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FORMALLY DEFINED OPERATIONS IN KRIPKE MODELS

LUIS E. SANCHIS

The introduction of Kripke models in intuitionistic logic has originated
a growing interest in this field. There is no doubt that the relation between
these models and forcing has played a role in this development. As a
consequence the traditional interpretation of intuitionistic logic, namely the
notion of constructiveness considered by Brower, Heyting and others,
appears to have lost some of its former preponderance. Recently several
logicians have been interested in defining arbitrary operations in the
models, to some extent independently of the operations which are proper of
intuitionistic logic. In this paper some results in this direction are
presented. We consider only the propositional calculus.

We study operations which are formally defined in the following sense.
Each operation is introduced first as a formal connective together with
some provability rules. Then we use the same rules to give the interpreta-
tion of the connective in the model. This is possible because we use
Gentzen type rules for which the subformula property holds. We give some
formal conditions for the rules that are both necessary and sufficient for
the system to be adequate and complete.

The most interesting property of these operations is that whenever two
of them agree in one of the Kripke models then they agree in all models,
hence they are actually the same operation. The usual connectives of
intuitionistic logic are formally defined in our sense, hence our results
apply to them. Not only that, it is easy to show that every formally defined
connective can be also defined explicitly by some formula containing only
the usual connectives.

On the other hand we show that there are operations defined explicitly
by formulas containing only the usual connective which are not formally
defined in our sense. Such operations agree with some formally defined
operation in at least one model—the classical model—but for every
formally defined operation there is a model in which they are different.
This result generalizes the well known result that there are classical
tautologies which are not provable in intuitionistic logic.
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1 Fowvmal Definitions. We consider a system in which the atomic proposi-
tional letters are the symbols: e,,e,, ..., e, . ... We assume several
connectives are given, each one with a fixed given number of arguments.
The symbol # will denote some arbitrary n-ary connective. The class of
formulas is the smallest class that contains the atomic propositional
letters and for every connective # contains #(A,, ..., A,) whenever it
contains A,, . .., A,. Capital letters A, B, C, A;, . . . will denote formulas.
Letters M, N, P, @, R, S, T will denote finite sequences of formulas,
eventually the empty sequence. The formulas in the sequence M are called
the components of M. If every component of M is also a component of N we
say that N is an expansion of M and write M < N.' We assume the symbol
 is not a connective. An expression M =N is called a sequent. M is the
left side of the sequent and N the right side. The components of M are
called left components of the sequent; the component of N are called right
components. Whenever M and N are both empty we have the empty sequent.
If all right and left components of a sequent are atomic letters we say the
sequent is atomic. The sequent M + N is closed if there is a formula that it
is both a left and a right component. The union of the sequents M - N and
P+ @ is the sequent M, P+, N.

We assume that with every n-ary connective # we have associated two
sets of atomic sequents R# and L#; the elements of these sets are called
right axioms of # and left axioms of # respectively. An axiom of # is either
a right axiom or a left axiom. If P +~@ is an axiom then the components of
Pand @ are atomic letters from the list e, e,, . . ., e,. The empty sequent
can be taken as an axiom. We admit also that either of the sets R# or L# is
empty. We do not exclude the possibility of both being empty but further
restrictions we shall consider later will make such a case impossible.

As an example, and for future reference, we give the sets of axioms
that we associate with the usual connectives: 1, D, A, v

R1 ={e,+ } L1 ={ +e}

RO ={e,+ e} LD ={rey, e~}

Ra={rey, re} La=Ae, er }

Rv={re, e} Lv={e~, e+t

We assume that for every connective the right and left axioms are
given in some order. Now let #(A,, ..., A,) be some formula. The right
axioms of this formula are all sequents that can be obtained from the right
axioms of # by simultaneous substitution of A, for e, A, fore,, ..., A, for
€». The left axioms of #(A,, . . ., A,) are obtained in the same way from the
left axioms of #. For instance A, D A, has one right axiom, the sequent
A+ A, and two left axioms, the sequents +A; and A,+ . Clearly the right
(left) axioms of # are exactly the right (left) axioms of #(e,, . . ., e,). Each

1. Hence N is an expansion of M means M is a subset of N when the sequences are
considered as sets.
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right (left) axiom of # produces a right (left) axiom of #(A4,, . . ., 4,) and we
take these axioms in the order that corresponds to the given order of the
axioms for #.

