Notre Dame Journal of Formal Logic Volume XVIII, Number 3, July 1977 NDJFAM

SOME POST-COMPLETE EXTENSIONS OF S2 AND S3

ROBERT V. KOHN

We shall take M, \vee , and \neg as primitive connectives. Let \mathcal{L} be the set of all wffs with these connectives. If α , $\beta \in \mathcal{L}$, we shall write $\alpha \prec \beta$ for $\exists M \exists (\exists \alpha \lor \beta)$, and $\alpha \equiv \beta$ for $\exists [\exists (\alpha \prec \beta) \lor \exists (\beta \prec \alpha)]$. We let **f** and **t** denote the wffs p \land $\exists p \lor p, respectively. If <math>\alpha \in \mathcal{L}$, we denote by $\mathcal{L}[\alpha]$ the smallest subset of \mathcal{L} containing α and closed under the connectives M, ν , and \neg . A $modal\ logic\ L$ is a proper subset of $\mathcal L$ which is closed under the rules of uniform substitution and modus ponens, and contains all tautologies. If L_1 and L_2 are modal logics, then L_1 is an extension of L_2 iff $L_2 \subseteq L_1$. A modal logic is called Post-complete if it has no proper extensions. Let p(L) be the number of Post-complete extensions of a modal logic L. Several papers have considered the problem of evaluating p(L), for various modal logics L [1, 2, 3]. It has long been known that $p(S2) \ge \aleph_0$. Segerberg claims in [3] to prove that $p(S3) = 2^{80}$: his proof is incorrect, but it may easily be modified to show that $p(S2) = 2^{\aleph_0}$ and that $p(S3) \ge \aleph_0$. Whether or not $p(S3) = \aleph_0$ remains an open question, to which this author believes the answer is probably affirmative. Most of the work on Post-complete systems uses the classical results of Lindenbaum and Tarski [4], and is therefore highly non-constructive. In fact, the only explicitly described Post-complete extensions of S3 in the literature known to the author are the systems S9 of [5] and F and Tr of [3]. This paper applies a variant of a theorem of Belnap and McCall [6] to construct some Post-complete extensions of the Lewis systems S2 and S3.

Let $\mathfrak{M} = \langle B, D, * \rangle$ be any matrix for a modal logic, where B is a Boolean algebra, D a set of distinguished elements, and * interprets the possibility operator. Each element $\alpha \in \mathcal{L}[\mathfrak{f}]$ determines an element $V_{\mathfrak{M}}(\alpha)$ of B, when interpreted in \mathfrak{M} in the usual way.

Definition The matrix M is a functionally complete matrix (FCM) if:

- (i) for any $x \in B$, there is an $\alpha \in \mathcal{L}[f]$ such that $V_{\mathfrak{M}}(\alpha) = x$.
- (ii) for every $x \in B$, either $x \in D$ or $-x \in D$.

Received July 26, 1974

Given any matrix \mathbf{M} , we let $\mathbf{L}_{\mathbf{M}} = \{\alpha \in \mathcal{L}: \mathbf{M} \models \alpha\}$. The following lemma is essentially the theorem proved in [6], but is proved here for the sake of completeness.

Lemma If \mathfrak{M} is an FCM and $L_{\mathfrak{M}}$ is a modal logic, then $L_{\mathfrak{M}}$ is Post-complete.

Proof: Let $\alpha \in \mathcal{L}$. If $\mathfrak{M} \dashv \alpha$, then there is a substitution instance α^* of α such that $\alpha^* \in \mathcal{L}[\mathbf{f}]$, and $\mathfrak{M} \dashv \alpha^*$. But then $V_{\mathfrak{M}}(\alpha^*) \notin D$, so $V_{\mathfrak{M}}(\neg \alpha^*) \in D$, and hence $\mathfrak{M} \models \neg \alpha^*$. Thus $\mathfrak{M} \dashv \alpha$ implies that α is inconsistent with $L_{\mathfrak{M}}$, which proves the lemma.

