
621
Notre Dame Journal of Formal Logic
Volume XVIII, Number 4, October 1977
NDJFAM

A SEMANTICAL ANALYSIS OF THE CALCULI Cn

NEWTON C. A. da COSTA and E. H. ALVES

1 Introduction d is a propositional calculus which can serve as a basis

for inconsistent, but non trivial deductive theories (see [l] and [2]). The

axiomatic basis of Cx is as follows:

1. Primitive symbols of Ci: 1.1. ^ (implication), & (conjunction), v (dis-

junction), and Ί (negation); 1.2. propositional variables: pf q, r, . . ., pf,

qr, r', . . .; 1.3. Parentheses.

The notion of formula and the symbol of equivalence (=) are defined in

the standard way. Roman capitals will be used as syntactical variables for

formulas. A° is an abbreviation of l(A & Ί A).

Definition 1 Ί*A=df ΊA& A°.

2. Postulates (axiom schemata and deduction rule) of Ci:

(1) A^ (£D A),

(2) (A D B) D ((A z> (B => C)) 3 (A 3 O) ,

(4) A & B => A,

(6) A^ (B^>A& B),

(7) A D A v £ ,

(8) 5^Av5,

(9) (A D C) 3 ((5 ^ C ) 3 ( A v 5 D C)),

(10) ivΊA,

(11) ΊΊA ^ A,

(12) ^° ^ ((A ^ J5) ^ ((A D 15) D ΊA)),

(13) A° & 5° D (A & B)°,

(14) A°& JB° ̂  (Av5)°,

(15) A°& 5° ^ (A D B)°.

(Formal) proof, deduction and the symbol h are introduced as in Kleene's

book [4].
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In Cx the symbols ^ , &, v, and = have all properties of the classical
positive logic. For instance, in Cx Peirce's law, {(A 3 B) 3 A) ^ A, is
valid. Ί * has all properties of classical negation; for example, we have
in Ci:

\-{A 3 5)=) {(A 3 Ί*B) ^>Ί*A); hΊ*A D (A => 5); hAvΊ*A.

In this paper we present a two-valued semantics for C1? which con-
stitutes a generalization of the common semantics of the classical proposi-
tional calculus. It seems to us that the proposed semantics for Ci agrees
with some views of the young Lukasiewicz, as he presented them in his
work [5], section 18, item br. In this paper Lukasiewicz discusses, among
other things, the possibility of denying the principle of contradiction.

In the sequel the symbols =#> and <̂ # will be employed as metalin-
guistic abbreviations for implication and equivalence.

2 A two-valued semantics for C i Let 9 denote the set of formulas of Ci.
Γ and Δ will designate any subsets of 9. Γ will be an abbreviation of the
set {A e9: ΓhA}.

Definition 2 The set Γ of formulas is said to be trivial if Γ = 9; otherwise,
Γ is called nontrivial.

Definition 3 Γ is said to be consistent if there is at least one formula A
such that A, lAe Γ; otherwise, Γ is called consistent.

Definition 4 Γ is a maximal nontrivial set if it is not trivial and, for all A,
if A^Γ, then Γ U {A} is trivial.

Theorem 1 If Γ is a maximal nontrivial set of formulas, then:

1. ΓhA4ΦAe Γ; 2. Ae Γ==>Ί*A/Γ; Ί*Ae Γ==>A/Γ; 3. Ae Γ or Ί*Ae Γ;

4. hA=>Ae Γ; 5. A, A° e Γ ==>Ί Afίr; ΊA, A° e Γ=>A/Γ; 6. A,A^ BeΓ=Φ

BeT; 7. A°t Γ=ΦA / Γ o r ΊA ίT\ 8. A°e Γ==>(ΊA)°e Γ.

Proof: We shall prove only three of the above properties:

1. ThA^ΦAe Γ:

Let us suppose that Γt-Λ, but that A/Γ. Then, since Γ is maximal,
Γu{A}\-A&i*A. Hence, Γv-A D (A & Ί*A), and ΓhΊ*A. But, taking into
account that Γ\-A, it follows that ΓhA &Ί*A; therefore, Γ would be
trivial, which is absurd.

3. AeΓ or Ί*Ae Γ:

If AiT and Ί*AfίT9 then Γ U {A}hB & Ί*B and Γ U { Ί * A } H £ & Ί*J3. Con-
sequently, Γ U {A vΊ*A}\-B & Ί*B, and Γ would be trivial.