For each connective # we introduce two rules, one called the right rule
(#R) and the other the left rule (#L):

(4R) P, M-N, @i, ..., P,y M+N, @,
M}"N) #(Als LRI An)
L) Sy, MFN, T, ..., Sp, M~N, T,
#(Ay, .., A), MFN
In these rules M and N are arbitrary sequences of formulas, and
A, ..., A, are arbitrary formulas. The sequents P, +~@,, ..., P,+@; in
(#R) are the right axioms of #(A4,, ..., 4,). The sequents S, +T,, .. .,
Smt+ Tmin (#L) are the left axioms of #(4,, . . ., 4,). The components of M

are called left parameters of the rule, and the components of N are called
right parameters of the rule. We impose the following important restric-
tion: In (#R) the sequence N of right components is empty unless all the
sequences P,, ..., P, are empty. In other words we allow right parame-
ters in (#R) only when in every right axiom of # the set of left components
is empty. In the previous example this condition is satisfied by the connec-
tives A and v, but not by 7 and 2. There is no restriction on the left
parameters of (#R); neither is there any restriction on the right and left
parameters of (#L).> In both rules the sequents above the line are called
the premises of the rule, and the sequent below the line is called the
conclusion of the rule. We shall take as initial sequents all sequents
A+ A with A some atomic letter. We shall allow also the expansion rule,
which has the form:

M+N
PrQ

provided that P is an expansion of M and @ is an expansion of N. We shall
say that a sequent M+ N is provable if it can be obtained from the initial
sequents by using the expansion rules and the rules (#R) and (#L) for each
connective #. .

We shall consider systems containing one or more connectives and for
each connective we assume the sets of axioms R# and L# are given. These
sets determine the rules (#R) and (#L) hence the notion of provability in the
system. Our aim is to define for such connectives an interpretation in
Kripke models and to study under which conditions we obtain an adequate
and complete formalization for such interpretation. Since we want to give
conditions that are sufficient and necessary we need some results that hold
for any system satisfying the very general definitions give above.

2. If some set of axioms is empty, say the right axioms of_#, the rule means that the
sequent M N, #(A,, ..., Apn) can be taken as initial for arbitrary M and N.
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Proposition 1. Let M +~N be provable and N <R, #(A,, .. ., A,). Assume
P+ Q is some vight axiom of #(A,, ..., A,). Then P, M+R, @ is also
provable.

The proof is by induction in the derivation of M+ N. The case in which
M+=N is an initial sequent or it is obtained by the expansion rule is

trivial. Suppose M+ N is M +Ny, #(B,, .. ., B,) where #(4,, . . ., 4,) and
#.(B;, . .., By are different formulas and M - N is obtained by rule (#,R).
Hence #,(By, . . ., B,) is a component of R. If N, is empty clearly M+ R is

provable and the proposition follows by the expansion rule. If N, is not
empty the restriction on the right parameter does not apply to (#,R). Let

P, + @, be a right axiom of # (B, . . ., B,). Since P, M N, @, is provable
and Ny, @, <R, @, #(4,, ..., 4,) by the induction hypothesis (and the
expansion rule), it follows that P,, P, M~R, @, @, is provable. Hence
P, M~R, Q, #,(B,, ..., B, is provable and by the expansion rule P, M+ R,
@ is provable. Now suppose M +~N is M+N,, #(A,, ..., A,) and it is
obtained by rule (#R). It follows that P, M ~ N}, @ is provable and since Ny,
Q <R, @ #(A,, ..., 4,) by the induction hypothesis it is provable P, P,

M+ R, § so by expansion rule P, MR,  is provable. The case in which
M ~ N is obtained by some left rule is completely similar.

