg(S)=> 2.y e;(n) = 25, eg(n).
By Theorem 2, the result holds.

Corollary 2.2. Lel T, Se Arg and let f and g be strictly incrveasing vecur-
sive functions. Let

(5) Dy(T) = Dg(s).
Then theve exists a nuimmber ue E such that T =S5 + u.

Proof: From Corollary 2.1 there exists a number m e E and an integer &
such that

nzm=>e/n) = en + k)

or
nzm=>fn)-fn-1)=gn+k)-ghn+k-1)
from which
nz=m=>f(n) = gn + k) +ni, m an integer
or
(Y)(Fn +m) =gln +m + k) +m).

Thus for any Ae A we have

D/(,”m)(A) = Dg(nemsk)em (A)
which implies (by a result of A. Nerode)

Dj(A +m) = Dg(A + m + k) + 1.
In particular,
D(T) = DT = mt +m) = Dg(T =t + 1 + k) + 1 = Do(T + &) + 0.

Using (5),
(6) Dg(S) = Dg(T + k) + 1.

By writing the extension mappings as infinite series and using a proof
similar to that of Theorem 2, it is not difficult to show that for % a strictly
increasing recursive function, A, Be Atz , and p some number =1, we have

Dip(A) =Dy(B) + p=>A = B + q for some ge E, ¢ > 1.

It also becomes clear here that ¢, is eventually a cyclic function of period
g. Applying this to (6) we obtain the desired result; in addition, if  # 0,
we see that ¢, (and hence ¢;) is eventually cyclic.

Theorem 3. Lef Te Ay, Se Ag - E, and let a, and b, be functions such that
1<a,and 1 <b, forall ne E, and also T <*a,, S <* b,.,. Let ET a, = Zs ba.
Then theve exists a number ke E and a strvictly incveasing function h(n)
such that
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h(0)

k
2ia; = Z;)bi

=0
and
h(n+1)

Ay i = 23 bi for all ne E.
izh(n)+1

Proof: Let {, be a T-retraceable function ranging over a setin T and s, a
regressive function ranging over a set in S. By (2),

j(to’ O), RS j(toy Qo - 1)9 j(tla 0)’ st ey j(tly a, - 1), j(t‘z’ O), ey

j(SO’ O)) . -,j(sos bO - 1), j(sl> 0)9 e ].(Sl? bl - 1)’ j(827 0)) MRS ]
represent regressive enumerations of sets belonging to 21, and Es by,
respectively. Let g, and g, denote the respective regressive enumerations
determined above, and, since 21 an = Es b, let p(x) be the one-to-one
partial recursive function such that (V#)(p(g,) = £&,). An argument similar
to that in the proof of Theorem 2 proves the existence of a number 2 such
that for every n =k, pj(t,, a» - 1) is a number of the form j(sx, bx - 1). Then
for every n =k + 1, every ‘‘a-block’ in the enumeration g, will be mapped
by p into the sum of a number of ‘““b-blocks’’ in the enumeration &». This
completes the proof.

Corollary 3.1. Let Te Ay, S€ Ag - E, and let f and g be stvictly incveasing
vecursive functions. Lel D;(T) = Dg(S). Then there exists a number ke E
and a strictly increasing vecuvsive function h(n) such that

fn + k) = g(h(n)) for all ne E,
i.e., f eventually takes on only values of g.
Proof: The result follows at once from the Theorem by applying Lemma 1.

Corollary 3.2. Let Te Atg, S€ Ag - E, and let f and g be strictly incveasing
vecursive functions. Let D;(T) = Dg(S). Then theve exists a numbev ke E
and a stvictly incveasing vecursive function h(n) such that

S = Dh(T - k).

Proof: By Corollary 3.1, there exists a number k¢ £ and a strictly
increasing recursive function %(n) such that

(V) [fln + k) = g(h(n)].
Thus
Dg(s) = D/(T) = Df(mk)(T - k)= Dg(h(n))(T - k)= Dg(D/z(T - k).

Since h is a strictly increasing recursive function, by results in [1],
Dy(T - k) e Ag. Also, by a result of A. Nerode, if g is a strictly increasing
recursive function, then D, is one-to-one on Ag and hence

Dg(S) = Dg(DK(T - R))=>S = Di(T - k).

This completes the proof.
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