7. A°e Γ=#>A/Γ o r l A / Γ :

Let us admit that A° e Γ and that A, ΊAe Γ. Then, ΓhA&ηΛ; but, since
Γ hA°, it results that Γ\-A & Ί*A, and Γ would again be trivial.

Definition 5 A valuation of Cx is a function v: 9 —> {0, 1} such that:
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1. v(A) = 0=>v(ΊA) = 1; 2. v(llA) = l=Φv(A) = 1; 3. v(B°) = v(A D B) =
v(A ^ΊB) = l=Φv(A) = 0; 4. v(A => B) = 14=>v(A) = 0 or i φ ) = 1; 5. v(A &
B) = K Φ t U) = v(J5) = 1; 6. ϋ(AvE) = l<=¥υ(A) = 1 or y(£) = 1; 7. v(A°) =
ι;(JB°) = l=Φϋ(Uvΰ)°) = v((Λ & B)°) = υ((A => B)°) = 1.

Theorem 2 If v is a valuation of Cί9 then υ has the following properties:

υ(A) = l<N>z;(Ί*A) = 0; v(A) = 0<^>y(l*A) = 1; v(A) = 0<=>v(A) = 0 and ι (lA)
= 1; i W) = l##>z;(A) = 1 or V(ΊA) = 0.

Proof: Immediate.

Definition 6 A valuation υ is called singular if there exists at least one
formula A such that v{A) = v(Ί A) = 1. Otherwise, v is said to be normal.

Definition 7 A formula A is valid if, for every valuation v, υ(A) = 1.

Definition 8 A valuation v i s a model of a set Γ of formulas, if v(A) = 1 for
any element A of Γ.

Definition 9 If, for any model υ of Γ, we have v(A) = 1, we say that A is a
semantical consequence of Γ, and we write Γ(=A. In particular, |= A is an
abbreviation of φ N A, and this means that A is valid.

Theorem 3 Γ h i = Φ Γ I = A

Proof: By induction on the length of a deduction of A from Γ.

Corollary h-A=#>N=A.

Lemma 1 Every nontrivial set of formulas is contained in a maximal
nontriυial set.

Proof: By an obvious adaptation of the proof of the corresponding classical
theorem.

Corollary There are maximal nontrivial inconsistent sets.

Proof: It is easy to see that {p,Ίp} is an inconsistent but nontrivial set.
Hence, by the preceding theorem, it is contained in a maximal nontrivial
set, which is inconsistent.

Lemma 2 Every maximal nontrivial set Γ of formulas has a model.

Proof: We define the function v: 9—> {0, l} as follows: for every formula
A, if Ae Γ, we put v(A) = 1; otherwise, v(A) = 0. Then, we prove that v
satisfies all conditions of the definition of valuation.

Corollary 1 Any nontrivial set of formulas has a model.

Corollary 2 There are singular valuations (and, of course, also normal
valuations).

Proof: {/>,"!/>} is inconsistent but nontrivial. Therefore, this set is con-
tained in a maximal nontrivial set, which has a model v; but obviously v is
singular.
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Theorem 4 Γ\=A=ΦΓ\-A.

Proof: If ΓNA, then, for every valuation v, which is a model of Γ, we have
that v(A) = 1. Hence, by Theorem 2, there is no valuation v, which is a
model of Γ and such that v(l*A) = 1. Then, Γ U { Ί M } does not have a
model. But, by Lemmas 1 and 2, any nontrivial set has a model. Con-
sequently, Γu{l*A} is trivial, and Γu{"l*i}m*Ί*A. Since Γu{Λ}h
Ί*Ί*A, and 1* behaves like the classical negation, we have Γ u{~l*AvA}h
Ί*Ί*A and Γ H Ί * Ί * A . Finally, it follows that Γ h i ,

Corollary 1 \=A=^ I- A.

Corollary 2 Γ N i < ^ > Γ h Λ

Theorem 5 There are inconsistent (but nontrivial) sets of formulas which
have models.

Remarks: 1. The first (or the second) property of Theorem 2 implies
conditions 1 and 3 of the definition of valuation (Definition 5); 2. The value
of a valuation v for an arbitrary formula is not in general determined by
the values of v for the propositional variables.

Definition 10 Let Δ be the set {A° e 9: \-A}. Γ is said to be strongly
nontrivial, if Γ U Δ is not trivial. Let now Δ denote the set {A° e 9: A is
not a propositional variable}; Γ is said to be strictly nontrivial, if Γ U Δ is
not trivial.