Corollary. If M+ N, #(A,, . . ., A,) is provable and P~ Q is a vight axiom of
#(Ay, . .., A,) then P, M~ N, Q is provable.

This result expresses some inversion property of the right rules. For
the left rules a similar result can be obtained only in special cases. One
of these cases is considered in the following proposition.

Proposition 2. Let M+ N be provable and suppose M < R, #(A,, . . ., A,).
Assume all formulas A,, ... A, are atomic letters and assume also that
the components of N and R ave atomic letters. Let S ~ T be some left
axiom of #(A,, . . ., A,). Then S, R = N, T is provable.

The proof by induction in the derivation of M ~ N is similar to that given
in Proposition 1.

Corollary. Let #(A,, ..., A,), M+ N be provable, where the components of
M and N ave atomic letters and the forvmulas Ay, . . ., A, arve also atomic
lettevs. Let S+T be some left axiom of #(A,, ..., A,). Then S, M+~N, T

is provable.

2 Models. A model _# is a pair (G, R) where G is a non empty set and R is
a reflexive, transitive relation on G. The elements of G are called points.
If xRy holds we say that y is an extension of x. An assignment #(x) in the
model # is a function defined for all points x of the model, and the values
of Hx) are sets of atomic letters, and whenever xRy holds then #(x) is a
subset of #v). The pair (x, ) where x is some point of # and ¢ is some
assignment in # is called a realization in #. If y is an extension of x then
(y, B is an extension of {(x, /. Now we define the value given by a realiza-
tion {x, # in some model # to every formula of our system. Such value is
always a truth value: T (true) or F (false). The realization (x, f) gives to
e; the value T if and only if ¢; is an element of Kx).
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Suppose A is the formula #(A4,, . . ., A,) for some connective #. Then
(x, ) gives to A the value T if and only if the following condition is
satisfied: If P+Q is a vight axiom of A, and (v, t) is some extension of
(x, O then either (y, t) gives value F to some component of P ov value T to
some component of Q.° It follows immediately from the assumptions on ¢
and R that whenever (x, £ gives to A value T then any extension {y, £) also
gives to A value T.

We say that a realization {x, #) in M accepts a sequent M + N if every
extension (y, §) of (x, f) either gives value F to some component in M or
value T to some component in N. We say that (x, § refutes M + N if (x, )
gives value T to every component of M and value F to every component of
N. It follows that (x, #) accepts M N if and only if no extension of {x, £)
refutes M +~N. It is clear that (x, #) gives value T to the formula
#(A4,, ..., A, if and only if (x, ) accepts all right axioms of the formula.

A model with exactly one point is called a classical model. We identify
such models with the model ({0}, R) which we call €. An assignment ¢ in ¢
is essentially a subset of the set of all atomic letters, #(0) denoting such
subset. We say that £ gives value T or F to a formula if (0, #) gives such
value. In the same manner we say that ¢ accepts or refutes a sequent
whenever (0, /) accepts or refutes the sequent. In the model C the truth
value of a formula given by an assignment ¢ is a truth function of the values
given by ¢ to the subformulas. We say that a sequent M N is valid in a
model M if every realization in M accepts M+ N. A valid sequent is a
sequent which is valid in every model. We say that a system is consistent
if every provable sequent is valid.

The consistency property for a connective # in a model M is the
following: Whenever a vealization {x, b in M accepts all right axioms of #
then it rvefutes some left axiom of #.

Theorem 1. If the consistency property fails for some connective # in some
model M, the system is not consistent.

Suppose (x, ) is some realization in M that accepts all right axioms of
# and refutes no left axiom. Consider all left axioms of #, say

STy, Se FTay vy SpETy

We define sequents M, N,, M,+N,, ..., My - N, as follows. Suppose
(x, t) gives value F to some component in S; say the atomic letter e;. In
this case the sequent M;~N; is S; ~T;, e,;. If this is not the case some
component of T; is given value T by (x, ) since (v, f) does not refute S; - T;.
Let e, be such component and we put in this case M; - N; to be the sequent
ey, Sj+—Tj. It is clear that all sequents M;+ N; are closed, hence provable,

then by rule (#L) we can get
€ups - - sy, tlen, . e)-e, ..., e

ir

which is refuted by {x, #).