Application 1: We construct a denumerably infinite collection of Post-complete extensions of S2, each closed under the rule of substitution of strict equivalents, and each having a finite characteristic matrix.

Let $n \ge 1$ be a fixed integer, and B_n be the Boolean algebra of subsets of $\{0, 1, \ldots, n\}$. Put $D_n = \{x \in B_n: 1 \in x\}$. Define $*_n \emptyset = \{0\}$; if $0 \le j \le n$, define $*_n \{j\}$ arbitrarily, subject to the conditions that

(1)
$$\{0, 1, j, j+1\} \subseteq *_n \{j\} \subseteq \{0, 1, 2, \ldots, j+1\} \text{ if } j < n$$

and

(2)
$$\{0, 1, n\} \subseteq *_n\{n\}.$$

If $x \in B_n$, define $*_n(x)$ by

(3)
$$*_n(x) = \bigcup_{j \in x} *_n \{j\}.$$

We claim that $\mathfrak{M}_n = \langle B_n, D_n, *_n \rangle$ is an **FCM**. Indeed, define a sequence of wffs $\{\delta_i\}$ inductively, by

(4)
$$\delta_0 = M \mathbf{f}$$
; if $m \ge 1$, $\delta_m = M \delta_{m-1} \wedge \neg \delta_{m-1} \wedge \ldots \wedge \neg \delta_0$.

It is not hard to see that $V_{\mathfrak{M}_n}(\delta_k) = \{k\}$ whenever $0 \le k \le n$; it follows that \mathfrak{M}_n is an FCM. By Theorem 3 of McKinsey [7], \mathfrak{M}_n is a normal S2-algebra. Since B_n and B_l have different cardinalities for $n \ne l$, $L_{\mathfrak{M}_n} \ne L_{\mathfrak{M}_l}$. Thus $\{L_{\mathfrak{M}_n} : n \ge 1\}$ is a collection of extensions of S2 having the desired properties.

Application 2: McCall and Vander Nat asked in [5] whether there are Post-complete modal systems with no finite characteristic matrix. Ulrich [8] has given an example of one; here we construct a nondenumerable family of such systems, each of which is an extension of S2. Let B be the Boolean algebra of all finite or cofinite subsets of $\{0, 1, \ldots\}$; let $D = \{x \in B: 1 \in x\}$. Define $*\emptyset = \{0\}$, and $*\{j\}$ arbitrarily for $0 \le j$ subject to condition (1) above. Define *(x) for $x \in B$ by (3). The wffs $\{\delta_i\}$ of (4) show that $\mathbf{M} = \langle B, D, * \rangle$ is an FCM; since it is also a normal S2-algebra, the modal logic $\mathbf{L}_{\mathbf{M}}$ is a Post-complete extension of S2 with no finite characteristic matrix. Let $\mathbf{M}_1 = \langle B_1, D_1, *_1 \rangle$ and $\mathbf{M}_2 = \langle B_2, D_2, *_2 \rangle$ be two distinct matrices obtained by the above construction; choose j, $k \le 0$ such that $k \in *_1 \{j\}$ but $k \notin *_2 \{j\}$. Then $\mathbf{M}_1 \models \delta_k \dashv M \delta_j$, but \mathbf{M}_2 rejects this wff. Hence $\mathbf{L}_{\mathbf{M}_1} \neq \mathbf{L}_{\mathbf{M}_2}$. A straightforward argument shows that the family of logics so constructed is nondenumerable.