Theorem 6 There exist sets of formulas which are strongly nontrivial and
sets of formulas which are strictly nontrivial.

Proof: We shall prove only the first part of the theorem, i.e., that there
are strongly nontrivial sets of formulas. In effect, if Δ is the set
{A°e9: hA}, then Δ is consistent. But this implies that Δ is also
nontrivial. Hence, Δ is contained in a maximal nontrivial set Δ f. Let Δ"
be the set Δ' - Δ. Δ" is evidently a strongly nontrivial set of formulas.

3 The decidability of Cι By means of the above semantics for C^ we can
obtain as a byproduct a decision method for that calculus. This will be the
objective of the present section of this paper.

Definition 11 (of quasi-matrix) For each formula of Cx we can construct
tables according to the instructions below, which we shall call quasi-
matrices.

In order to construct a quasi-matrix for a formula A, the procedure is
as follows:

1. Make a list of all the propositional variables which occur in A, and
arrange them in a line.
2. Under the list of the propositional variables, place in successive lines
all the possible combinations of 0's and l's which can be attributed to these
variables.
3. Then make a list of all the negations of propositional variables and
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calculate their value, in each line, as follows: if a variable was given value
0, the negation gets value 1. If a variable was given value 1, bifurcate the
line in which that occurred, writing in the first part value 0 for the
negation, and, in the second part, value 1 for the negation. Every time
there is a bifurcation, the values are the same for the two lines in the part
on the left of it.

4. Make a list and calculate, for each line, the value of each subformula of
A and, if it is a proper subformula, of its negation, whose proper sub-
formulas and their negations had already been listed and calculated, as
follows:

(i) When no negations are involved proceed as in a truth-table for the
classical propositional calculus;
(ii) If any of the formulas under consideration is a negation and so of the
form Ί Ar, write value 1 under it, on the lines in which A' has value 0. On
the lines in which A' has value 1, proceed as follows:

(1°) If A* is of the form IB, check if the value of B is equal to the value of
IB. If that is the case, bifurcate the line, writing the value 0 in the first
part and, in the second, the value 1. If the value of B is different from the
value of ~\B, simply write the value 0.
(2°) If Ar is of the form B § C, where § is =>, v, or &, there are two cases to
be considered:

a. A* is of the form D & ID, or of the form ΊD & D. In this case, write the
value 0 for the formula!A'.
b. A* is not of the form D & ΊD, or of the form ID & D. In this case, check
if the value of B is equal to the value of IB, or if the value of C is equal to
the value of ΊC. If this is true, bifurcate the line, writing the value 0 in the
first part and, in the second, the value 1. If, on the contrary, the value of B
is different from the value of ΊB, and the value of C is different from the
value of ΊC, simply write the value 0.

Lemma 3 v: 9 —» {0, 1} is a valuation if and only if:

1. v(lA) = 0=^v(A) = 1,
2. v(llA) = l=^>v(A) = 1,
3. υ(B°) =v(A => B) = v(A ^1B) = l=Φv(A) = 0,
4. υ(A 3 B) = l^Φϋ(Λ) = 0 or v(B) = 1,
5. v(A &B) = I Φ ^ V U ) = v(B) = 1,

6. v(AvB) = lΦ¥v{A) = 1 or v(B) = 1,
7. v((A & B)°) = 0 =>v(A°) = 0 or v(B°) = 0,

7 f . v((A & B)°) = 0=^v(A°) = 0 or v(B°) = 0,
7". v((A wB)°) = 0 =>v(A°) = 0 or v(B°) = 0.

Lemma 4 υ(A°) = 0<=>υ(A) = v(lA) = 1.

Proof: (a) υ(A°) = 0 ==>v(A & lA) = l=Φv(A) = υ(lA) = 1. (b) Suppose that
v(A) = υ(lA) = l; if υ(A°) = 1, then υ(A) = v(ΊA) = v(A°) = 1, that is, v(A) =
v(l*A) = 1, and υ would not be a valuation. Hence v(A°) = 0. Therefore,
v(A) = v(lA) = l=Φv(A°) = 0.
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Lemma 5 v: 9 —> {0, ί\is a valuation if and only if the conditions 1-6 of
Lemma 3 are present and:

7i. v((A D B)°) = 0=Φv(A) = v(lA) = 1 or v(B) = v(lB) = 1,
7ii. υ(U & B)°) = 0=^v(A) = υ(lA) = 1 or υ(B) = v(lB) = 1,

7iii. υ((AvB)°) = 0 ==>v(A) = v(lA) = 1 or υ{B) = v(lB) = 1.