3. It is clear that this definition is the same used by Kripke for 7 and D. The
formulation is different for v and A but it 1s easy to show they are equivalent.



472 LUIS E. SANCHIS

This result shows that the consistency property is necessary to have a
consistent system. We prove now it is also asufficient .condition. We need
first the following result.

Proposition 3. Suppose the consistency property for a connective # holds in
a model M. If (x, b is a vealization in M that gives value T to a formula
#(Ay, ..., A) then il vefutes some left axiom of the same formula.

. Define a new assignment £,(y) as follows: for i=1, ..., 1%, e; is an
element of #(y) if and only if (v, £ gives value T to the formula A;. For
j > n, e; is not an element of #(v). Clearly (v, ) accepts all right axioms
of #, hence refutes some left axiom of #, and it follows that (x, /) refutes
the corresponding left axiom of #(A4,, .. ., 4,).

Theorem 2. Let M N be a provable sequent and assume lhat M is a niodel
such that the consistency property foy every connective # in M =N holds in
M. Then M +Nis validin M.

The proof is by induction in the derivation of A/ +N. The initial
sequents are trivial. It is clear that whenever a realization (x, f) accepts
the premise of the expansion rule it also accepts the conclusion of the rule.
The same situation can be checked for the rules (#R) and for this it is not
necessary to assume the consistency property. But it is essential to
assume that the set of right parameters is empty; this restriction can be
dropped for thase connectives with the property that in every right axiom
the set of left components is empty. For the rules (#L) we have a similar
situation: whenever a realization accepts the premise it also accepts the
conclusion. But the proof of this. requires a straight application of the
consistency property we assume in this theorem.

From this result it follows that the system is consistent provided the
consistency property holds for every connective in every model. We can
prove that actually it is sufficient that it holds in at least one model. At
the same time we can give a formal characterization of the consistency
property. We recall that the cut rule can be formulated in'the following
way:

M-N,A A M-N
MeN

Theorem 3. The following conditions ave equivalent for a given connective

P

a) There is a model W such that every realization (x, t) in H refutes at
least one axiom (vight oy left) of +.

b) There is a model M such thal the consislency propervty lolds for = in M.
c) The empty sequent can be obtained from the set of all axioms of = (right
and left) using only the cut vule and the extension vule.

d) For crvevy model M every rvealization (x, ) in M refules at least one
axiom (vight or left) of +.

e) The consistency propevty fov + holds in every model.
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f) Inthe classical nmodel C every assigninent t vefutes at least one axiom
(vight ov left) of #.

The implication from a) to b) is trivial. Assume b) to prove c¢). For
this we show that whenever M FN is an atomic sequent in which all
components are taken from the list e, .. ., ¢, then either M - N is closed
or it can be obtained from the set of all axioms of # using only the cut rule
and the expansion rule. This is proved by induction on % = the number of
atomic letters in the list e,, ..., e, which are not components of M+ N,
Assume first that # = 0 and M - N is not closed. In the model given by b)
define the following assignment: #(v) = the set of all components of M for
every y. Take some point x of the model. Assume (x, /) does not accept
some right axiom P +@ of #. This means that some extension (v, £ refutes
P~@Q. Hence M ~N can be obtained by expansion from P+ Q. Assume (v, /)
accepts all right axioms of #; by the consistency property some left axiom
of #+ is refuted by (x, /). Again this means that M+~ N is obtained by
expansion of such left axiom. Assume now that #> 0 and .M+~ N is not
closed. Let e; be some letter in the list which is not a component of W =N,
By the induction hypothesis both M ~N, e¢; and e¢;, M+~ N can be obtained
from the set of all axioms using cut rule and induction rule. Then we can
obtain M ~ N by one application of the cut rule. This proves that M/ ~ N in
all cases can be obtained using cut rule and expansion rule. Taking M+ N
to be the empty sequent we get c).