Application 3: We determine a denumerably infinite collection of Post-complete extensions of S3, each finitely axiomatizable and each with a finite characteristic matrix. Fix an integer $N \ge 0$, and let B_N be the Boolean algebra of subsets of the set $S_N = \{0, 1, \ldots, N, \omega\}$. Let $D_N = \{x \in B_N : \omega \in x\}$. Define $*_N \emptyset = \{0\}$; if $0 \le n \le N$, put $*_N \{n\} = \{0, n, \omega\} \cup \{x \in S_N : n+2 \le x \le N\}$; put $*_N \{\omega\} = \{0, \omega\}$. Define $*_N (x)$ by formula (3) for arbitrary $x \in B_N$. It is not difficult to verify that $\mathbf{m}_N = \langle B_N, D_N, *_N \rangle$ is an S3 matrix. In the terminology of Kripke's model theory, \mathbf{m}_N corresponds to the frame with universe S_N , where 0 is the only non-normal world, ω sees every world, and if $0 < j \le N$ then j sees $0, 1, \ldots, j-2, j$. The theses of $L_{\mathbf{m}_N}$ are precisely the wffs which are verified in the world ω , in this frame. Define wffs X_n by

$$X_0 = M\mathbf{f}; \ X_1 = \neg MM\mathbf{f};$$

and if $n \ge 1$, $X_{n+1} = MX_0 \land MX_1 \land \ldots \land MX_{n-1} \land \neg MX_n$.

It is not hard to show that whenever $0 \le n \le N$, $V_{\mathfrak{M}_N}(X_n) = \{n\}$. It follows that each \mathfrak{M}_N is an FCM, and that the modal logics $\{L_{\mathfrak{M}_N} \colon N \ge 0\}$ form a denumerably infinite family of distinct Post-complete extensions of S3. The reader will find that this construction is closely related to the paper [3] of Segerberg. The following theorem assures that each of these systems is finitely axiomatizable.

Theorem Let $\mathfrak{M} = \langle B, D, * \rangle$ be a finite functionally complete S3 matrix. Then $L_{\mathfrak{M}}$ is finitely axiomatizable.

Proof: If $I = \{i_1, \ldots, i_n\}$ is any finite set, we shall write $\bigwedge \{\alpha_j \colon j \in I\}$ for $\alpha_{i_1} \land \ldots \land \alpha_{i_n}$, and $\bigvee \{\alpha_j \colon j \in I\}$ for $\alpha_{i_1} \lor \ldots \lor \alpha_{i_n}$. If I is empty, we take these expressions to represent \mathbf{t} and \mathbf{f} , respectively. We may assume B is the Boolean algebra of subsets of $\{0, 1, \ldots, N\}$ for some $N \ge 0$, and $D = \{x \in B \colon 0 \in x\}$. For each $n, 0 \le n \le N$, select a wff α_n such that $V_{\mathfrak{M}}(\alpha_n) = \{n\}$.

As axioms take Simons' axioms for S3 [9], together with

- (5) $M\alpha_n \equiv \bigvee \{\alpha_j: j \in *\{n\}\} \text{ for each } n, 0 \le n \le N;$
- (6) $\alpha_n \wedge \alpha_m \equiv \mathbf{f}$ for each pair $n \neq m$, where $0 \leq n$, $m \leq N$;
- (7) α_0 ;
- (8) $\bigvee \{ p \equiv \alpha_{i_1} \vee \ldots \vee \alpha_{i_k} : 0 \leq i_1 \leq \ldots \leq i_k \leq N \};$
- (9) $\alpha_0 \vee \ldots \vee \alpha_N \equiv \mathbf{t}$.

Let L be the extension of S3 defined by these axioms, with *modus* ponens and uniform substitution the only primitive rules of inference. This L will have the rule of substitution of strict equivalents as a derived rule, since this is true in any extension of Simons' axiomatization of S3. Clearly $L \subseteq L_{\mathfrak{M}}$; we must show that $L_{\mathfrak{M}} \subseteq L$. First we show that for all $\beta \in \mathcal{L}[f]$,

(10)
$$\vdash_{\Box} \beta \equiv \bigvee \{ \alpha_j : j \in V_{\mathfrak{M}}(\beta) \}.$$