Definition 12 Let y b e a valuation and let F be a formula. Then, vF is the
restriction of υ to the set of subformulas of F and negations of proper
subformulas of F.

Lemma 6 For every valuation v and for every formula F, v(F) = vF{F).

Definition 13 Let v be a valuation and Γ be a set of formulas. Then, vv is
the restriction of v to the set Γ.

Definition 14 We say that a line of a quasi-matrix corresponds to vv, if
vv(A) is the value corresponding to A in that line, for every A e Γ, where Γ
is the set of formulas of the table.

Lemma 7 Given a quasi-matrix O, for every valuation v there is a line of
0 which corresponds to vv, where Γ is the set of formulas of Q.

Proof: By induction on the number of columns of O.

Definition 15 Let jQ be a quasi-matrix for a formula A and let Γ be the set
of subformulas and negations of proper subformulas of A. Let H e a
line of that quasi-matrix and k(F) be the value atributed to F in k. Then,
Δ(Γ, k) is a set of formulas such that, for every formula F,

I. If Fe Γ, then Ft Δ(Γ, k) iff k(F) = 0.
II. If F / Γ , thenFeΔ(Γ, fe) iff:

a. F is atomic; or
b. F = ΊFλ and Fι^{T, k); or
c. F = .Fi & F 2 andFi€Δ(Γ, fe) or F 2eΔ(Γ, fe); or
d. F = FλvF2 and 2̂  e Δ(Γ, fe) and F 2e Δ(Γ, fe); or
e. F = JFX => F 2 a n d ^ / Δ ί Γ , fe) andF 2eΔ(Γ, fe).

Some properties of the sets Δ(Γ, fe):

1. ΊAeΔ(Γ, fe)=#>A/Δ(Γ, fe),
2. AeΔ(Γ, fe)=>llAeΔ(Γ,fe),
3. Ί*AeΔ(Γ, fe)<#=>A/Δ(Γ, fe),
4 J 3 E/Δ(Γ, fe)##>A € Δ(Γ, fe) or ,B/Δ(Γ, fe),
5. A e Δ(Γ, fe) or B e Δ(Γ, fe)<#=>A & B e Δ(Γ, fe),
6. A/Δ(Γ, fe) or £/Δ(Γ, fe)<#=^4 vJ5/Δ(Γ, fe),
7. (A § J5)°eΔ(Γ, fe)=>A/Δ(Γ, fe) andΊA/Δ(Γ, fe), or

J5/Δ(Γ, fe) andΊ£j^Δ(Γ, fe) (where § is &, v, or D).

Lemma 8 (A. Loparic) -For βz er^ Zme k of a quasi-matrix Q, ί^βre zs α
valuation v, such that vv corresponds to fe, where Γ zs the set of formulas
of a.
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Proof: Let / be the function 9 —> {θ, l} such that, for every A e 9,f(A) = 0,
if A e Δ(Γ, k), and f(A) = 1 if A j. Δ(Γ, k). Then, by the properties 1-7 of the
sets Δ(Γ, k), f is a valuation v. Since υv and & "coincide", there is a
valuation v, such that ϋ Γ corresponds to k.

Theorem 7 (M. Fidel) Cx is decidable.

Proof: Consequence of Lemmas 6, 7, and 8: the formula A is a theorem of
Ci if and only if in any quasi-matrix for A the last column contains only
Γ s ; in effect, in this case we have for any valuation υ: υ(A) = vA(A) = 1.

Examples:

1. Ί(AvB) ^ΊA&ΊB is not valid in Ci:

A B ΊA IB AvB Ί(AvB) lA & IB l(A v B) D Ί A & IB

0 0 1 1 0 1 1 1

i o °- x- ι- °- °- ι-
' > -Λ ί i —

1 1 1
0 1 0 0 1

i i — 9 Q I
1 i I o °-

, o - o o
^ i -i—i \—

2. Ί(A & B) ^ΊAvΊB i s valid in C x :