Assume now c) to prove d). Take any model .# and any realization
(x, b in M. Suppose {x, #) does not refute any axiom. It is easy to check
that the expansion rule and the cut rule whenever applied to sequents that
are not refuted by (x, # produce sequents with the same property. It
follows that the empty sequent is not refuted by (x, ) and this is a
contradiction.

The implication from d) to e) is trivial. To prove f) assuming e) it is
sufficient to note that in the classical model every sequent is either
accepted or refuted by any assignment /. The implication from f) to a) is of
course trivial.

3 Completeness. In this section we consider which conditions must be
imposed in the system in order that every valid sequent can be proved.
The union property for the connective # is the following: The union of a left
axiom of # with a vight axiom of # is a closed sequent.

Proposition 4. If the sequent #(ey, . .., e)+#(ey, ..., e,) is provable the
union propevty fov # holds.

Assume the sequent is provable. Let P+ be some right axiom of #.
By the corollary to Proposition 1 it follows that P, #(e,, ..., €,)+ @ is
provable. Now let S+T7 be some left axiom of #. By the corollary to
Proposition 2 it follows that S, P+ @, T is provable. Since this is an atomic
sequent this is possible only if it is closed.

This result shows that the union property for every connective is a
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necessary condition for the system to be complete. To prove it is a
sufficient condition we need several definitions.

A block of a sequent M N is a finite sequence of sequents, say M, ~N,,
My =Ny, . . ., M, = Ny, constructed using the following rules:

Bl M,+ N, is M FN.

B2 If M;-N; is A, M]+~N; where A is an atomic letter but not every
component of M/ is an atomic letter, then M;,, - N;,, is the sequent M/,
A+ N,'.

B3 If M;~N; is #(A,, ..., A,), M{+N; for some connective #, then
M; 11+ N;4, is any of the sequents S, M/ - N;, T where S + T is any of the left
axioms of #(4,, . . ., 4,).

B4 In the last sequent of the block all left components are atomic letters.

We shall use letters U and V for blocks. The left components of the
block U are the left components of the sequents in U, and the right com-
ponents of U are the right components of the sequents in U. The notation
U* indicates all left components of U in some conventional order. The
residuals of the block U are those formulas that are right components U
and are not atomic letters. We say that the block U is closed if there is
some atomic letter that it is both a right component and a left component
of U.

Proposition 5. Let MFN be a sequent and R some given sequence of
formulas. Assume lhat every block U of M+ N is either closed or theve is
a rvesidual B of U such that U*, R+~B is provable. Then M, R+N is
provable.

The proof is by induction on # = the number of connectives occurring in
M. If k=0 the assumptions imply that there is a component B of N such
that M, R+ B is provable. It follows that M, R+ N is provable. Assume
now that # > 0. Then by 0 or more applications of B2 in every block U we
must reach a sequence M; - N; of the form #(A, ..., A), M/ +N;. LetS+T
be some left axiom of #(A;, ..., A,) and assume V is some block of S,
M)+ N;, T. By the assumptions of the proposition it follows that either V is
closed or there is a residual B of V such that V*, #(A,, ..., A,), R+~Bis
provable. By the induction hypothesis (but with R, = #(4,, ..., 4,), R in
place of R) we get that S, M,', R,+N;, T is provable. Since this holds for all
left axioms of #, we have that #(A4,, . . ., A,), M;, R,+ N; is provable, hence
M, R+~ N is also provable.

Corollary. Lel M+ N be a sequent such that every block Uis either closed
ov theve is a vesidual B of U such that U* &= B is provable. Then M+ N is
provable.

This result gives the relation between blocks and provability which we
need to prove the completeness of the system. For some applications in
the next section we need a similar result that we state and prove now. We
say that a connective # is regular if there is at most one left axiom of +
with the property that the set of left components of the axioms is non empty.
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For example, the connective v is not regular, but the other usual connec-
tives are regular. A sequent M FN is regular if in every block U whenever
rule B3 is applied the connective # is regular.