If β is the wff f, the assertion is trivial; if γ and δ satisfy (10) and β is $\gamma \vee \delta$ or $M\gamma$, then clearly β satisfies (10). Now suppose β is $\exists \gamma$, where γ satisfies (10). Then:

$$(11) \qquad \vdash \beta \equiv \neg \Big(\mathbf{V} \{ \alpha_j \colon j \in V_{\mathfrak{M}}(\gamma) \} \Big).$$

Now, from (6) one can show that whenever $i \neq j$, $\vdash (\alpha_i \land \neg \alpha_j) \equiv \alpha_i$. Using (9) we get

$$\vdash_{\mathsf{L}} \exists \alpha_i \equiv (\alpha_0 \land \exists \alpha_i) \lor \ldots \lor (\alpha_N \land \exists \alpha_i).$$

Hence

$$\vdash \exists \alpha_i \equiv \bigvee \{\alpha_i : i \neq j, 0 \leq i \leq N\}.$$

This, together with (11) and (6), shows that

$$\vdash \beta \equiv \bigvee \{\alpha_i : i \notin V_{\mathfrak{m}}(\gamma)\}.$$

Hence (10) holds for all $\beta \in \mathcal{L}[f]$.

By the above paragraph and (7) we have $L_{\mathfrak{M}} \cap \mathcal{L}[f] \subseteq L$. Now let $\beta(p_1, \ldots, p_n)$ be any wff in the variables p_1, \ldots, p_n , and let $\Gamma = \{\alpha_{i_1} \vee \ldots \vee \alpha_{i_k} \colon 0 \leq i_1 \leq \ldots \leq i_k \leq N\}$. Using (8) and the substitution of strict equivalents, we get

$$\vdash_{\Gamma} \mathbf{V} \{ \beta \equiv \beta(p_1/\gamma_1, \ldots, p_n/\gamma_n) : \gamma_i \in \Gamma \text{ for } i = 1, \ldots, n \}.$$

If $\beta \in L_{\mathfrak{M}}$, then each $\beta(p_1/\gamma_1, \ldots, p_n/\gamma_n)$ is in $L_{\mathfrak{M}} \cap \mathcal{L}[f] \subseteq L$, and hence $\beta \in L$. The theorem is now proved.

REFERENCES

- [1] McKinsey, J. C. C., "On the number of complete extensions of the Lewis systems of sentential calculus," *The Journal of Symbolic Logic*, vol. 9 (1944), pp. 42-45.
- [2] Halldén, S., "Results concerning the decision problem of Lewis's calculi S3 and S6," The Journal of Symbolic Logic, vol. 14 (1950), pp. 230-236.
- [3] Segerberg, K., "Post completeness in modal logic," The Journal of Symbolic Logic, vol. 37 (1972), pp. 711-715.
- [4] Tarski, A., Logic, Semantics, and Metamathematics. Papers from 1923 to 1938, Clarendon Press, Oxford (1956).
- [5] McCall, S., and Arnold Vander Nat, "The System S9," in *Philosophical Logic* (J. W. Davis, D. J. Hockney, and W. K. Wilson, editors), Reidel, Dordrecht (1969), pp. 194-214.
- [6] Belnap, N. D., and S. McCall, "Every functionally complete m-valued logic has a Post-complete axiomatization," Notre Dame Journal of Formal Logic, vol. XI (1970), p. 106.
- [7] McKinsey, J. C. C., "A solution of the decision problem for the Lewis systems S2 and S4, with an application to topology," *The Journal of Symbolic Logic*, vol. 6 (1941), pp. 117-134.
- [8] Ulrich, D., "Some results concerning finite models for sentential calculi," Notre Dame Journal of Formal Logic, vol. XIII (1972), pp. 363-368.
- [9] Simons, L., "New axiomatizations of S3 and S4," The Journal of Symbolic Logic, vol. 18 (1953), pp. 309-316.

University of Warwick Coventry, England