A B lA IB A&B Ί(A & JB) Ί A V Ί J B l e i & B) => Ί A v l E

0 0 1 1 0 1 1 1

U 1 1 0 1 1 1

o i i - 5 5 i 1 1
1 0 1 1 1

Λ 0 1 0 0 1

, ' ' ° i i -
1 1 5 1 I

1 1 1
4 The calculi Cn, l^n<ω The calculi C w , 1 ̂  n < ω, have the s a m e
language a s that of C x . It i s convenient to abbreviate Aoo'"°, where the
symbol ° a p p e a r s n t i m e s , n > 1, by Aw, and A 1 & A 2 & . . . & Aw by A ( w ) .
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The postulates of Cw, 1 ̂  n < ω, are those of d , excepting the postulates
(12)-(15), which are replaced by the following:

(12f) B(n) D ((A D B) => ((A => IB) D lA)),
(13f) A(n) & £ ( w ) 3 (A & B){n\
(14f) A(w) & B(n) z> ( A v ΰ ) w ,
(15f) AU) & JE?(w)^ ( A ^ £ ) ω .

The extension of the semantics of Ci to the systems Cn, 1 ̂  n < ω, is
immediate. All definitions and theorems are the same, only with evident
modifications as regards the strong negation (for example, Ί*A becomes
Ί(w)A, which is an abbreviation of ΊA & A(w)), and the symbol ° (for example,
A° becomes Ain)).

In the construction of the quasi-matrices, the only change worth
mentioning is that when A is ΰ"" 1 & ID"'1 or ID"'1 & Dn'\ we write value 0
for the formula ΊA. In fact, we must have v(ΊA) = 0, since, in the opposite
case, we would have, by virtue of clause 7 of the definition of valuation, that
v(D & Ί(w)Z>) = 1 and v would not be a valuation. This clause is exactly the
one that characterizes the quasi-matrices of the system Cn, 1 < n < ω.

Example The schema {An~ι & -\An~ιfn) is valid in Cw, but not in Cm, m> n.
We shall show, using the quasi-matrices, that the schema (A & iA)° is valid
in Ci but not in C2.

InCi:

A 1A A&lA ΊU&ΊA) (A&lA) & l U & A) Ί(U&ΊΛ) & ΊU&ΊA))
0 1 0 1 0 1

0 0 1 0 1
1 1 0 0 1

InC 2:

A lA AkΊA l(A&ΊA) (A &ΊA) & l(A & lA) l((A & lA) & l(A & lA))
0 1 0 1 0 1

0 0 1 0 1

i i °- 2 1

1
5 Modal calculi based onC1 We can build modal calculi from calculi Cw,
1 ^ n < ω, exactly in the same way as systems of modal logic are built from
the classical propositional calculus. We shall deal only with the construc-
tion of modal calculi associated with Ci, namely, d T , C ^ , CiB, and CiS5,
which are the calculi corresponding to the systems T of Feys-von Wright,
S4 of Lewis, the Browerian and S5 of Lewis.

The primitive symbols of the modal calculi we are going to present are
exactly the same as the ones of Ci to which we add the monadic operator of
necessity (G). The symbol O is defined as follows:

OA=df Ί*DΊ*A
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The other modal operators are similarly defined. Formula is defined
as usual. The postulates (axiom schemata and deduction rules) of CiT are
the same as those of Cx plus the following:

ΠA^> A
Π(A => B) D (ΠA D ΠJB)

A° D (ΠA)°

A/ΏA

The postulates of C1S4 are the same as those of CiT and:

ΏA Z) ΠΠA

The postulates of CiB are the same as those of CiT and:

A -D'ΠOA

The postulates of C1S5 are the same as those of CiT and:

OA z> πθA

From the semantic point of view, we can adapt, in a convenient way,
our method of section 2, using the technique of Kripke's models (see
Hughes & Cresswell [3], chapter 4), hence getting semantics which will be
appropriate to the calculi described above.

The relation between the systems d T , CiS4, CiB, and C1S5 is the same
as the one between their corresponding systems T, S4, B and S5. As to the
modal calculi associated with Cw, 1 < n < ω, they are totaly analogous to the
calculi we obtain starting from Ci.

Notice that the modal systems based on Cw, 1 < n < ω, have the funda-
mental properties of these latter systems. In fact, if we use the semantic
methods indicated, it would not be difficult to show, for example, that the
schema A&lA^ B is not valid in CiT. We also note that one of the
paradoxes of strict implication, that is, the schema Ώ~λA D • {A ^ B), is not
valid in CiT, although it is valid in T. This shows that the new systems
have interesting properties. Nevertheless, we shall not go into the matter
in detail, since we have the intention of developing it in future works.
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