Proposition 6. Let M+ N be a vegulav sequent with N non empty, and R
some given sequence of formulas. Assume that for every block Uof M N
theve is a vight component B of U such that U*, R+ B is provable. Then
theve is a component A of N such that M, R+ A is provable.

The proof is again by induction on the number of connectives in M. The
initial case is trivial, so we may assume that by using 0 or more times B2
in every block U we have reached a sequent M; ~N; of the form
#(Ay, . .., A,), M{ FN;. In this case # is a regular connective. If S; 7 is
a left axiom of #(A,, ..., 4,) by the induction hypothesis we get that S;,
M;, R,~A; is provable, where A; is a component of N;, T;. We have here
three cases. i) For all j, A; is a component of 7;. By using (#L) we get
#(A, ..., A), M{, R,~ hence M, R+A is provable for any component A
of N. 1ii) Some A; is a component of N; and S; is empty. In this case we
take A = A; and clearly M, R+A is provable. iii) Otherwise for every j
such that Sj is empty A; is a component of 7, and there is a unique j such
that S; is not empty but A; is a component of N;. In this case we take A = A;
and get M, R +A by rule (#L) and expansion.

We return to the proof of the completeness theorem. We define a
special model 8* = (G*, R*) where G* is the set of all blocks U such that U
is not closed and there is no residual B of U such that U* + B is provable.
The relation U R* V means that U* <V*, £ We have the following con-
sequence of Proposition 5:

If the sequent M - N is not provable then it has a block U that belongs to G*.

Let t¥(U) be the following assignment in 8*. For every block U *(U)
is the set of atomic letters that are left components of U.

Theorem 4. Asswuine the union property holds for all connectives and let U
be some block in G*. Then if a formula A is a left (vight) component of U
the vealization (U, t*) gives value T (F) to A.

We note that this result can be stated in the following way: if U belongs
to G* then (U, t*) refutes every sequent in U, The proof of the theorem is
by induction on the number of connectives in the formula A. The case in
in which A is some atomic letter is clear from the definition of {* and the
fact that U is not closed.

Suppose A is #(4,, . .., A,) for some connective #. We consider first
the case in which A is a left component of U. Let V be some element of G*
such that U R* V holds. We must show that (V, #*) does not refute any right
axiom of A. Since A is a left component of V by the induction hypothesis
some left axiom of A, say S+~ 7, is refuted by (V, /*). Hence given any
right axiom of A, say P @, the sequent S. P+ Q, T is closed, hence (V, ¥
does not refute P+ Q.

We consider now the case in which A is a right component of U. Since
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A is a residual of U the sequent U*+ A is not provable. This means that
for some right axiom of A, say P @, the sequent P, U* +@ is not provable.
Let V be some block of P, U*+~@ which is an element of G*, By the
induction hypothesis (V, {*) refutes P+ @ and since (V, £*) is an extension
of (U, * this means that (U, *) gives value F to A.

Theorem 5. The following conditions arve equivalent:

a) Every valid sequent is provable.
b) The union property holds for all connectives.
c) Every sequent valid in the model B* is provable.

The implication from a) to b) follows from Proposition 4. Assume b)
and to prove c¢) assume M =N is valid in 8*, If M +N is not provable then
there is some U in G* such that (U, (*) refutes M ~N; so M - N is provable.
The implication from c) to a) is trivial.

This proof of the completeness theorem is a generalization of the proof
given by Fitting in [2]. There is another proof given by Schutte in [4] that
can be also be generalized to the situation considered in this paper. The
argument given by this generalization is actually more elegant but it is also
less informative. For this reason we have preferred to use Fitting’s
construction that is also Kripke’s original proof.* A connective for which
both the consistency property and the union property holds is called a
Gentzen connective. A system in which all connectives are Gentzen
connectives is called a Gentzen system. There are some differences
between the original treatment given by Gentzen and the one presented
here, specially in connection with the possibility of allowing more than one
right component in sequents. This seems to us to be a consequence of the
fact that Gentzen considered only the four usual connectives of intuitionistic
logic. A general treatment as the one presented here seems to require a
different notion of sequent.®

It is possible that two connectives with different sets of axioms are
related, and eventually are the same. The following result proVideS a
method to compare different connectives.

Theorem 6. Let #, and #, be tiwo n-avy Gentzen connectives. The following
conditions are equivalent: '

a) The union of a left axiom of +#, with a vight axiom of #, is always a
closed sequent.

b) The sequent #,(e,, . . ., en)+ #.(ey, . . ., €,) is provable.

c) There is a model in which (e, . . ., e, F t.(ey, . . ., en) is valid.

4. The main change in the proof 1s the treatment of the right rules. Note that what
we call here a block is not the same notion that Fitting introduces in the predicate
calculus.

5. A theory of Gentzen rules for the usual connectives allowing more than one right
component in sequents was given by Curry in [1].
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The implication from a) to b) and from b)to c) is clear. To go from
c) to a) assume M is a model in which the sequent is valid. To get a
contradiction assume a) is not true so there is a left axiom of #,say S+ T
and a right axiom of #,, say P+~ such that S, P+~@Q, T is not closed. In
this case define the following assignment #(y) in #: for every point y, t(y) =
the set of all components of S and P. If x is any point in the model then
(x, t) gives value F to #,(e,, ..., e, hence also gives value F to the
formula #,(e,, . .., e,). This means that there is some right axiom of #,,
say P,~Q,, and some extension (y, #) of {x, £) such that (y, #) refutes
P, - Q,. Since (y, f) refutes S~ T it follows that it also refutes S, P,~ Q,, T
which is impossible since this sequent is closed.

We shall say that the connectives #; and #, are equivalent in the model
M, if the two following sequents are valid in _#:

#iley, . ., en)-Hy(er, ..., e
#2(617 s en)k#l(el) LS en)

We say the connectives are equivalent if they are equivalent in all
models.

Let #; and #, be two nm-ary Gentzen connectives. It is an easy con-
sequence of Theorem 6 that they are equivalent if and only if they are
equivalent in some model, and also if and only if the union of a left axiom
of one connective with the right axiom of the other connective is always a
closed sequent. A consequence of the previous result is the following:

If tico Gentzen connectives have the same set of vight axioms, ov the same
set of left axioms, they ave equivalent.

We note also the following transformation. Suppose a Gentzen connec-
tive is given by means of the sets of right and left axioms. Suppose some
axioms are dropped from both sets and the reduced sets still satisfy the
consistency property. Then the connective defined by the new sets is
equivalent to the original. A situation in which the consistency property is
preserved is the case in which closed sequents are dropped from the sets
of axioms. Finally we note that whenever one set of axioms contains the
empty sequent then all other axioms can be dropped and the new connec-
tive is equivalent.

4 Applications. In the remainder of the paper we consider only Gentzen
connectives. We recall that the usual connectives of intuitionistic logic are
Gentzen connectives.

Theorem 7. If M+~ N, A and A, P -Q ave both provable sequents then
M, P-N, Qis also provable.

Since both sequents are provable they are valid. It follows that
M, P- N, Q is also valid, hence it is provable.

Theorem 8. Let M =N be a provable rvegular sequent where N is non empty.
Then theve is a component A of N such that M — A is provable.
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Since M+ N is provable every block U is either closed or there is a
residual B such that U*+ B is provable. In either case there is a right
component B of U such that U*+ B is provable. The conclusion follows then
by Proposition 6.

We assume now that the usual connectives have been introduced with
the axioms given in the first section. We note that the property of a sequent
M + N being regular depends only on the components of M. We shall say
that a formula A is regular if the sequent A+ is regular. Suppose the
sequent A —~ Bv C is provable, where A is regular. It follows that A+ B, C
is provable and by Theorem 8 either A + B is provable or A +- C is provable.
In the case that A contains only the usual connective the result is equivalent
to the theorem proved by Harrop in [3] for the intuitionistic propositional
calculus. We shall consider now the possibility of defining some connective
by means of a formula containing other connectives. We shall say that a
formula A is elementary if it is of one of the forms B © C, 1B or C where
B is a conjunction of atomic letters and C is a disjunction of atomic letters.
An atomic letter alone is considered both a conjunction and a disjunction of
atomic letters. We say that a formula A is in normal form if it is a
conjunction of elementary formulas. We say that the formulas A and B are
equivalent if the sequents A+ B and B+ A are both provable. Let A be some
formula in which all atomic letters are in the list e;, .. ., e, and the
connective # does not occur in A. We say that A defines # if A is equivalent
to the formula #(ey, . . ., e,).

Theorem 9. FEvery connective # diffevent from the usual connectives can be
defined by some fovmmula A in novmmal form.

Let Py~ @Q,, ..., P, +Q, be all right axioms of #. If 2 = 0 we take as A
the formula e, D e,. If one of the axioms is the empty sequent we take as A
the formula e, ale¢;. Otherwise we associate with P; - @; an elementary
formula A; as follows. Let B; be the conjunction of the components of P;
(provided this set is non empty) and C; the disjunction of the components of
@; (provided also it is non empty). If neither set is empty then A; is
B, OC;. If P, is empty A; is C;. Otherwise it is 1B;. Let A be the
conjunction of A, ..., A,. Since for every i the sequent A, P;+Q; is

provable it follows that A+~ #(e,, . . ., ¢,) is provable. We know also that
for every i the sequent #(e,, . .., e,), P; - Q; is provable. It follows that
#(ey, . . ., e,)—A; is provable, hence #(e,, . . ., e,) - A is also provable.

A formula which is equivalent to some formula in normal form is
called a Gentzen formula.

Theorem 10. Let A be some Gentzen formula. Then it is possible to
introduce a Gentzen connective # which is defined by A.

We may assume A is in normal form. The procedure of Theorem 8
can be reversed so we can get from A a set of axioms such that if # is a
connective with such set as right axioms then A defines #. We need then
only to show that given a set of atomic sequents it is possible to construct
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another set such that when the first is taken as right axioms and the second
as left axioms of some connective # the consistency and union properties
are satisfied.

Let L be such set of atomic sequents. Then L, is the set of all
sequents that can be obtained by the following method: from every sequent
in L take exactly one component and put it as a right (left) component
provided it was a left (right) component in the sequent from which it was
taken. The same component may be taken from different sequents in L.
By construction it is clear that the union of a sequent in L and a sequent in
L, is closed, so the union property holds. To prove the consistency
property consider some assignment { in the classical model; assume ¢
accepts all sequents in L. This means that in every sequent of L there is
some left component which is given value F by f or some right component
which is given value T. By selecting precisely those components we get a
sequent in L; which is refuted by {. The conjunction of two Gentzen for-
mulas is again a Gentzen formula. We give now some examples that show
that the other operations do not produce Gentzen formulas when applied to
Gentzen formulas.

Consider first the formula le,ve,. Suppose it defines some binary
connective #. Since the sequent e, O e, +#(e, ¢,) is valid in the classical
model it is provable by Theorem 6. It follows that e, D> e,+e,ve, is
provable, hence ~7e,v e, is provable, and this is impossible.

Our second example is the formula (e, D e;) D e,. Suppose again it
defines some binary connective #. By Theorem 6 the sequent (e, O e,) D
e, -e,ve,is provable, hence by Theorem 8 one of the sequents (e, O e,) D
e, e, or (e; D e, D e, e,is provable and this is impossible.

By a similar argument if 7(7e,a le,) is a Gentzen formula then one of
the sequents 1(7e;ale,) e, or (le,ale,) e, is provable and this is
impossible.

On the other hand a conditional of Gentzen formulas which is a
classical tautology it is provable intuitionistically. We state this result as
a theorem.

Theorem 11. If the sequent A+~ B is valid in the classical model and A and
B are Gentzen formulas then it is provable.

This is a direct consequence of Theorem 6.
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